

CUBRID 2008 R4.0 Help

iii

Table of Contents

Introduction to Manual ______________________________ 1

Introduction to CUBRID ______________________________ 3

Introduction to CUBRID __ 4

System Architecture __ 5

System Architecture __ 5

Database Volume Structure __ 6

Database Server __ 8

Broker __ 8

Interface Module ___ 10

CUBRID Features ___ 11

Getting Started with CUBRID __________________________ 15

Getting Started with CUBRID __ 16

Installing and Running ___ 17

Installing and Running on Linux __ 17

Installing and Running on Windows ___ 19

Configuring Environment Variable and Starting CUBRID ___________________________________ 20

Configuring the Environment Variable ___ 20

Language Setting___ 21

Starting the CUBRID Service ___ 22

CSQL Interpreter ___ 24

Starting the CSQL Interpreter __ 24

Executing the SQL with CSQL __ 25

Programming with JDBC ___ 26

Setting up the JDBC Environment __ 26

JDBC Sample ___ 27

Programming with PHP __ 31

Installing the PHP Module ___ 31

PHP Sample __ 31

Programming with ODBC and ASP __ 34

Configuring the Environment of ODBC and ASP ___ 34

ASP Sample __ 36

Programming with CCI ___ 40

CUBRID 2008 R4.0 Help

iv

CCI Library ___ 40

CCI Installation and Configuration ___ 40

Using CCI ___ 41

CCI Sample ___ 42

CSQL Interpreter ___________________________________ 45

CSQL Interpreter ___ 46

Introduction to the CSQL Interpreter ___ 47

Executing CSQL ___ 48

CSQL Execution Mode __ 48

Using CSQL (Syntax) __ 48

CSQL Startup Options __ 49

Session Commands __ 52

CUBRID SQL Guide __________________________________ 59

CUBRID SQL Guide ___ 60

Glossary __ 61

Comment ___ 62

Identifier __ 63

Reserved Words __ 65

Data Types ___ 69

Numeric Types ___ 69

Date/Time Types ___ 73

Bit Strings __ 79

Character Strings ___ 81

BLOB/CLOB Data Types ___ 86

Collection Types __ 92

Implicit Type Conversion ___ 94

Table Definition __ 101

CREATE TABLE __ 101

ALTER TABLE__ 112

DROP TABLE __ 123

RENAME TABLE ___ 123

Index Definition __ 125

CREATE INDEX __ 125

ALTER INDEX ___ 125

DROP INDEX ___ 126

Table of Contents

v

VIEW __ 127

CREATE VIEW ___ 127

ALTER VIEW __ 129

DROP VIEW __ 131

RENAME VIEW ___ 131

SERIAL __ 132

CREATE SERIAL ___ 132

ALTER SERIAL ___ 133

DROP SERIAL ___ 134

Use SERIAL ___ 134

Operators and Functions ___ 136

Logical Operators __ 136

Comparison Operators ___ 136

Arithmetic Operators ___ 138

Set Operators __ 142

Containment Operators __ 146

BIT Functions and Operators ___ 151

String Functions and Operators __ 153

Numeric and Operator Functions __ 176

Date/Time Functions and Operators ___ 189

Data Type Conversion Functions and Operators ___ 208

Aggregate Functions ___ 221

Click Counter Functions __ 227

ROWNUM Functions ___ 228

Information Functions __ 231

Encryption Function __ 235

Conditional Operators and Functions __ 236

Conditional Expressions __ 242

Data Manipluation ___ 248

SELECT ___ 248

Outer Join __ 255

Subquery ___ 258

Hierarchical Query __ 259

INSERT ___ 266

UPDATE ___ 269

REPLACE __ 270

DELETE ___ 271

TRUNCATE __ 272

DO ___ 273

CUBRID 2008 R4.0 Help

vi

PREPARED STATEMENT ___ 273

SET ___ 275

SHOW __ 276

Transaction and Lock __ 281

Overview ___ 281

Database Transaction ___ 281

Database Concurrency ___ 284

Lock Protocol ___ 285

Transaction Isolation Level ___ 292

Transaction Termination and Restoration ___ 306

Database User Authorization __ 308

Database User __ 308

Managing User ___ 308

Granting Authorization ___ 309

Revoking Authorization __ 310

User Authorization Management METHOD __ 311

Query Optimization __ 313

Updating Statistics ___ 313

Checking Statistics Information ___ 313

Using SQL Hint ___ 313

Viewing Query Plan __ 315

Using Indexes __ 316

TRIGGER __ 323

CREATE TRIGGER ___ 323

ALTER TRIGGER ___ 328

DROP TRIGGER ___ 329

RENAME TRIGGER __ 329

Deferred Condition and Action ___ 330

Trigger on REPLACE and INSERT … ON DUPLICATE KEY UPDATE ________________________ 331

TRIGGER Debugging ___ 332

TRIGGER Example __ 333

Java Stored Function/Procedure___ 335

Overview ___ 335

Environment Configuration for Java Stored Function/Procedure _________________________ 335

How to Write Java Stored Function/Procedure ___ 336

Using Server-side Internal JDBC Driver ___ 337

Connecting to Other Database ___ 338

loadjava Utility ___ 339

Loaded Java Class Publish __ 339

Table of Contents

vii

Java Stored Function/Procedure Call ___ 341

Note __ 343

METHOD __ 346

Overview ___ 346

METHOD Type __ 346

Calling METHOD ___ 346

Partitioning ___ 348

What is Partitioning? ___ 348

Range Partitioning ___ 348

Hash Partitioning ___ 351

List Partitioning ___ 352

Partitioning Management __ 354

Class Inheritance ___ 359

Overview ___ 359

Class Attribute and Method __ 359

Order Rule for Inheritance ___ 360

INHERIT Clause ___ 360

ADD SUPERCLASS Clause __ 360

DROP SUPERCLASS Clause ___ 361

Class Conflict Resolution ___ 362

Overview ___ 362

Resolution Specifier __ 362

Superclass Conflict ___ 362

Subclass Conflict ___ 363

Schema Invariant ___ 364

Rule for Schema Changes __ 365

CUBRID System Catalog ___ 368

Overview ___ 368

System Catalog Classes __ 368

System Catalog Virtual Class ___ 378

Catalog Class/Virtual Class Authorization __ 393

Consistency of Catalog Information __ 393

Querying on Catalog ___ 393

Administrator's Guide _______________________________ 395

Administrator's Guide __ 396

CUBRID Utilities __ 397

CUBRID Controls ___ 399

CUBRID 2008 R4.0 Help

viii

How to Use CUBRID Utilities (Syntax) __ 399

CUBRID Services __ 399

Database Server __ 402

Broker __ 405

CUBRID Manager Server ___ 415

Database Administration __ 416

How to Use the CUBRID Administration Utilities (Syntax) ________________________________ 416

Database Users ___ 416

databases.txt File ___ 416

Creating Database __ 417

Adding Database Volume __ 421

Deleting Database __ 423

Renaming Database __ 424

Copying/Moving Database ___ 425

Installing Database ___ 427

Checking Used Space __ 427

Compacting Used Space ___ 428

Updating Statistics ___ 429

Outputting Statistics Information of Server __ 430

Checking Lock Status ___ 434

Checking Database Consistency __ 434

Killing Database Transactions ___ 435

Checking the Query Plan Cache __ 436

Outputting Internal Database Information ___ 437

Backup and Restore __ 437

Export and Import__ 438

Outputting Parameters Used in Server/Client __ 438

Database Migration __ 439

Migrating Database __ 439

Unloading Database __ 439

Loading Database __ 442

How to Write Files to Load Database __ 445

Database Backup and Restore ___ 448

Database Backup ___ 448

Backup Strategy and Method __ 450

Managing Backup Files ___ 452

Database Restore ___ 453

Restore Strategy and Procedure __ 455

Restoring Database to Different Server __ 456

Table of Contents

ix

CUBRID HA ___ 459

Overview ___ 459

CUBRID HA Concept ___ 460

CUBRID HA Feature __ 467

Quick Start ___ 471

Environment Configuration ___ 473

Running and Monitoring ___ 477

Configuration ___ 481

Constraints ___ 487

Error Messages ___ 488

Operation Scenario ___ 494

Performance Tuning _________________________________ 499

Performance Tuning ___ 500

Database Server Configuration __ 501

Scope of Database Server Configuration ___ 501

cubrid.conf Configuration File and Default Parameters ___________________________________ 501

Connection-Related Parameters __ 505

Memory-Related Parameters ___ 506

Disk-Related Parameters __ 507

Error Message-Related Parameters ___ 508

Concurrency/Lock Parameters __ 510

Logging-Related Parameters ___ 511

Transaction Processing-Related Parameters __ 514

Statement/Type-Related Parameters __ 514

Query Cache-Related Parameters __ 518

Utility-Related Parameters __ 519

HA-Related Parameters ___ 519

Other Parameters ___ 520

Changing Database Server Configuration __ 523

Broker Configuration___ 525

cubrid_broker.conf Configuration File and Default Parameters ___________________________ 525

Common Parameters ___ 526

Parameter by Broker __ 527

API Reference _____________________________________ 533

API Reference __ 534

CUBRID 2008 R4.0 Help

x

JDBC API__ 535

JDBC Programming ___ 535

CUBRIDOID ___ 545

CUBRIDPreparedStatement ___ 551

CUBRIDResultSet ___ 552

CUBRIDResultSetMetaData ___ 553

CUBRIDStatement __ 554

ODBC API ___ 555

ODBC Programming __ 555

OLE DB API ___ 559

OLE DB Programming __ 559

PHP API ___ 564

PHP Programming __ 564

cubrid_affected_rows ___ 566

cubrid_bind ___ 567

cubrid_client_encoding ___ 570

cubrid_close __ 570

cubrid_close_prepare, cubrid_close_request __ 571

cubrid_close_prepare, cubrid_close_request __ 572

cubrid_col_get __ 572

cubrid_col_size ___ 573

cubrid_column_names __ 574

cubrid_column_types ___ 575

cubrid_commit ___ 576

cubrid_connect ___ 577

cubrid_connect_with_url __ 578

cubrid_current_oid __ 579

cubrid_data_seek ___ 580

cubrid_ db_name ___ 581

cubrid_disconnect __ 581

cubrid_drop __ 582

cubrid_errno, cubrid_error_code __ 584

cubrid_error, cubrid_error_msg ___ 584

cubrid_error_code_facility ___ 585

cubrid_execute ___ 586

cubrid_fetch __ 587

cubrid_fetch_array __ 588

cubrid_fetch_assoc__ 589

cubrid_fetch_field ___ 590

Table of Contents

xi

cubrid_fetch_lengths __ 591

cubrid_fetch_object ___ 592

cubrid_fetch_row ___ 593

cubrid_field_flags ___ 594

cubrid_field_len ___ 595

cubrid_field_name __ 595

cubrid_field_seek ___ 596

cubrid_field_table ___ 597

cubrid_field_type ___ 598

cubrid_free_result ___ 598

cubrid_get __ 599

cubrid_get_autocommit __ 600

cubrid_get_charset ___ 600

cubrid_get_class_name ___ 601

cubrid_get_client_info __ 602

cubrid_get_db_parameter ___ 603

cubrid_get_server_info __ 604

cubrid_insert_id ___ 605

cubrid_is_instance __ 606

cubrid_lob_close __ 607

cubrid_lob_export __ 607

cubrid_lob_get __ 608

cubrid_lob_send __ 608

cubrid_lob_size ___ 609

cubrid_list_dbs __ 610

cubrid_lock_read__ 610

cubrid_lock_write ___ 611

cubrid_move_cursor __ 612

cubrid_next_result __ 613

cubrid_num_cols, cubrid_num_fields __ 615

cubrid_num_rows ___ 616

cubrid_ping ___ 616

cubrid_prepare ___ 617

cubrid_put __ 618

cubrid_query ___ 619

cubrid_real_escape_string ___ 620

cubrid_result __ 621

cubrid_rollback ___ 622

cubrid_schema ___ 623

CUBRID 2008 R4.0 Help

xii

cubrid_seq_drop __ 628

cubrid_seq_insert ___ 629

cubrid_seq_put ___ 631

cubrid_set_add ___ 632

cubrid_set_autocommit ___ 633

cubrid_set_db_parameter ___ 633

cubrid_set_drop __ 634

cubrid_unbuffered_query ___ 635

cubrid_version __ 636

CCI API ___ 638

CCI Overview ___ 638

cci_bind_param ___ 648

cci_bind_param_array ___ 650

cci_bind_param_array_size __ 650

cci_blob_free ___ 651

cci_blob_new ___ 651

cci_blob_write __ 651

cci_blob_size __ 652

cci_blob_write __ 652

cci_clob_free __ 653

cci_clob_new ___ 653

cci_blob_write __ 654

cci_clob_size __ 654

cci_clob_write ___ 655

cci_close_req_handle ___ 655

cci_col_get __ 655

cci_col_seq_drop __ 656

cci_col_seq_insert ___ 657

cci_col_seq_put ___ 657

cci_col_set_add ___ 658

cci_col_set_drop __ 658

cci_col_size ___ 659

cci_connect ___ 659

cci_connect_with_url __ 660

cci_cursor ___ 661

cci_cursor_update __ 661

cci_disconnect __ 662

cci_end_tran __ 662

cci_execute ___ 664

Table of Contents

xiii

cci_execute_array ___ 665

cci_execute_batch __ 667

cci_execute_result___ 668

cci_fetch __ 669

cci_fetch_buffer_clear ___ 669

cci_fetch_sensitive __ 669

cci_fetch_size ___ 670

cci_get_autocommit __ 670

cci_get_bind_num __ 670

cci_get_class_num_objs ___ 671

CCI_GET_COLLECTION_DOMAIN__ 671

cci_get_cur_oid ___ 671

cci_get_data __ 672

cci_get_db_parameter __ 673

cci_get_db_version __ 673

cci_get_result_info __ 674

CCI_GET_RESULT_INFO_ATTR_NAME __ 675

CCI_GET_RESULT_INFO_CLASS_NAME __ 675

CCI_GET_RESULT_INFO_IS_NON_NULL __ 675

CCI_GET_RESULT_INFO_NAME __ 676

CCI_GET_RESULT_INFO_PRECISION ___ 676

CCI_GET_RESULT_INFO_SCALE __ 676

CCI_GET_RESULT_INFO_TYPE ___ 677

CCI_IS_SET_TYPE, CCI_IS_MULTISET_TYPE, CCI_IS_SEQUENCE_TYPE, CCI_IS_COLLECTION_TYPE 677

cci_is_updatable __ 677

cci_next_result __ 678

cci_oid __ 678

cci_oid_get ___ 679

cci_oid_get_class_name ___ 679

cci_oid_put ___ 680

cci_oid_put2 __ 680

cci_prepare ___ 681

CCI_QUERY_RESULT_ERR_MSG __ 682

cci_query_result_free__ 682

CCI_QUERY_RESULT_RESULT __ 683

CCI_QUERY_RESULT_STMT_TYPE __ 683

cci_savepoint ___ 683

cci_schema_info __ 684

cci_set_autocommit ___ 688

CUBRID 2008 R4.0 Help

xiv

cci_set_db_parameter ___ 688

cci_set_element_type ___ 688

cci_set_free ___ 689

cci_set_get __ 689

cci_set_isolation_level ___ 690

cci_set_make __ 690

cci_set_max_row __ 690

cci_set_size ___ 691

1

Introduction to Manual

Manual Contents

The contents of the CUBRID Database Management System (CUBRID DBMS) product manual are as follows:

• Introduction to CUBRID : This chapter provides a description of the structure and characteristics of the CUBRID

DBMS.

• Getting Started with CUBRID : The "Getting Started with CUBRID" provides users with a brief explanation on

what to do when first starting CUBRID. The chapter contains information on new features added to CUBRID, on

how to install and execute the system, and provides a simple guide on how to use the CSQL Interpreter and

CUBRID Manager. The chapter also includes examples of how to write application programs using JDBC, PHP,

ODBC, CCI, etc.

• CSQL Interpreter : CSQL is an application that allows you to use SQL statements through a command-driven

interface. This chapter explains how to use the CSQL Interpreter and associated commands.

• CUBRID SQL Guide : This chapter describes SQL syntaxes such as data types, functions and operators, data

retrieval or table manipulation. The chapter also provides SQL syntaxes used for indexes, triggers, partitioning,

serial and user information changes, etc.

• Administrator's Guide : This chapter provides instructions on how to create, drop, back up, restore and migrate a

database, and executing CUBRID HA functionality. Also it includes instructions on how to use CUBRID utilities,

which starts and stops the Server, Broker and CUBRID Manager servers, etc.

• Performance Tuning : The "Performance Tuning" chapter provides instructions on setting system parameters that

may influence the performance. This chapter provides information on how to use the configuration file for the

Server and Broker, and describes the meaning of each parameter.

• API Reference : This chapter provides information on JDBC API, ODBC API, OLE DB API, PHP API, and CCI

API.

Manual Conventions

The following table provides conventions on definitions used in the CUBRID Database Management System product

manual to identify "statements," "commands" and "reference within texts."

Convention Description Example

Italics Italics type is used to show the variable names. persistent:

stringVariableName

Boldface Boldface type is used for names such as the member

function name, class name, constants, CUBRID

keyword or names such as other required characters.

fetch () member function

class odb_User

Constant Width Constant Width type is used to show segments of

code example or describes a command's execution

and results.

csql database_name

UPPER-CASE UPPER-CASE is used to show the CUBRID

keyword (see Boldface).
SELECT

Single Quotes (' ') Single quotes (' ') are used with braces and brackets,

and shows the necessary sections of a syntax. Single

quotes are also used to enclose strings.

{'{'const_list'}'}

Brackets ([]) Brackets ([]) indicate optional parameters or

keywords.

[ONLY]

CUBRID 2008 R4.0 Help

2

Underline(_) Underline (_) indicates a default keyword if no

keyword is specified.

[DISTINCT|UNIQUE|ALL]

Vertical bar(|) Vertical bar (|) indicates that one or another option

can be specified.

[COLUMN|ATTRIBUTE]

Braces around

parameters({ })

Braces around parameters indicate that one of those

parameters must be specified in a statement syntax.

{2, 4, 6}

Braces with

ellipsis({ }...)

Braces before an ellipsis indicate that a parameter

can be repeated.

{, class_name}...

Angle brackets(< >) Angle brackets indicate a single key or a series of

key strokes.

<Ctrl+n>

3

Introduction to CUBRID

CUBRID 2008 R4.0 Help

4

Introduction to CUBRID

This chapter explains the architecture and features of CUBRID. CUBRID is an object-relational database management

system (DBMS) consisting of the Database Server, the Broker, and the CUBRID Manager. It is optimized for Internet

data services, and provides various user-friendly features.

This chapter covers the following topics:

• System Architecture

• Features of CUBRID

Introduction to CUBRID

5

System Architecture

System Architecture

CUBRID is an object-relational database management system (DBMS) consisting of the Database Server, the Broker,

and the CUBRID Manager.

• As the core component of the CUBRID Database Management System, the Database Server stores and manages

data in multi-threaded client/server architecture. The Database Server processes the queries requested by users and

manages objects in the database. The CUBRID Database Server provides seamless transactions using locking and

logging methods even when multiple users use the database at the same time. It also supports database backup and

restore for the operation.

• The Broker is a CUBRID-specific middleware that relays the communication between the Database Server and

external applications. It provides functions including connection pooling, monitoring, and log tracing and analysis.

• The CUBRID Manager is a GUI tool that allows users to remotely manage the database and the Broker. It also

provides the Query Editor, a convenient tool that allows users to execute SQL queries on the Database Server. See

CUBRID Manager manual or online manual for more information on the CUBRID Manager.

CUBRID 2008 R4.0 Help

6

Database Volume Structure

The following diagram illustrates the CUBRID database volume structure. As you can see, the database is divided into

three volumes: permanent, temporary and backup. This chapter will examine each volume and its characteristics.

Permanent Volume

Permanent volume is a database volume that exists permanently once it is created. Its types include generic, data, temp,

index, control, active log and archive log.

Generic Volume

For efficient management, the volume type to be added to the database can be specified as one of the followings: data,

temp or index. If data usage is not specified, it is specified as a generic volume.

Data Volume

Data volume is a volume for storing data such as instances, tables and multimedia data.

Temp Volume

Temporary volume is a volume used temporarily for query processing and sorting. However, the temporary volume is

not a volume where the storage is created and destroyed temporarily, but one of the permanent volumes with permanent

spaces where the data is stored and destroyed temporarily. Therefore, the data in the temporary volume space gets

initialized when CUBRID restarts without leaving any log info.

Index Volume

Index volume is a volume that holds the index information for fast query processing or integrity constraint checks.

Control File

The control file contains the volume, backup and log information in the database.

• Volume Information : The information that includes names, locations and internal volume identifiers of all the

volumes in the database. When the database restarts, the CUBRID reads the volume information control file. It

records a new entry to that file when a new database volume is added.

• Backup Information : Locations of all the backups for data, index, and generic volumes are recorded to a backup

information control file. This control file is maintained where the log files are managed.

Introduction to CUBRID

7

• Log Information : This information contains names of all active and archive logs. With the log information control

file, you can verify the archive log information. The log information control file is created and managed at the same

location as the log files.

Control files include the information about locations of database volumes, backups and logs. Since these files will be

read when the database restarts, users must not modify them arbitrarily.

Active Log

Active log is a log that contains recent changes to the database. If a problem occurs, you can use active and archive logs

to restore the database completely up to the point of the last commit before the occurrence of the fault.

Archive Log

Archive log is a volume to store logs continuously created after exhausting available active log space that contains

recent changes. The archive log volume will be generated only after exhausting available active log volume space, just

as the temporary temp volume will be generated after exhausting available permanent temp volume space. However,

unlike the temporary temp volume, the archive log volume is not destroyed automatically when the server process

terminates. Therefore, a DBA needs to manually delete necessary archive logs. The archive log volume can be deleted

anytime by DBA.

Temporary Volume

Temporary volume has the opposite meaning to the permanent volume. That is, the temporary volume is a storage

created only when the accumulated data exceeds the space specified by the user as the permanent volume. The

temporary volume is destroyed when the server process terminates. One of such volumes created or destroyed

temporarily is the temporary temp volume.

Temporary Temp Volume

Temporary temp volume is a temporary volume created temporarily by the system after exhausting the space specified

as the permanent temp volume, whereas the temporary volume belongs to the permanent volume with the permanent

space specified. Therefore, the DBA should consider the database operations first to free up the permanent temp volume

with an appropriate size.

The temporary temp volume is created to free up disk space needed for joining/sorting or index creation. Examples of

such large-scale queries of creating temporary volumn are: 1) SQL statements with a GROUP BY or ORDER BY, 2)

SQL statements that contain coordinated subqueries, 3) join queries that perform sort-merge joins, and 4) a CREATE

INDEX statement.

• File name of the temporary temp volume : The file name of the temporary temp volume of CUBRID has the

format of db_name_tnum, where db_name is the database name and num is the volume identifier. The volume

identifier is decremented by 1 from 32766.

• Configuring the temporary temp volume size : The number of temporary temp volumes to be created is

determined by the system depending on the space size needed for processing transactions. However, users can limit

the temporary temp volume size by configuring the temp_file_max_size_in_pages parameter value in the system

parameter configuration file (cubrid.conf). If the temp_file_max_size_in_pages parameter value is configured to

0, the temporary temp volume will not be created even after exhausting the permanent temp volume.

• Configuring save location of the temporary temp volume : By default, the temporary temp volume is created

where the first database volume was created. However, you can specify a different directory to save the temporary

temp volume by configuring the temp_volume_path parameter value.

• Deleting the temporary temp volume : The temporary temp volume exists temporarily only when the database is

running. You must not delete the temporary temp volume while the server is running. The temporary temp volume

is deleted when the client connection with the server is terminated while the database is running in a standalone

mode. On the other hand, the temporary temp volume is deleted when the server process is normally terminated by

the cubrid utility while the database is running in a client/server mode. If the database server is abnormally

terminated, the temporary temp volume will be deleted when the server restarts.

CUBRID 2008 R4.0 Help

8

Backup Volume

Backup volume is a database snapshot; based on such backup and log volumes, you can restore transactions to a certain

point of time.

You can use the cubrid backupdb utility to copy all the data needed for database restore, or configure the

backup_volume_max_size_bytes parameter value in the database configuration file (cubrid.conf) to adjust the backup

volume partitioning size.

Database Server

Database Server Process

Each database has a server process. The server process is the core component of the CUBRID Database Server, and

handles a user's requests by directly accessing database and log files. The client process connects to the server process

via TCP/IP communication. Each server process creates threads to handle requests by multiple client processes. System

parameters can be configured for each database, that is, for each server process. The server process can connect to as

many client processes as specified by the max_clients parameter value.

Master Process

The master process is a broker process that allows the client process to connect to and communicate with the server

process. One master process runs for each host. (To be exact, one master process exists for each connection port number

specified in the cubrid.conf system parameter file.) While the master process listens on the TCP/IP port specified, the

client process connects to the master process through that port. The master process changes a socket to server port so

that the server process can handle connection.

Execution Mode

All CUBRID utilities except the server process have two execution modes: client/server mode and standalone mode.

• In client/server mode, the utilities operate as a client process and connect to the server process.

• In the standalone mode, a process is shared between a client and a server, wherein a master process is not required

and a database can be directly accessed.

For example, a database creation or a restore utility runs in the standalone mode so it can use the database exclusively

by denying the access by multiple users. Another example is that the CSQL Interpreter can either connect to the server

process in client/server mode or execute SQL statements by accessing the database in the standalone mode. Note that

one database cannot be accessed simultaneously by a server process and a standalone program.

Broker

The Broker is a middleware that allows various application clients to connect to the Database Server. As shown below,

the CUBRID system, which includes the Broker, has multi-layered architecture consisting of application clients,

cub_broker, cub_cas and the Database Server.

Introduction to CUBRID

9

Application Client

The interfaces that can be used in application clients include C-API, ODBC, JDBC, PHP, Tcl/Tk, Python, and Ruby,

OLEDB, and ADO.NET.

cub_cas

cub_cas (CUBRID Common Application Server) acts as a common application server used by all the application clients

that request connections. cub_cas also acts as the Database Server's client and provides the connection to the Database

Server upon the client's request. The number of cub_cas(s) running in the service pool can be specified in the

configuration file, and this number is dynamically adjusted by cub_broker.

cub_cas is a program linked to the CUBRID Database Server's client library and functions as a client module in the

server process. In the client module, tasks such as query parsing, optimization, execution plan creation are performed.

cub_broker

cub_broker relays the connection between the application client and the cub_cas. That is, when an application client

requests access, the cub_broker checks the status of the cub_cas through the shared memory, and then delivers the

request to an accessible cub_cas. It then returns the processing results of the request from the cub_cas to the application

client.

The cub_broker also manages the server load by adjusting the number of cub_cas(s) in the service pool and monitors

and manages the status of the cub_cas. If the cub_broker delivers the request to cub_cas but the connection to cub_cas

1 fails because of an abnormal termination, it sends an error message about the connection failure to the application

client and restarts cub_cas 1. Restarted cub_cas 1 is now in a normal stand-by mode, and will be reconnected by a new

request from a new application client.

Shared Memory

The status information of the cub_cas is saved in the shared memory, and the cub_broker refers to this information to

relay the connection to the application client. With the status information saved in the shared memory, the system

manager can identify which task the cub_cas is currently performing or which application client's request is currently

being processed.

CUBRID 2008 R4.0 Help

10

Interface Module

CUBRID provides various Application Programming Interfaces (APIs). The following APIs are supported by CUBRID.

CUBRID also provides interfaces modules for each interface.

• JDBC : A standard API used to create database applications in Java. CUBRID provides the JDBC driver as an

interface module.

• ODBC : A standard API used to create database applications in Windows. CUBRID provides the ODBC driver as

an interface module.

• OLE DB : An API used to create COM-based database applications in Windows. CUBRID provides the OLE DB

provider as an interface module.

• PHP : CUBIRD provides a PHP interface module to create database applications in the PHP environment. The PHP

module is based on the CCI library.

• CCI : CCI is a C language interface provided by CUBRID. The interface module is provided as a C library.

All interface modules access the Database Server through the Broker. The Broker is a middleware that allows various

application clients to connect to the Database Server. When it receives a request from an interface module, it calls a

native C API provided by the Database Server's client library.

Introduction to CUBRID

11

CUBRID Features

Transaction Support

CUBRID supports the following features to completely ensure the atomicity, consistency, isolation and durability in

transactions.

• Supporting commit, rollback, savepoint per transaction

• Ensuring transaction consistency in the event of system or database failure

• Ensuring transaction consistency between replications

• Supporting multiple granularity locking of databases, tables and records

• Resolving deadlocks automatically

• Supporting distributed transactions (two-phase commit)

Database Backup and Restore

A database backup is the process of copying CUBRID database volumes, control files and log files; a database restore is

the process of restoring the database to a certain point in time using backup files, active logs and archive logs copied by

the backup process. For a restore, there must be the same operating system and the same version of CUBRID installed

as in the backup environment.

The backup methods which CUBRID supports include online, offline and incremental backups; the restore methods

include restore using incremental backups as well as partial and full restore.

Table Partitioning

Partitioning is a method by which a table is divided into multiple independent logical units. Each logical unit is called a

partition, and each partition is divided into a different physical space. This will lead performance improvement by only

allowing access to the partition when retrieving records. CUBRID provides three partitioning methods:

• Range partitioning: Divides a table based on the range of a column value

• Hash partitioning: Divides a table based on the hash value of a column

• List partitioning: Divides a table based on the column value list

HA Functionalities

High Availability (HA) refers to ability to minimize system down time while continuing normal operation of server in

the event of hareware, software, or network failure; that is, the CUBRID HA is functionality that is applied to CUBRID.

The CUBRID HA feature has a shared-nothing architecture. The CUBRID performs realtime monitoring for system and

CUBRID state with the CUBRID Heartbeat. Then in case of system failure, it automatically performs failover. It

follows the two steps below to synchronize data from the master to the slave database servers.

• A transaction log multiplication step where the transaction log created in the database server is replicated in real

time to another node

• A transaction log reflection step where data is applied to the slave database server through the analysis of the

transaction log being replicated in real time

Replication

Replication is a technique that duplicates data from one database to other databases to improve performance and

increase server availability by distributing requests from applications that use the same data into multiple databases.

Currently, CUBRID supports replication only on Linux and UNIX. The CUBRID replication system runs based on

transaction logs, and it provides real-time replication and ensures transaction consistency/schema independence of the

slave database. Additionally, it offers a feature for a master database to be minimally affected by replication. The

replication feature consists of the following components:

• Master database: The source database that becomes the target to be replicated. All operations including a read and

write operations are performed in this database. Since the replication is performed asynchronously, there will be no

CUBRID 2008 R4.0 Help

12

effect on the master database administration. Replication logs are created in the master server, which are sent to the

slave server via the replication server and the replication agent.

• Slave database: The database replicated from the source database. It allows a client a read operation only in the

salve database. If a write operation occurs in the master database, the transaction is automatically replicated to

multiple-slave databases, so read operations can be distributed on multiple databases.

• Distribution database: Saves the information about the master and the slave databases. It ensures transaction

consistency and effects replication to be distributed.

• Replication server: The replication server runs on the master system and transfers a transaction log in the master

database to the replication agent.

• Replication agent: The replication agent is a process that runs on the slave system and performs the actual

replication tasks by analyzing and applying the transferred replication log to the slave database server.

Java stored procedure

A stored procedure is a method to decrease the complexity of applications and to improve the reusability, security and

performance through the separation of database logic and middleware logic. A stored procedure is written in Java

(generic language), and provides Java stored procedures running on the Java Virtual Machine (JVM). To execute Java

stored procedures in CUBRID, the following steps should be performed:

• Install and configure the Java Virtual Machine

• Create Java source files

• Compile the files and load Java resources

• Publish the loaded Java classes so they can be called from the database

• Call the Java stored procedures

Click Counter

In the Web, it is a common scenario to count and keep the number of clicks to the database in order to record retrieval

history.

The above scenario is generally implemented by using the SELECT and UPDATE statements; SELECT retrieves the

data and UPDATE increases the number of clicks for the retrieved queries.

This approach can cause significant performance degradation due to increased lock contention for UPDATE when a

number of SELECT statements are executed against the same data.

To address this issue, CUBRID introduces the new concept of the click counter that will support optimized features in

the Web in terms of usability and performance, and provides the INCR function and the WITH INCREMENT FOR

statement.

Extending the Relational Data Model

Collection

For the relational data model, it is not allowed that a single column has multiple values. In CUBRID, however, you can

create a column with several values. For this purpose, collection data types are provided in CUBRID. The collection

data type is mainly divided into SET, MULTISET and LIST; the types are distinguished by duplicated availability and

order.

• SET : A collection type that does not allow the duplication of elements. Elements are stored without duplication

after being sorted regardless of their order of entry.

• MULTISET : A collection type that allows the duplication of elements. The order of entry is not considered.

• LIST : A collection type that allows the duplication of elements. Unlike with SET and MULTISET, the order of

entry is maintained.

Inheritance

Inheritance is a concept to reuse columns and methods of a parent table in those of child tables. CUBRID supports

reusability through inheritance. By using inheritance provided by CUBRID, you can create a parent table with some

Introduction to CUBRID

13

common columns and then create child tables inherited from the parent table with some unique columns added. In this

way, you can create a database model which can minimize the number of columns.

Composition

In a relational database, the reference relationship between tables is defined as a foreign key. If the foreign key consists

of multiple columns or the size of the key is significantly large, the performance of join operations between tables will

be degraded. However, CUBRID allows the direct use of the physical address (OID) where the records of the referred

table are located, so you can define the reference relationship between tables without using join operations.

That is, in an object-oriented database, you can create a composition relation where one record has a reference value to

another by using the column displayed in the referred table as a domain (type), instead of referring to the primary key

column from the referred table.

15

Getting Started with CUBRID

CUBRID 2008 R4.0 Help

16

Getting Started with CUBRID

This chapter contains useful information on starting CUBRID such as how to install and run CUBRID; also it provides

instructions on how to use the CSQL Interpreter. This chapter also includes examples on how to write application

programs using JDBC, PHP, ODBC and CCI, etc.

This chapter covers the following topics :

• Installing and Running CUBRID

• Configuring Environment Variable and Starting CUBRID

• Using the CSQL Interpreter

• Writing Programs using JDBC

• Writing Programs using PHP

• Writing Programs using ODBC and ASP

• Writing Programs using CCI

Getting Started with CUBRID

17

Installing and Running

Installing and Running on Linux

Details to Check when Installing

Check the following before installing CUBRID for Linux.

Category Description

Operating System Only supports glibc 2.3.4 or later.

The glibc version can be checked as follows:

rpm -q glibc

64-bit Since version 2008 R2.0, CUBRID supports both 32-bit and 64-bit Linux.

You can check the version as follows:

% uname -a

Linux host_name 2.6.18-53.1.14.el5xen #1 SMP Wed Mar 5 12:08:17 EST

2008 x86_64 x86_64 x86_64 GNU/Linux

Make sure to install the CUBRID 32-bit version on 32-bit Linux and the

CUBRID 64-bit version on 64-bit Linux. The followings are the libraries that

should be added.

Curses Library (rpm -q ncurses)

gcrypt Library (rpm -q libgcrypt

stdc++ Library (rpm -q libstdc++)

To use CUBRID Manager or Java-stored functions/procedures in CUBRID, you must have JRE (Java Runtime

Environment) 1.6 or better installed.

Installing CUBRID

The installation program consists shell scripts that contain binary; thus it can be installed automatically. The following

example shows how to install CUBRID with the "CUBRID-8.3.0.0312-linux.x86_64.sh" file on the Linux.

[cub_user@cubrid ~]$ sh CUBRID-8.3.1.0168-linux.x86_64.sh

Do you agree to the above license terms? (yes or no) : yes

Do you want to install this software(CUBRID) to the default(/home1/cub_user/CUBRID)

directory? (yes or no) [Default: yes] : yes

Install CUBRID to '/home1/cub_user/CUBRID' ...

In case a different version of the CUBRID product is being used in other machines, please

note that the CUBRID 2008 R3.1 servers are only compatible with the CUBRID 2008 R3.1

clients and vice versa.

Do you want to continue? (yes or no) [Default: yes] : yes

Copying old .cubrid.sh to .cubrid.sh.bak ...

CUBRID has been successfully installed.

demodb has been successfully created.

If you want to use CUBRID, run the following commands

 % . /home1/cub_user/.cubrid.sh

 % cubrid service start

As shown in the example above, after installing the downloaded file (CUBRID-8.3.1.0168-linux.x86_64.sh), the

CUBRID related environment variables must be set in order to use the CUBRID database. Such setting has been made

automatically when logging in the concerned terminal. Therefore there is no need to re-set after the first installation.

[cub_user@cubrid ~]$. /home1/cub_user/.cubrid.sh

After the CUBRID Manager is installed, you can start the CUBRID Manager server and Broker as follows:

[cub_user@cubrid ~]$ cubrid service start

After starting the CUBRID service, if you wish to check whether the service was properly started, then check whether

the cub_* processes have been started with grep (as shown below).

CUBRID 2008 R4.0 Help

18

[cub_user@cubrid ~]$ ps -ef | grep cub_

cub_user 15200 1 0 18:57 ? 00:00:00 cub_master

cub_user 15205 1 0 18:57 pts/17 00:00:00 cub_broker

cub_user 15210 1 0 18:57 pts/17 00:00:00 query_editor_cub_cas_1

cub_user 15211 1 0 18:57 pts/17 00:00:00 query_editor_cub_cas_2

cub_user 15212 1 0 18:57 pts/17 00:00:00 query_editor_cub_cas_3

cub_user 15213 1 0 18:57 pts/17 00:00:00 query_editor_cub_cas_4

cub_user 15214 1 0 18:57 pts/17 00:00:00 query_editor_cub_cas_5

cub_user 15217 1 0 18:57 pts/17 00:00:00 cub_broker

cub_user 15222 1 0 18:57 pts/17 00:00:00 broker1_cub_cas_1

cub_user 15223 1 0 18:57 pts/17 00:00:00 broker1_cub_cas_2

cub_user 15224 1 0 18:57 pts/17 00:00:00 broker1_cub_cas_3

cub_user 15225 1 0 18:57 pts/17 00:00:00 broker1_cub_cas_4

cub_user 15226 1 0 18:57 pts/17 00:00:00 broker1_cub_cas_5

cub_user 15229 1 0 18:57 ? 00:00:00 cub_auto start

cub_user 15232 1 0 18:57 ? 00:00:00 cub_js start

Installing CUBRID (rpm File)

You can install CUBRID by using rpm file that is created on CentOS5. The way of installing and uninstalling CUBRID

is the same as that of using general rpm utility. While CUBRID is being installed, a new system group (cubrid) and a

user account (cubrid) are created. After installation is complete, you should log in with a cubrid user account to start a

CUBRID service.

$ rpm -Uvh CUBRID-8.3.1.0168-el5.x86_64.rpm

When rmp is executed, CUBRID is installed in the cubrid home directory (/opt/cubrid) and related configuration file

(cubrid.[c]sh) is installed in the /etc/profile.d directory. Note that demodb is not automatically installed. Therefore, you

must executed /opt/cubrid/demo/make_cubrid_demo.sh. When installation is complete, enter the code below to start

CUBRID.

[cubrid@cubrid ~]$ cubrid service start

Note You must check RPM dependency when installing with RPM. If you ignore (--nodeps) dependency, it may not be

executed.

Note Even if you remove RPM, user accounts and databases that are created after installing, you must remove it

manually, if needed.

CUBRID Upgrade

When you specify an installation directory where the previous version of CUBRID is already installed, a message which

asks to overwrite files in the directory will appear. Entering no will stop the installation.

Directory '/home1/cub_user/CUBRID' exist!

If a CUBRID service is running on this directory, it may be terminated abnormally.

And if you don't have right access permission on this directory(subdirectories or files),

install operation will be failed.

Overwrite anyway? (yes or no) [Default: no] : yes

Choose whether to overwrite the existing configuration files during the CUBRID installation. Entering yes will

overwrite and back up them as extension .bak files.

The configuration file (.conf or .pass) already exists. Do you want to overwrite it? (yes

or no) : yes

Environment Configuration

To modify the environment such as service ports etc, edit the parameters of a configuration file located in the

$CUBRID/conf directory. See Environment Configuration for more information.

Note You must check the dependency when you attempt to install using RPM. Installation may not succeed if the

dependency is ignored (--nodeps).

Getting Started with CUBRID

19

Installing and Running on Windows

Details to Check when Install

CUBRID 2008 R2.0 supports both 32-bit and 64-bit Windows. You can check the version by selecting [My Computer]

> [System Properties]. Make sure to install the CUBRID 32-bit version on 32-bit Windows and the CUBRID 64-bit

version on 64-bit Windows.

The CUBRID Manager and Java stored procedures require the Java Runtime Environment (JRE) version 1.6 or later.

Setup Type

• Server and Driver Installation : CUBRID Server, CSQL (a command line tool), interface drivers (OLEDB

Provider, ODBC, JDBC, C API) are all installed.

• Driver Installation : The interface drivers (OLEDB Provider, ODBC, JDBC, C API) are only installed. You can

select this type of installation if development or operation is performed by remote connection to the computer in

which the CUBRID database server is installed.

CUBRID Upgrade

To install a new version of CUBRID in an environment in which a previous version has already been installed, select

[CUBRID Service Tray] > [Exit] from the menu to stop currently running services, and then remove the previous

version of CUBRID. Note that when you are prompted with "Do you want to delete all the existing version of databases

and the configuration files?" you must select "No" to protect the existing databases.

For more information on migrating a database from a previous version to a new version, see Migrating Database.

Environment Configuration

To change configuration such as service ports to meet the user environment, the parameter values of the files stated

below should be changed in the %CUBRID%\conf directory.

File Description

cm.conf CUBRID Manager’s configuration file; the port number 8001 is configured by

default.

Two port numbers are required to use CUBRID; a configured number and the

number added by 1 are used. For example, 8001 is configured for connection, the

port number 8001 and 8002 are reserved.

cubrid.conf Server configuration file is used to set the following: database memory, the

number of threads due to the number of concurrent users, connection port between

the Broker and Server, etc.

See cubrid_broker.conf Configuration File and Default Parameters for details.

cubrid_broker.conf Broker configuration file; the port is used by the broker that is operated.

The file is used to set the number of CAS, SQL LOGs, etc. The ports shown in

drivers such as JDBCs are the concerned Broker’s ports.

See Parameter by Broker for details.

CUBRID 2008 R4.0 Help

20

Configuring Environment Variable and Starting
CUBRID

Configuring the Environment Variable

The following environment variables need to be set in order to use the CUBRID. The necessary environment variables

are automatically set when the CUBRID system is installed or can be changed, as needed, by the user.

CUBRID Environment Variables

• CUBRID : The default environment variable that designates the location where the CUBRID is installed. This

variable must be set accurately since all programs included in the CUBRID system uses this environment variable

as reference.

• CUBRID_DATABASES : The environment variable that designates the location of the database location

information file. The CUBRID system saves and manages the absolute path of database volumes that are used in

the $CUBRID_DATABASES/databases.txt file. See databases.txt file.

• CUBRID_LANG : The environment variable that designates the language that will be used in the CUBRID system.

Currently, CUBRID provides English (en_US) and Korean (ko_KR.euckr and ko_KR.utf8). it is not a mandatory

setting. Therefore, if the variable has not been set, then refer to the LANG environment variable or use en_US,

which is the default value. See Language Setting.

The above mentioned environment variables are set when the CUBRID is installed. However, the following commands

can be used to verify the setting.

For Linux :

% printenv CUBRID

% printenv CUBRID_DATABASES

% printenv CUBRID_LANG

In Windows :

C:\> set CUBRID

OS Environment and Java Environment Variables

• PATH : In the Linux environment, the directory $CUBRID/bin, which includes a CUBRID system executable file,

must be included in the PATH environment variable.

• LD_LIBRARY_PATH : In the Linux environment, $CUBRID/lib, which is the CUBRID system’s dynamic library

file (libjvm.so), must be included in the LD_LIBRARY_PATH (or SHLIB_PATH or LIBPATH) environment

variable.

• Path : In the Windows environment, the $CUBRID/bin, which is a directory that contains CUBRID system’s

execution file, must be included in the Path environment variable.

• JAVA_HOME : To use the Java stored procedure in the CUBRID system, the Java Virtual Machine (JVM) version

1.6 or later must be installed, and the JAVA_HOME environment variable must designate the concerned directory.

See the Environment Configuration for Java Stored Functions/Procedures.

Configuring the Environment Variable

For Windows

If the CUBRID system has been installed in the Windows environment, then the installation program automatically sets

the necessary environment variable. Select [Systems Properties] in [My Computer] and select the [Advanced] tab. Click

the [Environment Variable] button and check the setting in the [System Variable]. The settings can be changed by

clicking on the [Edit] button. See the Windows help for more information on how to change the environment variable in

the Windows environment.

Getting Started with CUBRID

21

For Linux

If the CUBRID system has been installed in the Linux environment, the installation program automatically creates

the .cubrid.sh or .cubrid.csh file and makes configurations so that the files are automatically called from the

installation account’s shell log-in script. The following is the .cubrid.sh environment variable setting file that was

created in an environment that uses sh, bash, etc.

CUBRID=/home1/cub_user/CUBRID

CUBRID_DATABASES=/home1/cub_user/CUBRID/databases

CUBRID_LANG=en_US

ld_lib_path=`printenv LD_LIBRARY_PATH`

if ["$ld_lib_path" = ""]

then

LD_LIBRARY_PATH=$CUBRID/lib

else

LD_LIBRARY_PATH=$CUBRID/lib:$LD_LIBRARY_PATH

fi

SHLIB_PATH=$LD_LIBRARY_PATH

LIBPATH=$LD_LIBRARY_PATH

PATH=$CUBRID/bin:$CUBRID/cubridmanager/:$PATH

export CUBRID

export CUBRID_DATABASES

export CUBRID_LANG

export LD_LIBRARY_PATH

export SHLIB_PATH

export LIBPATH

export PATH

Language Setting

The language that will be used in the CUBRID DBMS can be designated with the CUBRID_LANG environment

variable. The following are values that can currently be set in the CUBRID_LANG environment variable.

CUBRID 2008 R4.0 Help

22

• en_US : English (Default value)

• ko_KR.euckr : Korean EUC-KR encoding

• ko_KR.utf8 : Korean utf-8 encoding

The language setting in the CUBRID system does not represent the character sets of data that is saved. In other words,

even though the CUBRID_LANG is set to ko_KR.utf8, the data may not be changed to the concerned encoding.

CUBRID’s language setting will have an influence on the message printed from the program and will impact the

date/time data type constant displayed throughout the use of the program.

If the CUBRID_LANG is not set, then the value of the LANG environment variable will be used. If the set value does

not support the CUBRID_LANG or LANG value, then the action will be made as if the setting has been made to

en_US, the default value.

Starting the CUBRID Service

Configure environment variables and language, and then start the CUBRID service. For more information on

configuring environment variables and language, see Registering Services or Starting and Stopping Services.

Shell Command

The following shell command can be used to start the CUBRID service and the demodb included in the installation

package.

% cubrid service start

@ cubrid master start

++ cubrid master start: success

@ cubrid broker start

++ cubrid broker start: success

@ cubrid manager server start

++ cubrid manager server start: success

% cubrid server start demodb

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

@ cubrid server status

Server demodb (rel 8.3, pid 31322)

CUBRIDService or CUBRID Service Tray

On the Windows environment, you can start or stop a service as follows:

• Go to [Control Panel] > [Performance and Maintenance] > [Administrator Tools] > [Services] and select the

CUBRIDService to start or stop the service.

Getting Started with CUBRID

23

• In the system tray, right-click the CUBRID Service Tray. To start CUBRID, select [Service Start]; to stop it, select

[Service Stop]. If you click [Exit] while CUBRID is running, all the services and process in the server are stopped.

Note An administrator level (SYSTEM) authorization is required to start/stop CUBRID processes through the CUBRID

Service tray; a login level user authorization is required to start/stop them with shell commands. If you cannot control

the CUBRID processes on the Windows Vista or later version environment, select [Execute as an administrator (A)] in

the [Start] > [All Programs] > [Accessories] > Command Prompt]) or execute it by using the CUBRID Service Tray.

When all processes of CUBRID Server stops, an icon on the CUBRID Service tray turns out red.

CUBRID 2008 R4.0 Help

24

CSQL Interpreter

Starting the CSQL Interpreter

The CSQL Interpreter is a program used in CUBRID. The entered SQL statements and results can be saved in the file

for later use. For more information Introduction to the CSQL Interpreter and CSQL Execution Mode.

CUBRID offers the "CUBRID Manager" program, a convenient GUI program. All SQL can be executed and the results

can be viewed from the CUBRID Manager’s query editor. For more information, see CUBRID Manager manual or

online manual.

In this section, we will provide information on using the CSQL Interpreter in the Linux environment.

Starting the CSQL Interpreter

The CSQL program can be started in the shell as shown below.

% csql demodb

 CUBRID SQL Interpreter

Type ';help' for help messages.

csql> ;help

=== <Help: Session Command Summary> ===

 All session commands should be prefixed by ';' and only blanks/tabs

 can precede the prefix. Capitalized characters represent the minimum

 abbreviation that should be entered to execute the specified command.

 ;REAd [<file-name>] - read a file into command buffer.

 ;Write [<file-name>] - (over)write command buffer into a file.

 ;APpend [<file-name>] - append command buffer into a file.

 ;PRINT - print command buffer.

 ;SHELL - invoke shell.

 ;CD - change current working directory.

 ;EXit - exit program.

 ;CLear - clear command buffer.

 ;EDIT - invoke system editor with command buffer.

 ;List - display the content of command buffer.

 ;RUn - execute sql in command buffer.

 ;Xrun - execute sql in command buffer,

 and clears the command buffer.

 ;COmmit - commit the current transaction.

 ;ROllback - roll back the current transaction.

 ;AUtocommit [ON|OFF] - enable/disable auto commit mode.

 ;REStart - restart database.

 ;SHELL_Cmd [shell-cmd] - set default shell, editor, print and pager

 ;EDITOR_Cmd [editor-cmd] command to new one, or display the current

 ;PRINT_Cmd [print-cmd] one, respectively.

 ;DATE - display the local time, date.

 ;DATAbase - display the name of database being accessed.

 ;SChema class-name - display schema information of a class.

 ;SYntax [sql-cmd-name] - display syntax of a command.

 ;TRigger [`*'|trigger-name] - display trigger definition.

 ;Get system_parameter - get the value of a system parameter.

 ;SEt system_parameter=value - set the value of a system parameter.

 ;PLan [simple|detail|off] - show query execution plan.

 ;Info <command> - display internal information.

 ;TIme [ON/OFF] - enable/disable to display the query

 execution time.

 ;HISTORYList - display list of the executed queries.

 ;HISTORYRead <history_num> - read entry on the history number into command buffer.

 ;HElp - display this help message.

csql>

Getting Started with CUBRID

25

Executing the SQL with CSQL

After the CSQL has been executed, you can enter the SQL into the CSQL prompt. Each SQL statement must end with a

semicolon (;). Multiple SQL statements can be entered in a single line. To execute the SQL statements entered, use

the ;x session command. You can find the simple usage of the session commands with the ;help command. For more

information, see Session Commands.

% csql demodb

CUBRID SQL Interpreter

Type `;help' for help messages.

csql> select * from olympic;

csql> ;x

=== <Result of SELECT Command in Line 1> ===

 host_year host_nation host_city opening_date closing

_date mascot slogan introduction

==

===

 2004 'Greece' 'Athens' 08/13/2004 08/29/2

004 'Athena Phevos' 'Welcome Home' 'In 2004 the Olympic Games re

turned to Greece, the home of both the ancient Olympics and the first modern Olympics.

<omitted>

25 rows selected.

Current transaction has been committed.

1 command(s) successfully processed.

csql> SELECT SUM(n) FROM (SELECT gold FROM participant WHERE nation_code='KOR'

csql> UNION ALL SELECT silver FROM participant WHERE nation_code='JPN') AS t(n);

csql> ;x

=== <Result of SELECT Command in Line 1> ===

 sum(n)

=============

 82

1 rows selected.

Current transaction has been committed.

1 command(s) successfully processed.

csql> ;exit

CUBRID 2008 R4.0 Help

26

Programming with JDBC

Setting up the JDBC Environment

System Requirements

• JDK 1.6 or later

• CUBRID 2008 R1.0 or later

• CUBRID JDBC Driver 2008 R1.0 or later

Installing and Configuring Java Environment

You must already have Java installed and the JAVA_HOME environment variable set on your system. To install Java,

download it from the Java homepage (http://java.sun.com). For more information, see Environment Settings for Java

Stored Functions/Procedures.

Configuring Envrionment Variables for Windows

After installing JAVA, double click [My Computer] and click [System Properties]. In the [Advanced] tab, click

[Envrionment Variables]. The [Environment Variables] dialog will appear.

In the [System Variables], click [New]. Enter JAVA_HOME and Java installation path such as C:\Program

Files\Java\jdk1.6.0_16 and then press [Enter].

Select "Path" and then click [Edit]. Add %JAVA_HOME%\bin to the variable and then click [OK].

You can configure JAVA_HOME and PATH in the shell.

set JAVA_HOME= C:\Program Files\Java\jdk1.6.0_16

set PATH=%PATH%;%JAVA_HOME%\bin

Configuring the Environment Variables for Linux

Specify the directory path where Java is installed (example : /usr/java/jdk1.6.0_16) in the JAVA_HOME environment

variable, and add $JAVA_HOME/bin to the PATH environment variable.

export JAVA_HOME=/usr/java/jdk1.6.0_16 //bash

export PATH=$JAVA_HOME/bin:$PATH //bash

setenv JAVA_HOME /usr/java/jdk1.6.0_16 //csh

http://java.sun.com/

Getting Started with CUBRID

27

set path = ($JAVA_HOME/bin $path) //csh

JDBC Driver Setting

To use the JDBC, set your CLASSPATH environment variable to the path where the CUBRID JDBC driver is located.

The CUBRID JDBC driver (cubrid_jdbc.jar) is located in jdbc directory which is subdirectory where CUBRID is

installed.

Configuring the CLASSPATH Environment Variables for Windows

set CLASSPATH=%CUBRID%\jdbc\cubrid_jdbc.jar:.

Configuring the CLASSPATH Environment Variables for Linux

export CLASSPATH=$HOME/CUBRID/jdbc/cubrid_jdbc.jar:.

Note If a CUBRID JDBC driver has been installed in the same library directory ($JAVA_HOME/jre/lib/ext) where

the JRE is located, it may be loaded ahead of the server-side JDBC driver used by the Java stored procedure, causing it

to malfunction. In a Java stored procedure environment, make sure not to install the generic CUBRID JDBC driver in

the directory where the JRE is installed ($JAVA_HOME/jre/lib/ext).

JDBC Sample

The following is a simple example that connects to CUBRID by using the JDBC driver and retrieves and inserts data.

To run the sample program, make sure that the database you are trying to connect to and the CUBRID Broker are

running. In the sample, you will use the demodb database that is created automatically during the installation.

JDBC Driver Load

To connect to CUBRID, load the JDBC driver using the for Name() method provided in the class. For more information,

see the CUBRID JDBC Driver.

Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

How to Make the Connection to Database

When the JDBC driver is loaded, use the getConnection() method provided in the DriverManager to connect to the

database. To create a Connection object, you must specify the url for describing the location of the database, database

user name, password, etc. For more information, see the Connection Configuration.

String url = "jdbc:cubrid:localhost:30000:demodb:::";

String userid = "dba";

String password = "";

CUBRID 2008 R4.0 Help

28

Connection conn = DriverManager.getConnection(url,userid,password);

Manipulating database (executing queries and processing the ResultSet)

To send a query statement to the connected database and execute it, create the Statement, PrepardStatement, and

CallableStatement objects. When a statement object has been created, execute the query using the executeQuery()

method or the executeUpdate() method for the statement object. The next() method can process the following row from

the ResultSet that is returned from the executeQuery() method. For more information, see the BRID JDBC Driver.

Note If you execute commit after query execution, ResultSet is automatically closed. Therefore, you must not use

ResultSet after commit. CUBRID is, in general, executed in auto-commit mode. If you does not want auto-commit

mode, you must state conn.setAutocommit(false); in the code.

Disconnecting from the database

Each method can be disconnected from the database by executing the close() method.

JDBC Sample 1

The sample code shown below creates a table, executes a query with a prepared statement, and then rolls back the query.

Modify the parameter value of the getConnection() method for practice.

import java.util.*;

import java.sql.*;

public class Basic {

 public static Connection connect() {

 Connection conn = null;

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn = DriverManager.getConnection("jdbc:cubrid:localhost:30000:::","dba","");

 conn.setAutoCommit (false) ;

 } catch (Exception e) {

 System.err.println("SQLException : " + e.getMessage());

 }

 return conn;

 }

 public static void printdata(ResultSet rs) {

 try {

 ResultSetMetaData rsmd = null;

 rsmd = rs.getMetaData();

 int numberofColumn = rsmd.getColumnCount();

 while (rs.next ()) {

 for(int j=1; j<=numberofColumn; j++)

 System.out.print(rs.getString(j) + " ");

 System.out.println("");

 }

 } catch (Exception e) {

 System.err.println("SQLException : " + e.getMessage());

 }

 }

 public static void main(String[] args) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 PreparedStatement preStmt = null;

 try {

 conn = connect();

 stmt = conn.createStatement();

 stmt.executeUpdate("create class xoo (a int, b int, c char(10))");

 preStmt = conn.prepareStatement("insert into xoo values(?,?,''''100'''')");

Getting Started with CUBRID

29

 preStmt.setInt (1, 1) ;

 preStmt.setInt (2, 1*10) ;

 int rst = preStmt.executeUpdate () ;

 rs = stmt.executeQuery("select a,b,c from xoo");

 printdata(rs);

 conn.rollback();

 stmt.close();

 conn.close();

 } catch (Exception e) {

 conn.rollback();

 System.err.println("SQLException : " + e.getMessage());

 } finally {

 if (conn != null) conn.close();

 }

 }

}

 JDBC Sample 2

The following is an example of executing SELECT statement by connecting to demodb that is provided by CUBRID

during installation.

import java.sql.*;

public class SelectData {

 public static void main(String[] args) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 // Connect to CUBRID

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn =

DriverManager.getConnection("jdbc:CUBRID:localhost:30000:demodb:::","dba","");

 String sql = "select name, players from event";

 stmt = conn.createStatement();

 rs = stmt.executeQuery(sql);

 while(rs.next()) {

 String name = rs.getString("name");

 String players = rs.getString("players");

 System.out.println("name ==> " + name);

 System.out.println("Number of players==> " + players);

 System.out.println("\n===\n");

 }

 rs.close();

 stmt.close();

 conn.close();

 } catch (SQLException e) {

 System.err.println(e.getMessage());

 } catch (Exception e) {

 System.err.println(e.getMessage());

 } finally {

 if (conn != null) conn.close();

 }

 }

}

JDBC Example 3

The following is an example of executing INSERT statement by connecting to demodb that is provided by CUBRID

during installation. You can delete or modify data the same way as you insert data. This means that you can reuse the

code below by simply changing the query statements.

import java.sql.*;

public class insertData {

 public static void main(String[] args) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 try {

 // CUBRID Connect

CUBRID 2008 R4.0 Help

30

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn =

DriverManager.getConnection("jdbc:cubrid:localhost:30000:demodb:::","dba","");

 String sql = "insert into olympic(host_year, host_nation, host_city,

opening_date, closing_date) values (2008, 'China', 'Beijing', to_date('08-08-

2008','mm-dd-yyyy'), to_date('08-24-2008','mm-dd-yyyy'))";

 stmt = conn.createStatement();

 stmt.executeUpdate(sql);

 System.out.println("Data is inserted.");

 stmt.close();

 } catch (SQLException e) {

 System.err.println(e.getMessage());

 } catch (Exception e) {

 System.err.println(e.getMessage());

 } finally {

 if (conn != null) conn.close();

 }

 }

}

Getting Started with CUBRID

31

Programming with PHP

Installing the PHP Module

Go to the CUBRID website and the see how to install the PHP module.

Installing PHP for Windows

After compiling and building cubrid_php_[version].dll from php_cubrid.sln in the win directory, create a directory

named CUBRID in the directory where PHP is installed, and then copy the the cubrid_php_[version].dll file. For more

information, refer to the INSTALL file

Add required settings as shown in the example below by editing the php.ini file.

extension_dir=C:\PHP\CUBRID

extension=cubrid_php5.1.4.dll

Once the configuration is complete, restart the web server. If you create test.php using using the phpinfo() function of

PHP and enter a url as http://localhost/test.php on your Web browser, you will see the CUBRID information if the

installation was successful.

Installing PHP for Linux

After compiling and building cubrid.so file by running phpize in the src directory, create a directory named

php/extensions in the directory where PHP is installed, and then copy the the cubrid.so file from the module directory.

For more information, refer to the INSTALL file

Add required settings as shown in the example below by editing the php.ini file.

extension_dir=/usr/lib/php5/lib/php/extentions

extension=cubrid.so

After restarting Web server, check the configuration using phpinfo() function.

As with the Windows version of PHP, if you can see the CUBRID information on the web browser, it means that the

installation was successful.

PHP Sample

The following is a simple example that establishes a connection between PHP and CUBRID. This section will cover the

most basic and notable features. Before running the sample program, a database and the Broker you are trying to

connect must be running. This example uses the demodb database created during the installation.

Example of Data Retrieval

<html>

<head>

<meta http-equiv='content-type' content='text/html; charset=euc-kr'

</head>

<body>

<center>

<table border=2>

<?

 // Set server information for CUBRID connection. host_ip is the IP address where the

CUBRID Broker is installed (localhost in this example), and host_port is the port number

of the CUBRID Broker. The port number is the default given during the installation. For

details, see "Administrator's Guide."

 $host_ip = "localhost";

 $host_port = 30000;

 $db_name = "demodb";

 // Connect to CUBRID Server. Do not make the actual connection, but only retain the

connection information. The reason for not making the actual connection is to handle

transaction more efficiently in the 3-tier architecture.

 $cubrid_con = @cubrid_connect($host_ip, $host_port, $db_name);

 if (!$cubrid_con) {

http://wiki.cubrid.org/index.php/How_to_Build_PHP_Library_for_CUBRID

CUBRID 2008 R4.0 Help

32

 echo "Database Connection Error";

 exit;

 }

?>

<?

 $sql = "select sports, count(players) as players from event group by sports";

 // Request the CUBRID Server for the results of the SQL statement. Now make the actual

connection to the CUBRID Server.

 $result = cubrid_execute($cubrid_con, $sql);

 if ($result) {

 // Get the column names from the result set created by the SQL query.

 $columns = cubrid_column_names($result);

 // Get the number of columns in the result set created by the SQL query.

 $num_fields = cubrid_num_cols($result);

 // List the column names of the result set on the screen.

 echo("<tr>");

 while (list($key, $colname) = each($columns)) {

 echo("<td align=center>$colname</td>");

 }

 echo("</tr>");

 // Get the results from the result set.

 while ($row = cubrid_fetch($result)) {

 echo("<tr>");

 for ($i = 0; $i < $num_fields; $i++) {

 echo("<td align=center>");

 echo($row[$i]);

 echo("</td>");

 }

 echo("</tr>");

 }

 }

 // The PHP module in the CUBRID runs in a 3-tier architecture. Even when calling SELECT

for transaction processing, it is processed as a part of the transaction. Therefore, the

transaction needs to be rolled back by calling commit or rollback even though SELECT was

called for smooth performance.

 cubrid_commit($cubrid_con);

 cubrid_disconnect($cubrid_con);

?>

</body></html>

Example of Data Insertion

<html>

<head>

<meta http-equiv='content-type' content='text/html; charset=euc- kr'>

</head>

<body>

<center>

<table border=2>

<?

 $host_ip = "localhost";

 $host_port = 30000;

 $db_name = "demodb";

 $cubrid_con = @cubrid_connect($host_ip, $host_port, $db_name);

 if (!$cubrid_con) {

 echo "Database Connection Error";

 exit;

 }

?>

<?

 $sql = "insert into olympic (host_year,host_nation,host_city,opening_date,closing_date)

values (2008, 'China', 'Beijing', to_date('08-08-2008','mm-dd- yyyy'),to_date('08-24-

2008','mm-dd-yyyy')) ;"

 $result = cubrid_execute($cubrid_con, $sql);

 if ($result) {

 // Handled successfully, so commit.

 cubrid_commit($cubrid_con);

 echo("Inserted successfully ");

 } else {

 // Error occurred, so the error message is output and rollback is called.

 echo(cubrid_error_msg());

 cubrid_commit($cubrid_con);

 }

Getting Started with CUBRID

33

 cubrid_disconnect($cubrid_con);

?>

</body></html>

CUBRID 2008 R4.0 Help

34

Programming with ODBC and ASP

Configuring the Environment of ODBC and ASP

CUBRID ODBC is compatible for version 3.52 ODBC and LEVEL2. Note that backward compatibility is not

guaranteed for applications that are written with ODBC Spec 2.x. The CUBRID ODBC driver is automatically installed

while CUBRID is installed. You can verify it from [Control Panel] > [Administrative Tools] > [Data Source (ODBC)] >

[Drivers] tab.

If the CUBRID ODBC driver is detected, set a DSN as a database where the application is trying to connect. To set up a

DSN, click the [Add] button in the ODBC Data Source Administrator dialog box. Then, the following dialog box

appears. Select "CUBRID Driver," and then click the [Finish] button.

Getting Started with CUBRID

35

When the following [Config CUBRID Data Sources] dialog box appears, enter the database name that you try to

connect to in the [DB Name] field, the port number of the CUBRID Broker in the [Server Port] field, and then click

[OK] button. You can verify the number in the cubrid.broker.conf file.

FETCH_SIZE refers to the number of records fetched from server whenever cci_fetch() function of CCI library is

called; the CCI library is internally used by ODBC driver.

For more information on CUBRID ODBC driver, see "ODBC API Reference."

• CUBRID ODBC Driver

CUBRID 2008 R4.0 Help

36

• Using OIDs and Collections

• Supported Functions and Backward Compatibility

ASP Sample

In the virtual directory where the ASP sample program runs, right-click "Default Web Site" and click [Properties].

The dialog box shown above will appear. Under the Web Site Identification, in the IP Address drop-down box, select

"(All Unassigned)." This sets the IP address to localhost. If you want to run the sample program using a specific IP

address, configure the directory with the IP address as a virtual directory and register the IP address in Properties.

The following is an example in which the IP address is set to localhost.

Example

Save the following sample code as cubrid.asp in the virtual directory.

<HTML>

 <HEAD>

 <meta http-equiv="Content-Type" content="text/html; charset=EUC-KR">

 <title>CUBRID Query Test Page</title>

 </HEAD>

 <BODY topmargin="0" leftmargin="0">

 <table border="0" width="748" cellspacing="0" cellpadding="0">

 <tr>

 <td width="200"></td>

 <td width="287">

 <p align="center"><font

color="#FF0000">CUBRIDQuery Test</td>

 <td width="200"></td>

 </tr>

 </table>

 <form action="cubrid.asp" method="post" >

 <table border="1" width="700" cellspacing="0" cellpadding="0" height="45">

Getting Started with CUBRID

37

 <tr>

 <td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"

bordercolorlight="#FFFFCC">SERVER IP</td>

 <td width="78" valign="bottom" height="16" bgcolor="#DBD7BD"

bordercolorlight="#FFFFCC">Broker PORT</td>

 <td width="148" valign="bottom" height="16" bgcolor="#DBD7BD"

bordercolorlight="#FFFFCC">DB NAME</td>

 <td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"

bordercolorlight="#FFFFCC">DB USER</td>

 <td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"

bordercolorlight="#FFFFCC">DB PASS</td>

 <td width="80" height="37" rowspan="4" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED">

 <p><input type="submit" value="Execute" name="B1" tabindex="7"></p></td>

 </tr>

 <tr>

 <td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><font

size="2"><input type="text" name="server_ip" size="20" tabindex="1" maxlength="15"

value="<%=Request("server_ip")%>"></td>

 <td width="78" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><font

size="2"><input type="text" name="cas_port" size="15" tabindex="2" maxlength="6"

value="<%=Request("cas_port")%>"></td>

 <td width="148" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><font

size="2"><input type="text" name="db_name" size="20" tabindex="3" maxlength="20"

value="<%=Request("db_name")%>"></td>

 <td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><font

size="2"><input type="text" name="db_user" size="15" tabindex="4"

value="<%=Request("db_user")%>"></td>

 <td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><font

size="2"><input type="password" name="db_pass" size="15" tabindex="5"

value="<%=Request("db_pass")%>"></td>

 </tr>

 <tr>

 <td width="573" colspan="5" valign="bottom" height="18" bordercolorlight="#FFFFCC"

bgcolor="#DBD7BD">QUERY</td>

 </tr>

 <tr>

 <td width="573" colspan="5" height="25" bordercolorlight="#FFFFCC"

bgcolor="#F5F5ED"><textarea rows="3" name="query" cols="92"

tabindex="6"><%=Request("query")%></textarea></td>

 </tr>

 </table>

 </form>

 <hr>

</BODY>

</HTML>

<%

 ' Fetch the DSN and SQL statement.

 strIP = Request("server_ip")

 strPort = Request("cas_port")

 strUser = Request("db_user")

 strPass = Request("db_pass")

 strName = Request("db_name")

 strQuery = Request("query")

if strIP = "" then

 Response.Write "Please enter the SERVER_IP"

 Response.End 'If no IP entered, end the page

 end if

 if strPort = "" then

 Response.Write "Please enter the port number"

 Response.End ' If no port entered, end the page

 end if

 if strUser = "" then

 Response.Write "Please enter the DB_USER"

 Response.End ' If no DB_User entered, end the page

 end if

 if strName = "" then

 Response.Write "Please enter the DB_NAME "

 Response.End ' If no DB_NAME entered, end the page

 end if

 if strQuery = "" then

 Response.Write "Please enter the query you want to check"

 Response.End ' If no Query entered, end the page

CUBRID 2008 R4.0 Help

38

 end if

 ' Create the connection object

 strDsn = "driver={CUBRID Driver};server=" & strIP & ";port=" & strPort & ";uid=" &

strUser & ";pwd=" & strPass & ";db_name=" & strName & ";"

' Connect to DB

Set DBConn = Server.CreateObject("ADODB.Connection")

 DBConn.Open strDsn

 ' Execute SQL

 Set rs = DBConn.Execute(strQuery)

 ' Show message depending on the SQL statement

 if InStr(Ucase(strQuery),"INSERT")>0 then

 Response.Write "The record has been added."

 Response.End

 end if

 if InStr(Ucase(strQuery),"DELETE")>0 then

 Response.Write "The record has been deleted."

 Response.End

 end if

 if InStr(Ucase(strQuery),"UPDATE")>0 then

 Response.Write "The record has been modified."

 Response.End

 end if

%>

<table>

<%

 ' Show the field name

 Response.Write "<tr bgColor=#f3f3f3>"

 For index =0 to (rs.fields.count-1)

 Response.Write "<td>" & rs.fields(index).name & "</td>"

 Next

 Response.Write "</tr>"

 ' Show the field value

 Do While Not rs.EOF

 Response.Write "<tr bgColor=#f3f3f3>"

 For index =0 to (rs.fields.count-1)

 Response.Write "<td>" & rs(index) & "</td>"

 Next

 Response.Write "</tr>"

 rs.MoveNext

 Loop

%>

<%

 set rs = nothing

%>

</table>

You can check the result of the sample program at http://localhost/aSP/cubrid.asp. When you execute the sample code

above, you will get the following output. Enter appropriate values in each field, and then enter the query statement in

the Query field. When you click [Run], the query result will be displayed at the lower portion of the page.

Getting Started with CUBRID

39

CUBRID 2008 R4.0 Help

40

Programming with CCI

CCI Library

The CCI Library is a C language interface provided by CUBRID. CCI is connected to the application through the

Broker, so you can manage it the same way as other interfaces such as JDBC, PHP and ODBC. In fact, CCI provides a

foundation to implement PHP, ODBC, Python and, Ruby interfaces.

CCI Installation and Configuration

The CCI library is contained in the CUBRID installation package. The following figure shows where the files are

located.

Operating System Windows UNIX/Linux

C header file include/cas_cci.h include/cas_cci.h

Static library lib/cascci.lib lib/libcascci.a

Dynamic library lib/cascci.lib

bin/cascci.dll

lib/libcascci.so

Getting Started with CUBRID

41

Using CCI

Basic Flow Diagram of the Application Using CCI

To use CUBRID, the following procedures are required for applications using the CCI libraries to execute queries:

connection to CAS, query preparation, query execution, response handling, and disconnection. In each process, CCI

communicates with the application using connection, query and response handles.

The following flowchart shows the process of the application using CCI and the functions used in each step. See CCI

API in the API Reference for more information.

• Opening a database connection handle (related function : cci_connect)

• Getting the request handle for a prepared statement (related function : cci_prepare)

• Binding data to the prepared statement (related function : cci_bind_param)

• Executing the prepared statement (related function : cci_execute)

• Processing the execution result (related function : cci_cursor, cci_fetch, cci_get data, cci_get_result_info)

• Closing the request handle (related function : cci_close_req_handle)

• Closing a database connection handle (related function : cci_disconnect)

How to use

Once you have created the application using CCI, you should decide, according to its features, whether to execute CCI

as a static link or dynamic link before you build it. Determine the library to use by referring to the table in the CCI

Installation and Configuration.

The following is an example Makefile to use the dynamic link library on UNIX/Linux:

CC=gcc

CFLAGS = -g -Wall -I. -I$CUBRID/include

LDFLAGS = -L$CUBRID/lib -lcascci -lnsl

TEST_OBJS = test.o

EXES = test

all: $(EXES)

test: $(TEST_OBJS)

 $(CC) -o $@ $(TEST_OBJS) $(LDFLAGS)

The following is the settings for using the static library on Windows:

CUBRID 2008 R4.0 Help

42

CCI Sample

Introduction

The sample program is to create a simple application using CCI through the connection to the demodb database

deployed by default during the CUBRID installation. Follow the processes of connection to CAS, query preparation,

query execution, response handling and disconnection in the sample. The sample is created in a way that uses dynamic

links on Linux.

The following is schema information of the olympic table in the demodb database used in the sample.

csql> ;sc olympic

=== <Help: Sechma of a Class> ===

 <Class Name>

 olympic

 <Attributes>

 host_year INTEGER NOT NULL

 host_nation CHARACTER VARYING(40) NOT NULL

 host_city CHARACTER VARYING(20) NOT NULL

 opening_date DATE NOT NULL

 closing_date DATE NOT NULL

 mascot CHARACTER VARYING(20)

 slogan CHARACTER VARYING(40)

 introduction CHARACTER VARYING(1500)

 <Constraints>

 PRIMARY KEY pk_olympic_host_year ON olympic (host_year)

Preparation

Make sure that the demodb database and the Broker are running before you execute the sample program. You can start

the demodb database and the Broker by executing the cubrid utility.

The following example shows how to run a database server and broker by executing the cubrid utility.

[tester@testdb ~]$ cubrid server start demodb

@ cubrid master start

++ cubrid master start: success

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

[tester@testdb ~]$ cubrid broker start

@ cubrid broker start

++ cubrid broker start: success

Build

With the program source and the Makefile ready, executing "make" will create an executable file called "test." If you

use a static library, there is no need to deploy additional files and the execution will be faster. However, it increases the

program size and memory usage. If you use a dynamic library, there will be some performance overhead, but the

program size and memory usage can be optimized.

The following is a command line example. It builds the test program using the dynamic library instead of "make" on

Linux.

cc -o test test.c -I$CUBRID/include -L$CUBRID/lib -lnsl -lcascci

Sample Code

#include <stdio.h>

#include <cas_cci.h>

char *cci_client_name = "test";

int main (int argc, char *argv[])

{

 int con = 0, req = 0, col_count = 0, res, ind, i;

Getting Started with CUBRID

43

 T_CCI_ERROR error;

 T_CCI_COL_INFO *res_col_info;

 T_CCI_SQLX_CMD cmd_type;

 char *buffer, db_ver[16];

 printf("Program started!\n");

 if ((con=cci_connect("localhost", 30000, "demodb", "PUBLIC", ""))<0) {

 printf("%s(%d): cci_connect fail\n", __FILE__, __LINE__);

 return -1;

 }

 if ((res=cci_get_db_version(con, db_ver, sizeof(db_ver)))<0) {

 printf("%s(%d): cci_get_db_version fail\n", __FILE__, __LINE__);

 goto handle_error;

 }

 printf("DB Version is %s\n",db_ver);

 if ((req=cci_prepare(con, "select * from event", 0,&error))<0) {

 printf("%s(%d): cci_prepare fail(%d)\n", __FILE__, __LINE__,error.err_code);

 goto handle_error;

 }

 printf("Prepare ok!(%d)\n",req);

 res_col_info = cci_get_result_info(req, &cmd_type, &col_count);

 if (!res_col_info) {

 printf("%s(%d): cci_get_result_info fail\n", __FILE__, __LINE__);

 goto handle_error;

 }

 printf("Result column information\n"

 "==\n");

 for (i=1; i<=col_count; i++) {

 printf("name:%s type:%d(precision:%d scale:%d)\n",

 CCI_GET_RESULT_INFO_NAME(res_col_info, i),

 CCI_GET_RESULT_INFO_TYPE(res_col_info, i),

 CCI_GET_RESULT_INFO_PRECISION(res_col_info, i),

 CCI_GET_RESULT_INFO_SCALE(res_col_info, i));

 }

 printf("==\n");

 if ((res=cci_execute(req, 0, 0, &error))<0) {

 printf("%s(%d): cci_execute fail(%d)\n", __FILE__, __LINE__,error.err_code);

 goto handle_error;

 }

 if ((res=cci_fetch_size(req, 100))<0) {

 printf("%s(%d): cci_fetch_size fail\n", __FILE__, __LINE__);

 goto handle_error;

 }

 while (1) {

 res = cci_cursor(req, 1, CCI_CURSOR_CURRENT, &error);

 if (res == CCI_ER_NO_MORE_DATA) {

 printf("Query END!\n");

 break;

 }

 if (res<0) {

 printf("%s(%d): cci_cursor fail(%d)\n", __FILE__, __LINE__,error.err_code);

 goto handle_error;

 }

 if ((res=cci_fetch(req, &error))<0) {

 printf("%s(%d): cci_fetch fail(%d)\n", __FILE__, __LINE__,error.err_code);

 goto handle_error;

 }

 for (i=1; i<=col_count; i++) {

 if ((res=cci_get_data(req, i, CCI_A_TYPE_STR, &buffer, &ind))<0) {

 printf("%s(%d): cci_get_data fail\n", __FILE__, __LINE__);

 goto handle_error;

 }

 printf("%s \t|", buffer);

 }

 printf("\n");

 }

 if ((res=cci_close_req_handle(req))<0) {

 printf("%s(%d): cci_close_req_handle fail", __FILE__, __LINE__);

 goto handle_error;

CUBRID 2008 R4.0 Help

44

 }

 if ((res=cci_disconnect(con, &error))<0) {

 printf("%s(%d): cci_disconnect fail(%d)", __FILE__, __LINE__,error.err_code);

 goto handle_error;

 }

 printf("Program ended!\n");

 return 0;

handle_error:

 if (req > 0)

 cci_close_req_handle(req);

 if (con > 0)

 cci_disconnect(con, &error);

 printf("Program failed!\n");

 return -1;

}

45

CSQL Interpreter

CUBRID 2008 R4.0 Help

46

CSQL Interpreter

To execute SQL statements in CUBRID, you need to use either a Graphical User Interface (GUI)-based CUBRID

Manager or a console-based CSQL Interpreter.

CSQL is an application that allows users to use SQL statements through a command-driven interface. This section

briefly explains how to use the CSQL Interpreter and associated commands.

• Introduction to the CSQL Interpreter

• Running CSQL

• Session Commands

CSQL Interpreter

47

Introduction to the CSQL Interpreter

A Tool for SQL

The CSQL Interpreter is an application installed with CUBRID that allows you to execute in an interactive or batch

mode and viewing query results. The CSQL Interpreter has a command-line interface. With this, you can save SQL

statements together with their results to a file for a later use.

The CSQL Interpreter provides the best and easiest way to use CUBRID. You can develop database applications with

various APIs (e.g. JDBC, ODBC, PHP, CCI, etc.; you can use the CUBRID Manager, which is a management and

query tool provided by CUBRID. With the CSQL Interpreter, users can create and retrieve data in a terminal-based

environment.

The CSQL Interpreter directly connects to a CUBRID database and executes various tasks using SQL statements. Using

the CSQL Interpreter, you can:

• Retrieve, update and delete data in a database by using SQL statements

• Execute external shell commands

• Save or print query results

• Create and execute SQL script files

• Select table schema

• Retrieve or modify parameters of the database server system

• Retrieve database information (e.g. schema, triggers, queued triggers, workspaces, locks, and statistics)

A Tool for DBA

A database administrator (DBA) performs administrative tasks by using various administrative utilities provided by

CUBRID; a terminal-based interface of CSQL Interpreter is an environment where DBA executes administrative tasks.

It is also possible to run the CSQL Interpreter in a standalone mode. In this mode, the CSQL Interpreter directly

accesses database files and executes commands including server process properties. That is, SQL statements can be

executed to a database without running a separate database server process. The CSQL Interpreter is a powerful tool that

allows you to use the database only with a csql utility, without any other applications such as the Database Server or the

Brokers.

CUBRID 2008 R4.0 Help

48

Executing CSQL

CSQL Execution Mode

Interactive Mode

With CSQL Interpreter, you can enter and execute SQL statements to handle schema and data in the database. Enter

statements in a prompt that appears when running the csql utility. After executing the statements, the results are listed in

the next line. This is called the interactive mode.

Batch Mode

You can save SQL statements in a file and execute them later to have the csql utility read the file. This is called the

batch mode. For more information on the batch mode, see CSQL Startup Options.

Standalone Mode

In the standalone mode, CSQL Interpreter directly accesses database files and executes commands including server

process functions. That is, SQL statements can be sent and executed to a database without a separate database server

process running for the task. Since the standalone mode allows only one user access at a given time, it is suitable for

management tasks by Database Administrators (DBAs).

Client/Server Mode

CSQL Interpreter usually operates as a client process and accesses the server process.

Using CSQL (Syntax)

Connecting to Local Host

Description

Execute the CSQL Interpreter using the csql utility. You can set options as needed. To set the options, specify the name

of the database to connect to as a parameter. The following is a csql utility statement to access the database on a local

server:

Syntax

csql [options] database_name

Connecting to Remote Host

Descripton

The following is a csql utility statement to access the database on a remote host:

Syntax

csql [options] database_name@remote_host_name

Make sure that the following conditions are met before you run the CSQL Interpreter on a remote host.

• The CUBRID installed on the remote host must be the same version as the one on the local host.

• The port number used by the master process on the remote host must be identical to the one on the local host.

• You must access the remote host in a client/server mode using the -C option.

CSQL Interpreter

49

Example

The following is an example statement that accesses the demodb database on the remote host with the IP address

192.168.1.3 and calls the csql utility.

csql -C demodb@192.168.1.3

CSQL Startup Options

To display the option list in the prompt, execute the csql utility without specifying the database name as follows:

 % csql

interactive SQL utility, version R4.0

usage: csql [OPTION] database-name valid options:

 -S, --SA-mode standalone mode execution

 -C, --CS-mode client-server mode execution

 -u, --user=ARG alternate user name

 -p, --pasword=ARG password string, give "" for none

 -e, --error-continue don't exit on statement error

 -i, --input-file=ARG input-file-name

 -o, --output-file=ARG output-file-name

 -s --single-line single line oriented execution

 -c, --command=ARG CSQL-commands

 -l, --line-output display each value in a line

 -r, --read-only read-only mode

 --no-auto-commit disable auto commit mode execution

 --no-pager do not use pager

 --no-single-line turn off single line oriented execution

Options

The following table lists the options that can be issued with the csql utility.

Options Description

-S Executes the csql utility in a standalone mode.

-C Executes the csql utility in a client/server mode.

-u user_name Specifies the user that tries to access the database. The default value is PUBLIC.

-p password Specifies the password of the user that tries to access the database (if any).

-e Continues the session even when an error occurs.

-i input_file Executes the csql utility in a batch mode. The input_file parameter is the file name

where SQL statements are saved.

-o output_file Saves a result of the statement execution in the specified output_file without displaying

it on the screen.

-s Executes multiple SQL statements one by one in the file where they are saved

consecutively. Multiple SQL statements are separated by semicolons (;). If this option

is not specified, the default operation is performed.

-c "CSQL

commands"

Executes SQL statements directly from the prompt. To use this option, enclose the SQL

statement to execute in double quotes.

-l Displays the query results in a line format instead of a column. By default, the results

will be displayed in a column format.

-r Connects to a database in read-only mode.

--no-auto-

commit

Configures the auto-commit mode of the CSQL Interpreter to OFF.

--no-pager Displays the results of the query performed by the CSQL Interpreter at once instead of

page-by-page.

CUBRID 2008 R4.0 Help

50

--no-single-

line

Executes multiple SQL statements at once by using ;xr or ;r session command.

Executing in a standalone mode (-S)

The following is an example to connect to the demodb database in a standalone mode and execute the csql utility with

the -S option. When you want to use the demodb database exclusively, use the -S option.

csql -S demodb

Executing in a client/server mode (-C)

The following is an example to connect to the demodb database in a client/server mode and execute the csql utility with

the -C option. In an environment where multiple clients connect to the demodb database, use the -C option. Even when

you connect to a database on a remote host in a client/server mode, the error log created during the csql utility execution

will be saved in the cub_client.err file on the local host.

csql -C demodb

Specifying the name of the input file to use in a batch mode (-i)

The following is an example to specify the name of the input file that will be used in a batch mode with the -i option. In

the infile file, more than one SQL statement are saved. Without the -i option specified, the CSQL Interpreter will run in

an interactive mode.

csql -i infile demodb

Specifying the output file to save the execution results (-o)

The following is an example to save the execution results to the specified file instead of displaying on the screen with

the -o option. This option is useful when you want to retrieve the results of the query performed by the CSQL

Interpreter at a later time.

csql -o outfile demodb

Specifying the user name (-u)

The following is an example to specify the name of the user that will connect to the specified database with the -u

option. If the -u option is not specified, PUBLIC that has the lowest level of authorization will be specified as a user. If

the user name is not valid, an error message is displayed and the csql utility is terminated. If there is a password for the

user name you specify, you will be prompted to enter the password.

csql -u DBA demodb

Specifying the user password (-p)

The following is an example to enter the password of the user specified with the -p option. Especially since there is no

prompt to enter a password for the user you specify in a batch mode, you must enter the password using the -p option.

When you enter an incorrect password, an error message is displayed and the csql utility is terminated.

csql -u DBA -p *** demodb

Executing SQL statements one by one (-s)

The following is an example to execute SQL statements one by one with the -s option. Use this option when you want to

allocate less memory for the query execution. Multiple SQL statements are separated by semicolons (;). If this option is

not specified, the default operation is performed.

csql -s -i infile demodb

Executing SQL statements directly from the shell (-c)

The following is an example to execute more than one SQL statement from the shell with the -c option. Multiple

statements are separated by semicolons (;).

CSQL Interpreter

51

csql -c "select * from olympic;select * from stadium" demodb

Displaying the results in a line format (-l)

The following is an example to display the execution results of the SQL statement in a line format with the -l option.

The execution results will be output in a column format if the -l option is not specified.

csql -l demodb

Continuing the execution even with an error (-e)

The following is an example to continue to execute subsequent SQL statements even when a syntax error or a runtime

error occurs in a previous SQL statement by using the -e option. When there is an error in the SQL statement, the

database will be terminated even though the -e option is specified.

csql -e demodb

Connecting to a database in read-only mode (-r)

The following is an example to connect to a database in read-only mode by using the -r option. Creating a table or

manipulating data is not allowed; only retrieving data is allowed.

csql -r demodb

No auto-commit mode (--no-auto-commit)

The following is an example to stop the auto-commit mode with the --no-auto-commit option. If you don't configure --

no-auto-commit option, the CSQL Interpreter runs in an auto-commit mode by default, and the SQL statement is

committed automatically at every execution. Executing the ;AUtocommit session command after starting the CSQL

Interpreter will also have the same result.

csql --no-auto-commit demodb

Displaying all the execution results at once (--no-pager)

The following is an example to display the execution results by the CSQL Interpreter at once instead of page-by-page

with the --no-pager option. The results will be output page-by-page if --no-pager option is not specified.

csql --no-pager demodb

Executing all SQL statements at once (--no single-line)

The following is an example to execute all SQL statements at once by using ;xr or ;r session command. If you do not

specify this option, SQL statements are executed without ;xr or ;r session command.

csql --no-pager demodb

CUBRID 2008 R4.0 Help

52

Session Commands

In addition to SQL statements, CSQL Interpreter provides special commands allowing you to control the Interpreter.

These commands are called session commands. All the session commands must start with a semicolon (;).

Session Commands

Enter the ;help command to display a list of the session commands available in the CSQL Interpreter. Note that only the

uppercase letters of each session command are required to make the CSQL Interpreter to recognize it. Session

commands are not case-sensitive.

CUBRID SQL Interpreter

Type `;help' for help messages.

csql> ;help

=== <Help: Session Command Summary> ===

 All session commands should be prefixed by `;' and only blanks/tabs

 can precede the prefix. Capitalized characters represent the minimum

 abbreviation that you need to enter to execute the specified command.

 ;REAd [<file-name>] - read a file into command buffer.

 ;Write [<file-name>] - (over)write command buffer into a file.

 ;APpend [<file-name>] - append command buffer into a file.

 ;PRINT - print command buffer.

 ;SHELL - invoke shell.

 ;CD - change current working directory.

 ;EXit - exit program.

 ;CLear - clear command buffer.

 ;EDIT - invoke system editor with command buffer.

 ;List - display the content of command buffer.

 ;RUn - execute sql in command buffer.

 ;Xrun - execute sql in command buffer, and clear the command

buffer.

 ;COmmit - commit the current transaction.

 ;ROllback - roll back the current transaction.

 ;AUtocommit [ON|OFF] - enable/disable auto commit mode.

 ;CHeckpoint - issue checkpoint.

 ;Killtran - kill transaction.

 ;REStart - restart database.

 ;SHELL_Cmd [shell-cmd] - set default shell, editor, print and pager

 ;EDITOR_Cmd [editor-cmd] command to new one, or display the current

 ;PRINT_Cmd [print-cmd] one, respectively.

 ;PAger_cmd [pager-cmd]

 ;DATE - display the local time, date.

 ;DATAbase - display the name of database being accessed.

 ;SChema class-name - display schema information of a class.

 ;SYntax [sql-cmd-name] - display syntax of a command.

 ;TRigger [`*'|trigger-name] - display trigger definition.

 ;Get system_parameter - get the value of a system parameter.

 ;SEt system_parameter=value - set the value of a system parameter.

 ;PLan [simple/detail/off] - show query execution plan.

 ;Info <command> - display internal information.

 ;TIme [ON/OFF] - enable/disable to display the query execution time.

 ;HISTORYList - display list of the executed queries.

 ;HISTORYRead <history_num> - read entry on the history number into command buffer.

 ;HElp - display this help message.

csql>

Options

Reading SQL statements from a file (;REAd)

The ;REAd command reads the contents of a file into the command buffer. This command is used to execute SQL

commands saved in the specified file. To view the contents of the file loaded into the buffer, use the ;List command.

csql> ;rea nation.sql

The file has been read into the command buffer.

csql> ;list

insert into "sport_event" ("event_code", "event_name", "gender_type", "num_player") values

CSQL Interpreter

53

(20001, 'Archery Individual', 'M', 1);

insert into "sport_event" ("event_code", "event_name", "gender_type", "num_player") values

20002, 'Archery Individual', 'W', 1);

....

Saving SQL statements into a file (;Write)

The ;Write command saves the contents of the command buffer into a file. This command is used to save SQL

commands that you entered or modified in the CSQL Interpreter.

csql> ;w outfile

Command buffer has been saved.

Appending to a file (;APpend)

This command appends the contents of the current command buffer to an outfile file.

csql> ;ap outfile

Command buffer has been saved.

Executing a shell command (;SHELL)

The ;SHELL session command calls an external shell. Starts a new shell in the environment where the CSQL

Interpreter is running. It returns to the CSQL Interpreter when the shell terminates. If the shell command to execute with

the ;SHELL_Cmd command has been specified, it starts the shell, executes the specified command, and returns to the

CSQL Interpreter.

csql> ;shell

% Is -al

total 2088

drwxr-xr-x 16 DBA cubrid 4096 Jul 29 16:51 .

drwxr-xr-x 6 DBA cubrid 4096 Jul 29 16:17 ..

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 02:49 audit

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 16:17 bin

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 16:17 conf

drwxr-xr-x 4 DBA cubrid 4096 Jul 29 16:14 cubridmanager

% exit

csql>

Registering a shell command (;SHELL_Cmd)

The ;SHELL_Cmd command registers a shell command to execute with the SHELL session command. As shown in

the example below, enter the ;shell command to execute the registered command.

csql> ;shell_c ls -la

csql> ;shell

total 2088

drwxr-xr-x 16 DBA cubrid 4096 Jul 29 16:51 .

drwxr-xr-x 6 DBA cubrid 4096 Jul 29 16:17 ..

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 02:49 audit

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 16:17 bin

drwxr-xr-x 2 DBA cubrid 4096 Jul 29 16:17 conf

drwxr-xr-x 4 DBA cubrid 4096 Jul 29 16:14 cubridmanager

csql>

Changing the current working directory (;CD)

This command changes the current working directory where the CSQL Interpreter is running to the specified directory.

If you don't specify the path, the directory will be changed to the home directory.

csql> ;cd /home1/DBA/CUBRID

Current directory changed to /home1/DBA/CUBRID.

Exiting the CSQL Interpreter (;EXit)

This command exits the CSQL Interpreter.

csql> ;ex

Clearing the command buffer (;CLear)

CUBRID 2008 R4.0 Help

54

The ;CLear session command clears the contents of the command buffer.

csql> ;cl

csql> ;list

Displaying the contents of the command buffer (;List)

The ;List session command lists the contents of the command buffer that have been entered or modified. The command

buffer can be modified by ;READ or ;Edit command.

csql> ;l

Executing SQL statements (;RUn)

This command executes SQL statements in the command buffer. Unlike the ;Xrun session command described below,

the buffer will not be cleared even after the query execution.

csql> ;ru

Clearing the command buffer after executing the SQL statement (;Xrun)

This command executes SQL statements in the command buffer. The buffer will be cleared after the query execution.

csql> ;x

Committing transaction (;COmmit)

This command commits the current transaction. You must enter a commit command explicitly if it is not in auto-commit

mode. In auto-commit mode, transactions are automatically committed whenever SQL is executed.

csql> ;co

Current transaction has been committed.

Rolling back transaction (;ROllback)

This command rolls back the current transaction. Like a commit command (;COmmit), it must enter a rollback

command explicitly if it is not in auto-commit mode (OFF).

csql> ;ro

Current transaction has been rolled back.

Setting the auto-commit mode (;AUtocommit)

This command sets auto-commit mode to ON or OFF. If any value is not specified, current configured value is applied

by default. The default value is ON.

csql> ;au off

AUTOCOMMIT IS OFF

CHeckpoint Execution (;CHeckpoint)

This command executes the checkpoint within the CSQL session. This command can only be executed when a DBA

group member, who is specified for the custom option (-u user_name), connects to the CSQL interpreter in system

administrator mode (--sysadm).

Checkpoint is an operation of flushing log files (dirty pages) from the current data buffer to disks. You can also change

the checkpoint interval using a command (;set parameter_name value) to set the parameter values in the CSQL session.

You can see the examples of the parameter related to the checkpoint execution interval (checkpoint_interval_in_mins

and checkpoint_every_npages). For more information, see Logging-related Parameters.

csql> ;ch

Checkpoint has been issued.

Transaction Monitoring Or Termination (;Killtran)

This command checks the transaction status information or terminates a specific transaction in the CSQL session. This

command prints out the status information of all transactions on the screen if a parameter is omitted it terminates the

transaction if a specific transaction ID is specified for the parameter. It can only be executed when a DBA group

CSQL Interpreter

55

member, who is specified for the custom option (-u user_name), connects to the CSQL interpreter in system

administrator mode (--sysadm).

csql> ;k

Tran index User name Host name Process id Program name

 1(+) dba myhost 664 cub_cas

 2(+) dba myhost 6700 csql

 3(+) dba myhost 2188 cub_cas

 4(+) dba myhost 696 csql

 5(+) public myhost 6944 csql

csql> ;k 3

The specified transaction has been killed.

Restarting database (;REStart)

A command that tries to reconnect to the target database in a CSQL session. Note that when you execute the CSQL

interpreter in CS (client/server) mode, it will be disconnected from the server. When the connection to the server is lost

due to a HA failure and failover to another server occurs, this command is particularly useful in connecting to the

switched server while maintaining the current session.

csql> ;res

The database has been restarted.

Displaying the current date (;DATE)

The ;DATE command displays the current date and time in the CSQL Interpreter.

csql> ;date

 Tue July 29 18:58:12 KST 2008

Displaying the database informatio (;DATAbase)

This command displays the database name and host name where the CSQL Interpreter is working. If the database is

running, the HA mode (one of those followings: active, standby, or maintenance) will be displayed as well.

csql> ;data

 demodb@localhost (active)

Displaying schema information of a class (;SChema)

The ;SChema session command displays schema information of the specified table. The information includes the table

name, its column name and constraints.

csql> ;sc event

=== <Help: Schema of a Class> ===

 <Class Name>

 event

 <Attributes>

 code INTEGER NOT NULL

 sports CHARACTER VARYING(50)

 name CHARACTER VARYING(50)

 gender CHARACTER(1)

 players INTEGER

 <Constraints>

 PRIMARY KEY pk_event_event_code ON event (code)

Displaying syntax (;SYntax)

This command displays the syntax of the SQL statement specified. If there is no specific syntax specified, all the

syntaxes defined and their rules will be displayed.

csql> ;sy alter

=== <Help: Command Syntax> ===

 <Name>

 ALTER

 <Description>

Change the definition of a class or virtual class.

 <Syntax>

<alter> ::= ALTER [<class_type>] <class_name> <alter_clause> ;

CUBRID 2008 R4.0 Help

56

<class_type> ::= CLASS | TABLE | VCLASS | VIEW

<alter_clause> ::= ADD <alter_add> [INHERIT <resolution_comma_list>] |

 DROP <alter_drop> [INHERIT <resolution_comma_list>] |

 RENAME <alter_rename> [INHERIT <resolution_comma_list>] |

> CHANGE <alter_change> |

 INHERIT <resolution_comma_list>

<alter_add> ::= [ATTRIBUTE | COLUMN] <class_element_comma_list> |

 CLASS ATTRIBUTE <attribute_definition_comma_list> |

 FILE <file_name_comma_list> |

 METHOD <method_definition_comma_list> |

 QUERY <select_statement> |

 SUPERCLASS <class_name_comma_list>

......

Displaying the trigger (;TRriger)

This command searches and displays the trigger specified. If there is no trigger name specified, all the triggers defined

will be displayed.

csql> ;tr

=== <Help: All Triggers> ===

 trig_delete_contents

Checking the parameter value(;Get)

You can check the parameter value currently set in the CSQL Interpreter using the ;Get session command. An error

occurs if the parameter name specified is incorrect.

csql> ;g isolation_level

=== Get Param Input ===

isolation_level=4

Setting the parameter value (;SEt)

You can use the ;Set session command to set a specific parameter value. Note that changeable parameter values are only

can be changed. To change the server parameter values, you must have DBA authorization. For information on list of

changeable parameters, see cubrid_broker.conf Configuration File and Default Parameters.

csql> ;se block_ddl_statement=1

=== Set Param Input ===

block_ddl_statement=1

-- Dynamically change the log_max_archives value in the csql accessed by dba account

csql>;se log_max_archives=5

Setting the view level of executing query plan (;PLan)

You can use the ;PLan session command to set the view level of executing query plan the level is composed of simple,

detail, and off. Each command refers to the following:

• off : Not displaying the query execution plan

• simple : Displaying the query execution plan in simple version (OPT LEVEL=257)

• detail : Displaying the query execution plan in detailed version (OPT LEVEL=513)

Displaying information (;Info)

The ;Info session command allows you to check information such as schema, triggers, the working environment, locks

and statistics.

csql> ;i lock

*** Lock Table Dump ***

 Lock Escalation at = 100000, Run Deadlock interval = 1

Transaction (index 0, unknown, unknown@unknown|-1)

Isolation REPEATABLE CLASSES AND READ UNCOMMITTED INSTANCES

State TRAN_ACTIVE

Timeout_period -1

......

Outputting statistics information of server processing (;.Hist)

CSQL Interpreter

57

This command shows the statistics information of server processing. The information is collected after this command is

entered. Therefore, the execution commands such as ;.dump_hist or ;.x must be entered to output the statistics

information

This command is executable while the communication_histogram parameter in the cubrid.conf file is set to yes. You

can also view this information by using the cubrid statdump utility. Following options are provided for this session

command.

• on : Starts collecting statistics information for the current connection.

• off : Stops collecting statistics information of server.

This example shows the server statistics information for current connection. For information on specific items, see

Outputting Statistics Information of Server.

csql> ;.hist on

csql> ;.x

Histogram of client requests:

Name Rcount Sent size Recv size Server time

 No server requests made

 *** CLIENT EXECUTION STATISTICS ***

System CPU (sec) = 0

User CPU (sec) = 0

Elapsed (sec) = 20

 *** SERVER EXECUTION STATISTICS ***

Num_file_creates = 0

Num_file_removes = 0

Num_file_ioreads = 0

Num_file_iowrites = 0

Num_file_iosynches = 0

Num_data_page_fetches = 56

Num_data_page_dirties = 14

Num_data_page_ioreads = 0

Num_data_page_iowrites = 0

Num_data_page_victims = 0

Num_data_page_iowrites_for_replacement = 0

Num_log_page_ioreads = 0

Num_log_page_iowrites = 0

Num_log_append_records = 0

Num_log_archives = 0

Num_log_checkpoints = 0

Num_log_wals = 0

Num_page_locks_acquired = 2

Num_object_locks_acquired = 2

Num_page_locks_converted = 0

Num_object_locks_converted = 0

Num_page_locks_re-requested = 0

Num_object_locks_re-requested = 1

Num_page_locks_waits = 0

Num_object_locks_waits = 0

Num_tran_commits = 1

Num_tran_rollbacks = 0

Num_tran_savepoints = 0

Num_tran_start_topops = 3

Num_tran_end_topops = 3

Num_tran_interrupts = 0

Num_btree_inserts = 0

Num_btree_deletes = 0

Num_btree_updates = 0

Num_btree_covered = 0

Num_btree_noncovered = 0

Num_btree_resumes = 0

Num_query_selects = 1

Num_query_inserts = 0

Num_query_deletes = 0

Num_query_updates = 0

Num_query_sscans = 1

Num_query_iscans = 0

Num_query_lscans = 0

Num_query_setscans = 0

Num_query_methscans = 0

Num_query_nljoins = 0

CUBRID 2008 R4.0 Help

58

Num_query_mjoins = 0

Num_query_objfetches = 0

Num_network_requests = 8

Num_adaptive_flush_pages = 0

Num_adaptive_flush_log_pages = 0

Num_adaptive_flush_max_pages = 0

 *** OTHER STATISTICS ***

Data_page_buffer_hit_ratio = 100.00

csql> ;.h off

Displaying query execution time (;TIme)

The ;TIme session command can be set to display the elapsed time to execute the query. It can be set to ON or OFF.

The current setting is displayed if there is no value specified. csql> ;ti ON

csql> ;ti

TIME IS ON

Displaying query history (;HISTORYList)

This command displays the list that contains previously executed commands (input) and their history numbers.

csql> ;historyl

----< 1 >----

select * from nation;

----< 2 >----

select * from athlete;

Reading input with the specified history number into the buffer (;HISTORYRead)

You can use ;HISTORYRead session command to read input with history number in the ;HISTORYList list into the

command buffer. You can enter ;ru or ;x directly because it has the same effect as when you enter SQL statements

directly.

csql> ;historyr 1

Calling the default editor (;EDIT)

This command calls the specified editor. The default editor is vi in Linux environment Notepad in Windows

environment. Use ;EDITOR_Cmd command to specify a different editor.

csql> ;edit

Specifying the editor (;EDITOR_Cmd)

This command specifies the editor to be used with ;EDIT session command. As shown in the example below, you can

specify other editor (ex: emacs) which is installed in the system.

csql> ;editor_c emacs

csql> ;edit

59

CUBRID SQL Guide

CUBRID 2008 R4.0 Help

60

CUBRID SQL Guide

This chapter describes SQL syntax such as data types, functions and operators, data retrieval or table manipulation. You

can also find SQL statements used for index, trigger, partition, serial and changing user information.

The main topics covered in this chapter are as follows:

• Glossary

• Comment

• Identifier

• Reserved words

• Data types

• Table definition

• Index definition

• VIEW

• SERIAL

• Operators and functions

• Data retrieval and manipluation

• Query optimization

• Triggers (TRIGGER)

• Java stored functions/procedures

• Methods

• Partitions

• Class Inheritance

• Class Conflict Resolution

• CUBRID System Catalog

CUBRID SQL Guide

61

Glossary

CUBRID is an object-relational database management system (ORDBMS), which supports object-oriented concepts

such as inheritance. In this manual, relational database terminology is also used along with object-oriented terminology

for better understanding. Object-oriented terminology such as class, instance and attribute is used to describe concepts

including inheritance, and relational database terminology is mainly used to describe common SQL syntax.

The following table provides the summary:

Relational Database CUBRID

table class, table

column attribute, column

record instance, record

data type domain, data type

CUBRID 2008 R4.0 Help

62

Comment

The CSQL Interpreter is a SQL-style method; the SQL-style comment starts with the double dashes (--) and the

comment line after the double dashes is regarded as comment. Additionally, it supports C++ style, which start with

double slashes (//), and C-style, which starts and ends with '/*' and '*/' respectively.

The following are examples of comments supported in the CSQL Interpreter.

Example

• --

-- This is a SQL-style comment.

• //

This is a C++ style comment.

• /* */

/* This is a C-style comment.*/

/* This is an example to use two lines

as comment by using the C-style. */

CUBRID SQL Guide

63

Identifier

Guidelines for Creating Identifiers

The guidelines for creating identifiers in the CSQL Interpreter are as follows:

• An identifier must begin with a letter it must not begin with a number or a symbol.

• It is not case-sensitive.

• CUBRID keywords are not allowed.

< identifier>

:: = < identifier_letter> [{ < other_identifier> }]

< identifier_letter>

:: = < upper_case_letter>

 | < lower_case_letter>

< other_identifier>

:: = < identifier_letter>

 | < digit>

 | _

 | #

< digit>

:: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

< upper_case_letter>

:: = A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P| Q | R | S | T | U | V

| W | X | Y | Z

< lower_case_letter>

:: = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p| q | r | s | t | u | v

| w | x | y | z

Legal Identifiers

Beginning with a Letter

An identifier must begin with a letter. All other special characters except operator characters are allowed. The following

are examples of legal identifiers.

a

a_b

ssn#

fg%

this_is_an_example_#%%#

Enclosing in Double Quotes, Square Brackets, or Backtick Symbol

Identifiers or a reserved keywords shown as below are not allowed' however, if they are enclosed in in double quotes,

square brackets, or backtick symbol, they are allowed as an exception. Especially, the double quotations can be used as

a symbol enclosing identifiers when the ansi_quote parameter is set to yes. If this value is set to no, double quotations

are used as a symbol enclosing character strings. The followings are examples of legal identifiers.

" select"

" @lowcost"

" low cost"

" abc" " def"

[position]

CUBRID 2008 R4.0 Help

64

Illegal Identifiers

Beginning with special characters or numbers

An identifier starting with a special character or a number is not allowed. As an exception, a underline (_) and a sharp

symbol (#) are allowed for the first character.

_a

#ack

%nums

2fer

88abs

An identifier containing a space

An identifier that a space within characters is not allowed.

coll tl

An identifier containing operator special characters

An identifier which contains operator special characters (+, -, *, /, %, ||, !, < , > , =, |, ^, & , ~) is not allowed.

col+

col~

col& &

CUBRID SQL Guide

65

Reserved Words

The following keywords are previously reserved as a command, a function name or a type name in CUBRID. You are

restricted to use these words for a class name, an attribute name, a variable name. Note than these reserved keywords

can be used an identifier when they are enclosed in double quotes, square brackets, or backtick symbol (`).

ABSOLUTE ACTION ADD

ADD_MONTHS AFTER ALIAS

ALL ALLOCATE ALTER

AND ANY ARE

AS ASC ASSERTION

ASYNC AT ATTACH

ATTRIBUTE AVG

BEFORE BETWEEN BIGINT

BIT BIT_LENGTH BLOB

BOOLEAN BOTH BREADTH

BY

CALL CASCADE CASCADED

CASE CAST CATALOG

CHANGE CHAR CHARACTER

CHECK CLASS CLASSES

CLOB CLOSE CLUSTER

COALESCE COLLATE COLLATION

COLUMN COMMIT COMPLETION

CONNECT CONNECT_BY_ISCYCLE CONNECT_BY_ISLEAF

CONNECTION_BY_ROOT CONNECTION CONSTRAINT

CONSTRAINTS CONTINUE CONVERT

CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE

CURRENT_DATETIME CURRENT_TIME CURRENT_TIMESTAMP

CURRENT_USER CURSOR CYCLE

DATA DATA_TYPE DATABASE

DATE DATETIME DAY

DAY_HOUR DAY_MILLISECOND DAY_MINUTE

DAY_SECOND DEALLOCATE DEC

DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE

DEPTH DESC DESCRIBE

DESCRIPTOR DIAGNOSTICS DICTIONARY

DIFFERENCE DISCONNECT DISTINCT

CUBRID 2008 R4.0 Help

66

DISTINCTROW DIV DO

DOMAIN DOUBLE DUPLICATE

DROP

EACH ELSE ELSEIF

END EQUALS ESCAPE

EVALUATE EXCEPT EXCEPTION

EXCLUDE EXEC EXECUTE

EXISTS EXTERNAL EXTRACT

FALSE FETCH FILE

FIRST FLOAT FOR

FOREIGN FOUND FROM

FULL FUNCTION

GENERAL GET GLOBAL

GO GOTO GRANT

GROUP HAVING HOUR

HOUR_MILLISECOND HOUR_MINUTE HOUR_SECOND

IDENTITY IF IGNORE

IMMEDIATE IN INDEX

INDICATOR INHERIT INITIALLY

INNER INOUT INPUT

INSERT INT INTEGER

INTERSECT INTERSECTION INTERVAL

INTO IS ISOLATION

JOIN

KEY

LANGUAGE LAST LDB

LEADING LEAVE LEFT

LESS LEVEL LIKE

LIMIT LIST LOCAL

LOCAL_TRANSACTION_ID LOCALTIME LOCALTIMESTAMP

LOOP LOWER

MATCH MAX METHOD

MILLISECOND MIN MINUTE

MINUTE_MILLISECOND MINUTE_SECOND MOD

MODIFY MODULE MONETARY

MONTH MULTISET MULTISET_OF

NA NAMES NATIONAL

NATURAL NCHAR NEXT

NO NONE NOT

NULL NULLIF NUMERIC

CUBRID SQL Guide

67

OBJECT OCTET_LENGTH OF

OFF OID ON

ONLY OPEN OPERATION

OPERATORS OPTIMIZATION OPTION

OR ORDER OTHERS

OUT OUTER OUTPUT

OVERLAPS

PARAMETERS PARTIAL PENDANT

POSITION PRECISION PREORDER

PREPARE PRESERVE PRIMARY

PRIOR PRIVATE PRIVILEGES

PROCEDURE PROTECTED PROXY

QUERY

READ REAL RECURSIVE

REF REFERENCES REFERENCING

REGISTER RELATIVE RENAME

REPLACE RESIGNAL RESTRICT

RETURN RETURNS REVOKE

RIGHT ROLE ROLLBACK

ROLLUP ROUTINE ROW

ROWNUM ROWS

SAVEPOINT SCHEMA SCOPE

SCROLL SEARCH SECOND

SECOND_MILLISECOND SECTION SELECT

SENSITIVE SEQUENCE SEQUENCE_OF

SERIALIZABLE SESSION SESSION_USER

SET SET_OF SETEQ

SHARED SIBLINGS SIGNAL

SIMILAR SIZE SMALLINT

SOME SQL SQLCODE

SQLERROR SQLEXCEPTION SQLSTATE

SQLWARNING STATISTICS STRING

STRUCTURE SUBCLASS SUBSET

SUBSETEQ SUBSTRING SUM

SUPERCLASS SUPERSET SUPERSETEQ

SYS_CONNECT_BY_PATH SYS_DATE SYS_DATETIME

SYS_TIME SYS_TIMESTAMP SYS_USER

SYSDATE SYSDATETIME SYSTEM_USER

SYSTIME

TABLE TEMPORARY TEST

CUBRID 2008 R4.0 Help

68

THEN THERE TIME

TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRANSACTION

TRANSLATE TRANSLATION TRIGGER

TRIM TRUE TRUNCATE

TYPE

UNDER UNION UNIQUE

UNKNOWN UPDATE UPPER

USAGE USE USER

USING UTIME

VALUE VALUES VARCHAR

VARIABLE VARYING VCLASS

VIEW VIRTUAL VISIBLE

WAIT WHEN WHENEVER

WHERE WHILE WITH

WITHOUT WORK WRITE

XOR

YEAR YEAR_MONTH

ZONE

CUBRID SQL Guide

69

Data Types

Numeric Types

Definition and Characteristics

Definition

CUBRID supports the following numeric data types to store integers or real numbers.

Numeric Types Supported by CUBRID

Type Bytes Mix Max Exact/approx.

SHORT
SMALLINT

2 -32,768 +32,767 exact numeric

INT
INTEGER

4 -2,147,483,648 +2,147,483,647 exact numeric

BIGINT 8 -9,223,372,036,854,775,808 +9,223,372,036,854,775,807 exact numeric

NUMERIC
DECIMAL

16 precision p : 1

scale s : 0

precision p : 38

scale s : 38

exact numeric

FLOAT
REAL

4 -3.402823466E+38

(ANSI/IEEE 754-1985

standard)

+3.402823466E+38

(ANSI/IEEE 754-1985 standard)

approximate

numeric

floating point :

7

DOUBLE
DOUBLE

PRECISION

8 -

1.7976931348623157E+308

ANSI/IEEE 754-1985

standard)

+1.7976931348623157E+308(ANSI/IEEE

754-1985 standard)

approximate

numeric

floating point :

15

MONETARY 12 -3.402823466E+38 +3.402823466E+38 approximate

numeric

Numeric data types are divided into exact and approximate types. Exact numeric data types (SMALLINT, INT,

BIGINT, NUMERIC) are used for numbers whose values must be precise and consistent, such as the numbers used in

financial accounting. Note that even when the literal values are equal, approximate numeric data types (FLOAT,

DOUBLE, MONETARY) can be interpreted differently depending on the system.

CUBRID does not support the UNSIGNED type for numeric data types.

Characteristics

Precision and Scale

The precision of numeric data types is defined as the number of significant digits. This applies to both exact and

approximate numeric data types.

The scale represents the number of digits following the decimal point. It is significant only in exact numeric data types.

Attributes declared as exact numeric data types always have fixed precision and scale. NUMERIC (or DECIMAL)

data type always has at least one-digit precision, and the scale should be between 0 and the precision declared. Scale

cannot be greater than precision. For INTEGER, SMALLINT, or BIGINT data types, the scale is 0 (i.e. no digits

following the decimal point), and the precision is fixed by the system.

Numeric Literals

CUBRID 2008 R4.0 Help

70

Special signs can be used to input numeric values. The plus sign (+) and minus sign (-) are used to represent positive

and negative numbers respectively. You can also use scientific notations. In addition, you can use currency signs

specified in the system to represent currency values. The maximum precision that can be expressed by a numeric literal

is 255.

Numeric Coercions

All numeric data type values can be compared with each other. To do this, automatic coercion to the common numeric

data type is performed. For explicit coercion, use the CAST operator. When different data types are sorted or calculated

in a numerical expression, the system performs automatic coercion. For example, when adding a FLOAT attribute

value to an INTEGER attribute value, the system automatically coerces the INTEGER value to the most approximate

FLOAT value before it performs the addition operation.

Caution Earlier version than CUBRID 2008 R2.0, the input constant value exceeds INTEGER, it is handled as

NUMERIC. However, 2008 R2.0 or later versions, it is handled as BIGINT.

INT/INTEGER

Description

The INTEGER data type is used to represent integers. The value range is available is from -2,147,483,648 to

+2,147,483,647. SMALLINT is used for small integers, and BIGINT is used for big integers.

INTEGER |

INT

Remark

• If a real number is entered for an INT type, the number is rounded to zero decimal place and the integer value is

stored.

• INTEGER and INT are used interchangeably.

Example

If you specify 8934 as INTEGER, 8934 is stored.

If you specify 7823467 as INTEGER, 7823467 is stored.

If you specify 89.8 to an INTEGER, 90 is stored (all digits after the decimal point are

rounded).

If you specify 3458901122 as INTEGER, an error occurs (if the allowable limit is exceeded).

SHORT/SMALLINT

Description

The SMALLINT data type is used to represent a small integer type. The value range is available is from -32,768 to

+32,767.

SMALLINT |

SHORT

Remark

• If a real number is entered for an SMALLINT type, the number is rounded to zero decimal place and the integer

value is stored.

• SMALLINT and SHORT are used interchangeably.

Example

If you specify 8934 as SMALLINT, 8934 is stored.

If you specify 34.5 as SMALLINT, 35 is stored (all digits after the decimal point are

rounded).

If you specify 23467 as SMALLINT, 23467 is stored.

If you specify 89354 as SMALLINT, an error occurs (if the allowable limit is exceeded).

CUBRID SQL Guide

71

BIGINT

Description

The BIGINT data type is used to represent big integers. The value range is available from -9,223,372,036,854,775,808

to 9,223,372,036,854,775,807.

BIGINT

Remark

• If a real number is entered for a BIG type, the number is rounded to zero decimal place and the integer value is

stored.

• Based on the precision and the range of representation, the following order applies.

SMALLINT ⊂ INTEGER ⊂ BIGINT ⊂ NUMERIC

Example

If you specify 8934 as BIGINT, 8934 is stored.

If you specify 89.1 as BIGINT, 89 is stored.

If you specify 89.8 as BIGINT, 90 is stored (all digits after the decimal point are

rounded).

If you specify 3458901122 as BIGINT, 3458901122 is stored.

NUMERIC/DECIMAL

Description

NUMERIC or DECIMAL data types are used to represent fixed-point numbers. As an option, the total number of

digits (precision) and the number of digits after the decimal point (scale) can be specified for definition. The minimum

value for the precision p is 1. When the precision p is omitted, you cannot enter data whose integer part exceeds 15

digits because the default value is 15. If the scale s is omitted, an integer rounded to the first digit after the decimal point

is returned because the default value is 0.

NUMERIC [(p [, s])]

Remark

• Precision must be equal to or greater than scale.

• Precision must be equal to or greater than the number of integer digits + scale.

• NUMERIC, DECIMAL, and DEC are used interchangeably.

Example

If you specify 12345.6789 as NUMERIC, 12346 is stored (it rounds to the first place after

the decimal point since 0 is the default value of scale).

If you specify 12345.6789 as NUMERIC(4), an error occurs (precision must be equal to or

greater than the number of integer digits).

If you declare NUMERIC(3,4), an error occurs (precision must be equal to or greater than

the scale).

If you specify 0.12345678 as NUMERIC(4,4), .1235 is stored (it rounds to the fifth place

after the decimal point).

If you specify -0.123456789 as NUMERIC(4,4), -.1235 is stored (it rounds to the fifth

place after decimal point and then prefixes a minus (-) sign).

FLOAT/REAL

Description

The FLOAT (or REAL) data type is used to represent floating point numbers. The value range is available from -

3.402823466E+38 to -1.175494351E-38, 0, and from +1.175494351E-38 to +3.402823466E+38. It conforms to the

ANSI/IEEE 754-1985 standard.

CUBRID 2008 R4.0 Help

72

The minimum value for the precision p is 1 and the maximum value is 38. When the precision p is omitted or it is

specified as seven or less, the data is represented as single precision (in seven significant figures) and it is converted into

the DOUBLE data type.

FLOAT[(p)]

Remark

• FLOAT is in seven significant figures.

• Representable range is different based on system where CUBRID is running.

• Extra cautions are required when comparing data because the FLOAT type stores approximate numeric.

• FLOAT and REAL are used interchangeably.

Example

If you specify -1234.56789 as FLOAT, -1.234568e+003 is stored (if precision is omitted,

8th digit is rounded because it is represented as seven significant figures).

If you specify 1234.56789 as FLOAT(5), 1.234568e+003 is stored (if precision is in seven

or less, 8th digit is rounded because it is represented as seven significant figures).

If you specify 12345678.9 as FLOAT(5), 1.234568e+007 is stored (if precision is in seven

or less, 8th digit is rounded because it is represented as seven significant figures).

If you specify 12345678.9 as FLOAT(10), 1.234567890000000e+007 is stored (if precision is

in seven or greater and 38 or less, 0s are filled because it is represented as 15

significant figures).

DOUBLE/DOUBLE PRECISION

Description

The DOUBLE data type is used to represent floating point numbers. The value range is available from -

1.7976931348623157E+308 to 2.2250738585072014E-308, 0, and from 2.2250738585072014E-308 to

1.7976931348623157E+308. It conforms to the ANSI/IEEE 754-1985 standard.

The precision p is not specified. The data specified as this data type is represented as double precision (in 15 significant

figures).

DOUBLE

Remark

• DOUBLE is in 15 significant figures.

• Representable range is different based on system where CUBRID is running.

• Extra caution is required when comparing data because the DOUBLE type stores approximate numeric.

• DOUBLE and DOUBLE PRECISION are used interchangeably.

Example

If you specify 1234.56789 as DOUBLE, 1.234567890000000e+003 is stored.

MONETARY

Description

MONETARY data type is an approximate numeric data type. Representable range is the same as FLOAT, which is

represented to two decimal places; the representable range can be different based on system. A comma is appended to

every 1000th place.

MONETARY

Remark

You can use a dollar sign or a decimal point, but a comma is not allowed.

CUBRID SQL Guide

73

Example

If you specify 12345.67898934 as MONETARY, $12,345.68 is stored (it is rounded to third

decimal place).

If you specify 123456789 as MONETARY, $123,456.789.00 is stored.

Date/Time Types

Definition and Characteristics

Definition

DATE-TIME data types are used to represent the date or time (or both together). CUBRID supports the following data

types:

Date-Time Types Supported by CUBRID

Type Mim Max Note

DATE 0001-01-01 9999-12-31 0-0-0 is not allowed.

TIME 00:00:00 23:59:59 0:0:0 is not allowed.

TIMESTAMP 1970-01-01 00:00:

00(GMT)

1970-01-01

09:00:00(KST)

2038-01-10 03:14:07

(GMT)

2038-01-19 12:14:07

(KST)

Note that TIMESTAMP at the

point of entering data is not

stored even though data is

inserted into or updated in the

TIMESTAMP column.

Exceptionally, a

value for

DATETIME '0000-

00-00 00:00:00'

will be changed to

the minimum

value.

DATETIME 0001-01-01 00:00:000 9999-12-31

23:59:599

Exceptionally, a value for

DATETIME '0000-00-00

00:00:00' will be changed to

the minimum value.

Characteristics

Range and Resolution

• By default, the range of a time value is represented by the 24-hour system. Dates follow the Gregorian calendar. An

error occurs if a value that does not meet these two constraints is entered as a date or time.

• The range of year in DATE is 0001 - 9999 AD.

• From the CUBRID 2008 R3.0 version,if time value is represented with two-digit numbers, a number from 00 to 69

is converted into a number from 2000 to 2069; a number from 70 to 99 is converted into a number from 1970 to

1999. In earlier than CUBRID 2008 R3.0 version, if time value is represented with two-digit numbers, a number

from 01 to 99 is converted into a number from 0001 to 0099.

• The range of TIMESTAMP is from January 1, 1970 00:00:00 GMT to January 19, 2038 03:14:07. For KST

(GMT+9), values from January 1, 1970 00:00:00 to January 19, 2038 12:14:07 can be stored.

• The results of date, time and timestamp operations may differ depending on the rounding mode. In these cases, for

Time and Timestamp, the most approximate second is used as the minimum resolution; for Date, the most

approximate date is used as the minimum resolution.

CUBRID 2008 R4.0 Help

74

Coercions

The Date-Time types can be cast explicitly using the CAST operator only when they have the same field. For implicit

coercion, see Implicit Type Conversion. The following table shows types that allows explicit coercions. For implicit

coercion, see Arithmetic Operation and Type Casting of DATE/TIME Data Types.

Explicit Coercions

FROM TO DATE TIME DATETIME TIMESTAMP

DATE -- X O O

TIME X -- X X

TIMESTAMP O O -- O

DATETIME O O O --

DATE

Description

The DATE data type is used to represent the year (yyyy), month (mm) and day (dd). Supported range is "01/01/0001" to

"12/31/9999." The year can be omitted. If it is, the year value of the current system is specified automatically.

Output and input formats are as follows:

'mm/dd[/yyyy]'

'[yyyy-]mm-dd'

Remark

• All fields must be entered as integer.

• The date value is outputted in the format of 'MM/DD/YYYY' in CSQL, and it is outputted in the format of 'YYYY-

MM-DD' in JDBC application programs and the CUBRID Manager.

• The TO_DATE() function is used to convert a character string type into a DATE type.

Example

DATE '2008-10-31' is stored as '10/31/2008'.

DATE '10/31' is stored as '10/31/2011'(if a value for year is omitted, the current year is

automatically specified).

DATE '00-10-31' is stored as '10/31/2000'.

DATE '0000-10-31' is handled as an error (a year value should be at least 1).

DATE '70-10-31' is stored as '10/31/1970'.

DATE '0070-10-31' is stored as '10/31/0070'.

TIME

Description

The TIME data type is used to represent the hour (hh), minute (mm) and second (ss). Supported range is "00:00:00" to

"23:59:59." Second can be omitted; if it is, 0 seconds is specified. Both 12-hour and 24-hour notations are allowed as an

input format.

The input format of TIME is as follows:

'hh:mi [:ss] [am | pm]'

Remark

• All items must be entered as integer.

• AM/PM time notation is used to display time in the CSQL; while the 24-hour notation is used in the CUBRID

Manager.

• AM/PM can be specified in the 24-hour notation. An error occurs if the time specified does not follow the AM/PM

format.

CUBRID SQL Guide

75

• Every time value is stored in the 24-hour notation. db_time_decode, one of C API functions, is used to return a

value in the 24-hour notation.

• The TO_TIME() function is used to return a character string type into a TIME type.

Example

TIME '00:00:00‟ is outputted as '12:00:00 AM'.

TIME '1:15' is regarded as '01:15:00 AM'.

TIME '13:15:45' is regarded as '01:15:45 PM'.

TIME '13:15:45 pm' is stored normally.

TIME '13:15:45 am' is an error (an input value does not match the AM/PM format).

TIMESTAMP

Description

The TIMESTAMP data type is used to represent a data value in which the date (year, month, date) and time (hour,

minute, second) are combined. Representable range is from GMT 1970-01-01 00:00:00 to 2038-01-19 03:14:07. The

DATETIME type can be used if the value exceeds the range or the time data in milliseconds is stored.

The input format of TIMESTAMP is as follows:

'hh:mi [:ss] [am|pm] mm/dd [/yyyy]'

'hh:mi [:ss] [am|pm] [yyyy-]mm-dd'

'mm/dd [/yyyy] hh:mi [:ss] [am|pm]'

'[yyyy-]mm-dd hh:mi [:ss] [am|pm]'

Remark

• All fields must be entered in integer format.

• If the year is omitted, the current year is specified by default. If the time value (hour/minute/second) is omitted,

12:00:00 AM is specified.

• You can store the timestamp value of the system in the TIMESTAMP type by using the SYS_TIMESTAMP (or

SYSTIMESTAMP, CURRENT_TIMESTAMP) function. Note that the timestamp value is specified as a default

value at the time of creating the table, not at the time of INSERT the data, if SYS_TIMESTAMP is specified as a

DEFAULT value for a TIMESTAMP column when creating a table.

• The TIMESTAMP() or TO_TIMESTAMP() function is used to cast a character string type into a TIMESTAMP

type.

Example

TIMESTAMP '10/31' is stored as '12:00:00 AM 10/31/2011'(if a value for year/time is

omitted, the default value is outputted).

TIMESTAMP '10/31/2008' is stored as '12:00:00 AM 10/31/2008'(if a value for time is

omitted, the default value is outputted).

TIMESTAMP '13:15:45 10/31/2008' is stored as '01:15:45 PM 10/31/2008'.

TIMESTAMP '01:15:45 PM 2008-10-31' is stored as '01:15:45 PM 10/31/2008'.

TIMESTAMP '13:15:45 2008-10-31' is stored as '01:15:45 PM 10/31/2008'.

TIMESTAMP '10/31/2008 01:15:45 PM' is stored as '01:15:45 PM 10/31/2008'.

TIMESTAMP '10/31/2008 13:15:45'는 '01:15:45 PM 10/31/2008'로 출력된다.

TIMESTAMP '2008-10-31 01:15:45 PM' is stored as '01:15:45 PM 10/31/2008'.

TIMESTAMP '2008-10-31 13:15:45' is stored as '01:15:45 PM 10/31/2008'.

An error occurs on TIMESTAMP '2099-10-31 01:15:45 PM'(TIMESTAMP 표현 가능 범위 초과).

DATETIME

Description

The DATETIME data type is used to represent a data value in which the data (year, month, date) and time (hour,

minute, second) are combined. Representable range is from GMT 0001-01-01 00:00:00.000 to 9999-12-31 23:59:59.999.

'hh:mi [:ss[.msec]] [am|pm] mm/dd [/yyyy]'

'hh:mi [:ss[.msec]] [am|pm] [yyyy-]mm-dd'

'mm/dd[/yyyy] hh:mi[:ss[.ff]] [am|pm]'

CUBRID 2008 R4.0 Help

76

'[yyyy-]mm-dd hh:mi[:ss[.ff]] [am|pm]'

Remark

• All fields must be entered as integer.

• If you year is omitted, the current year is specified by default. If the value (hour, minute/second) is omitted,

12:00:00.000 AM is specified.

• You can store the timestamp value of the system in the DATETIME type by using the SYS_DATETIME (or

SYSDATETIME, CURRENT_DATETIME, CURRENT_DATETIME(), NOW()) function. Note that the

timestamp value is specified as a default value at the time of creating the table, not at the time of INSERT the data,

if SYS_DATETIME is specified as a DEFAULT value for a DATETIME column when creating a table.

• The TO_DATETIME() function is used to cast a character string type into a DATETIME type.

Example

DATETIME '10/31' is outputted as '12:00:00.000 AM 10/31/2011' (if year/time is omitted, a

default value is outputted).

DATETIME '10/31/2008' is outputted as '12:00:00.000 AM 10/31/2008'.

DATETIME '13:15:45 10/31/2008' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '01:15:45 PM 2008-10-31' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '13:15:45 2008-10-31' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '10/31/2008 01:15:45 PM' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '10/31/2008 13:15:45' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '2008-10-31 01:15:45 PM' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '2008-10-31 13:15:45' is outputted as '01:15:45.000 PM 10/31/2008'.

DATETIME '2099-10-31 01:15:45 PM' is outputted as '01:15:45.000 PM 10/31/2099'.

Converting a String to Date/Time Type

Recommended Format for Strings in Date/Time Type

When you convert a string to Date/Time type, it is recommended to write the string in the following format:

• DATE Type

[[[[Y]Y]YY]M]MDD

[[[[Y]Y]YY]-M]M-DD

MM/DD/YYYY

• TIME Type

HH[:MM[:SS]] ["am"|"pm"]

• DATETIME Type

YYYY-MM-DD HH:MM:SS[.msec] YY-MM-DD HH:MM:[SS[.msec]]

YY-MM-DD H

• TIMESTAMP Type

YYYY-MM-DD HH:MM:SS

YY-MM-DD HH:MM:[SS]

YY-MM-DD H

Available DATE String Format

[year sep] month sep day

• 2011-04-20

• 04-20

If a separator (sep) is a slash (/), strings are recognized in the following order:

month/day[/year]

• 04/20/2011

• 04/20

If you do not use a separator (sep), strings are recognized in the following format. It is allowed to use up to 4 digits for

years and up to 2 digits for months. You must enter a 2-digit day.

[[[[Y]Y]YY]M]MDD

CUBRID SQL Guide

77

• 20110420

• 110420

• 420

Available TIME String Format

[hour]:min[:[sec]] [.[msec]] [am|pm]

• 09:10:15.359 am

• 09:10:15

• 09:10

• :10

[[[[[[Y]Y]Y]Y]M]MDD]HHMMSS[.[msec]] [am|pm]

• 20110420091015.359 am

• 0420091015

[H]HMMSS[.[msec]] [am|pm]

• 091015.359 am

• 91015

[M]MSS[.[msec]] [am|pm]

• 1015.359 am

• 1015

[S]S[.[msec]] [am|pm]

• 15.359 am

• 15

Note: The [H]H format was allowed in CUBRID 2008 R3.1 and the earlier versions. That is, the string '10' was

converted to TIME '10:00:00' in the R3.1 and the earlier versions, and will be converted to TIME '00:00:10' in version

R4.0 and later.

Available String Format in Time-Date

[hour]:min[:sec[.msec]] [am|pm] sep [year-]month-day

• 09:10:15.359 am 2011-04-20

• :10 04-20

[hour]:min[:sec[.msec]] [am|pm] sep month/day[/[year]]

• 09:10:15.359 am 04/20/2011

• :10 04/20

hour[:min[:sec[.[msec]]]] [am|pm] sep [year-]month-day

• 09:10:15.359 am 04-20

• 09 04-20

hour[:min[:sec[.[msec]]]] [am|pm] sep month/day[/[year]]

• 09:10:15.359 am 04/20

• 09 04/20

Available DATETIME String Format

[year sep] month sep day [sep] [sep] hour [sep min[sep sec[.[msec]]]]

• 04-20 09

month/day[/year] [sep] hour [sep min [sep sec[.[msec]]]]

• 04/20 09

year sep month sep day sep hour [sep min[sep sec[.[msec]]]]

• 2011-04-20 09

CUBRID 2008 R4.0 Help

78

month/day/year sep hour [sep min[sep sec [.[msec]]]]

• 04/20/2011 09

YYMMDDH (??? ? ?? ?? ??? ??)

• 1104209

YYMMDDHHMM[SS[.msec]]

• 1104200910.359

YYYYMMDDHHMMSS[.msec]

• 201104200910.359

Rules

msec is a series of numbers representing milliseconds. The numbers after the fourth digit will be ignored.

sep represents the separator string allowed. The rules for the separator string are as follows:

• You should always use one colon (:) as a separator for the TIME separator.

• DATE and DATETIME strings can be represented as a series of numbers without the separator sep), and non-

alphanumeric characters can be used as separators. The DATETIME string can be divided into Time and Date with

a space.

• Separators do not need to be identical in the input string.

• For the Time-Date string, you can only use colon (:) for a Time separator and hyphen (-) or slash (/) for a Date

separator.

• For the DATE string, you can use colon (:) or other separators.

The following rules will be applied to the Date part in the string.

• You can omit the year as long as the syntax allows it.

• If you enter the year as two digits, it represents the range from 1970-2069. That is, if YY<70, it is treated as

2000+YY; if YY>=70, it is treated as 1900+YY. If you enter one, three or four digit numbers for the year, the

numbers will be represented as they are.

• A space before and after a string and the string next to the space are ignored. The am/pm identifier for the

DATETIME and TIME strings can be recognized as part of TIME value, but are not recognized as the am/pm

identifier if non-space characters are added to it.

The TIMESTAMP type of CUBRID consists of DATE type and TIME type, and DATETIME type consists of DATE

type and TIME type with milliseconds being added to them. Input strings can include Date (DATE string), Time

(TIME string), or both (DATETIME strings). You can convert a string including a specific type of data to another type,

and the following rules will be applied for the conversion.

• If you convert the DATE string to the DATETIME type, the time value will be '00:00:00.'

• If you convert the TIME string to the DATETIME type, colon (:) is recognized as a date separator, so that the

TIME string can be recognized as a date string and the time value will be '00:00:00.'

• If you convert the DATETIME string to the DATE type, the time part will be ignored from the result but the time

input value format should be valid.

• You can covert the DATETIME string to the TIME type, and you must follow the following rules.

• The DATE and TIME in the string must be divided by at least one blank.

• The date part of the result value is ignored but the date input value format should be valid.

• The year in the date part must be over 4 digits (available to start with 0) or the time part must include hours and

minutes ([H]H:[M]M) at least. Otherwise the date pate are recognized as the TIME type of the [MM]SS format,

and the following string will be ignored.

• If the one of the units (year, month, date, hour, minute and second) of the DATETIME string is greater than

999999, it is not recognized as a number, so the string including the corresponding unit will be ignored. For

example, in '2009-10-21 20:9943:10', an error occurs because the value in minutes is out of the range. However, if

'2009-10-21 20:1000123:10' is entered,'2009' is recognized as the the TIME type of the MMSS format, so that

TIME '00:20:09' will be returned.

• If you convert the TIME-DATE sting to the TIME type, the date part of the string is ignored but the date part

format must be valid.

• All input strings including the time part allow [.msec] on conversion, but only the DATETIME type can be

maintained. If you convert this to a type such as DATE, TIMESTAMP or TIME, the msec value is discarded.

CUBRID SQL Guide

79

• All conversions in the DATETIME, TIME string allow English locale following after time value or am/pm

identifier written in the current locale of a server.

Example

SELECT CAST('420' AS DATE);

 cast('420' as date)

======================

 04/20/2011

SELECT CAST('91015' AS TIME);

 cast('91015' as time)

========================

 09:10:15 AM

SELECT CAST('110420091035.359' AS DATETIME);

 cast('110420091035.359' as datetime)

=======================================

 09:10:35.359 AM 04/20/2011

SELECT CAST('110420091035.359' AS TIMESTAMP);

 cast('110420091035.359' as timestamp)

==

 09:10:35 AM 04/20/2011

Bit Strings

Definition and Characteristics

Definition

A bit string is a sequence of bits (1's and 0's). Images (bitmaps) displayed on the computer screen can be stored as bit

strings. CUBRID supports the following two types of bit strings:

• Fixed-length bit string (BIT)

• Variable-length bit string (BIT VARYING)

A bit string can be used as a method argument or an attribute domain. Bit string literals are represented in a binary or

hexadecimal format. For binary format, append the string consisting of 0's and 1's to the letter B or append a value to the

0b as shown example below.

B'1010'

0b1010

For hexadecimal format, append the string consisting of the numbers 0 - 9 and the letters A - F to the uppercase letter X

or append a value to the 0x. The following is hexadecimal representation of the same number that was represented

above in binary format.

X'a'

0xA

The letters used in hexadecimal numbers are not case-sensitive. That is, X'4f' and X'4F' are considered as the same value.

Characteristics

Length

If a bit string is used in table attributes or method declarations, you must specify the maximum length. The maximum

length for a bit string is 1,073,741,823 bits.

Bit String Coercion

CUBRID 2008 R4.0 Help

80

Automatic coercion is performed between a fixed-length and a variable-length bit string for comparison. For explicit

coercion, use the CAST operator.

BIT(n)

Description

Fixed-length binary or hexadecimal bit strings are represented as BIT(n), where n is the maximum number of bits. If n

is not specified, the length is set to 1.

Remark

• n must be a number greater than 0.

• If the length of the string exceeds n, it will be processed as an error.

• If a bit string smaller than n is stored, the remainder of the string is filled with 0s.

Example

CREATE TABLE bit_tbl(a1 BIT, a2 BIT(1), a3 BIT(8), a4 BIT VARYING);

INSERT INTO bit_tbl VALUES (B'1', B'1', B'1', B'1');

INSERT INTO bit_tbl VALUES (0b1, 0b1, 0b1, 0b1);

INSERT INTO bit_tbl(a3,a4) VALUES (B'1010', B'1010');

INSERT INTO bit_tbl(a3,a4) VALUES (0xaa, 0xaa);

SELECT * FROM bit_tbl;

 a1 a2 a3 a4

===

 X'8' X'8' X'80' X'8'

 X'8' X'8' X'80' X'8'

 NULL NULL X'a0' X'a'

 NULL NULL X'aa' X'aa'

BIT VARYING(n)

Description

A variable-length bit string is represented as BIT VARYING(n), where n is the maximum number of bits. If n is not

specified, the length is set to 1,073,741,823 (maximum value).

Remark

• If the length of the string exceeds n, it will be processed as an error.

• The remainder of the string is not filled with 0s even if a bit string smaller than n is stored.

• n must be a number greater than 0.

Example

CREATE TABLE bitvar_tbl(a1 BIT VARYING, a2 BIT VARYING(8));

INSERT INTO bitvar_tbl VALUES (B'1', B'1');

INSERT INTO bitvar_tbl VALUES (0b1010, 0b1010);

INSERT INTO bitvar_tbl VALUES (0xaa, 0xaa);

INSERT INTO bitvar_tbl(a1) VALUES (0xaaa);

SELECT * FROM bitvar_tbl;

 a1 a2

==

 X'8' X'8'

 X'a' X'a'

 X'aa' X'aa'

 X'aaa' NULL

INSERT INTO bitvar_tbl(a2) VALUES (0xaaa);

ERROR: Data overflow coercing X'aaa' to type bit varying.

CUBRID SQL Guide

81

Character Strings

Definition and Characteristics

Definition

CUBRID supports the following four types of character strings:

• Fixed-length character string: CHAR(n)

• Variable-length character string: VARCHAR(n)

• Fixed-length national character string: NCHAR(n)

• Variable-length national character string: NCHAR VARYING(n)

The followings are the rules that are applied when using the character string types.

• In general, single quotations are used to enclose character string. Double quotations may be used as well depending

on the value of ansi_quotes, which is a parameter related to SQL statement. If the ansi_quotes value is set to no,

character string enclosed by double quotations is handled as character string, not as an identifier. The default value

is yes. For more information, Statement/Type-Related Parameters.

• If there are characters that can be considered to be blank (e.g. spaces, tabs, or line breaks) between two character

strings, these two character strings are treated as one according to ANSI standard. For example, the following

example shows that a line break exists between two character string.

'abc'

'def'

• The two strings above are considered identical to one string below.

'abcedf'

• If you want to include a single quote as part of a character string, enter two single quotes in a row. For example, the

character string on the left is stored as the one on the right.

''abcde''fghij' 'abcde'fghij

• The maximum size of the token for all the character strings is 16KB.

• National character strings are used to store national (except for English alphabet) character strings in a multilingual

environment. Note that N (uppercase) should be followed by a single quote which encloses character strings.

N'Ha rder'

Characteristics

Length

For a CHAR or VARCHAR type, specify the length (bytes) of a character string for a NCHAR or NCHAR

VARYING type, specify the number of character strings (number of characters).

When the length of the character string entered exceeds the length specified, the characters in excess of the specified

length are truncated.

For a fixed-length character string type such as CHAR or NCHAR, the length is fixed at the declared length. Therefore,

the right part (trailing space) of the character string is filled with space characters when the string is stored. For a

variable-length character string type such as VARCHAR or NCHAR VARYING, only the entered character string is

stored, and the space is not filled with space characters.

The maximum length of a CHAR or VARCHAR type to be specified is 1,073,741,823 the maximum length of a

NCHAR or NCHAR VARYING type to be specified is 536,870,911. The maximum length that can be input or output

in a CSQL statement is 8,192 KB.

Character Set, charset

A character set (charset) is a set in which rules are defined that relate to what kind of codes can be used for encoding

when specified characters (symbols) are stored in the computer.

CUBRID supports the following character sets and you can specify them as the CUBRID_LANG environment

variable. You can store data in other character sets (e.g. utf-8), but string function or LIKE search are not supported.

CUBRID 2008 R4.0 Help

82

Character Set CUBRID_LANG

8 bits ISO 8859-1 Latin en_US

KSC 5601-1992 (EUC_KR) ko_KR.euckr

Any characters from the above character sets can be included in a character string (the NULL character is represented as

'\0').

Collating Character Sets

A collation is a set of rules used for comparing characters to search or sort values stored in the database when a certain

character set is specified. Therefore, such rules are applied only to character string data types such as CHAR() or

VARCHAR(). For a national character string type such as NCAHR() or NCHAR VARYING(), the sorting rules are

determined according to the encoding algorithm of the specified character set.

Character String Coercion

Automatic coercion takes place between a fixed-length and a variable-length character string for the comparison of two

characters, applicable only to characters that belong to the same character set. For example, when you extract a column

value from a CHAR(5) data type and insert it into a column with a CHAR(10) data type, the data type is automatically

coerced to CHAR(10). If you want to coerce a character string explicitly, use the CAST operator (See CAST Operator).

CHAR(n)

Description

A fixed-length character string is represented as CHAR(n), in which n is the number of bytes in an ASCII character

string. For the English alphabet, each character takes up one byte. However, for Korean characters, note that the number

of bytes taken up by each character differs depending on the character set of the data input environment (e.g. EUC-KR:

2 bytes, utf-8: 3 bytes). If n is not specified, the length is set to the default value 1.

When the length of a character string exceeds n, they are truncated. When character string which is shorter than n is

stored, whitespace characters are used to fill up the trailing space.

CHAR(n) and CHARACTER(n) are used interchangeably.

Remark

• The CHAR data type is always based on the ISO 8859-1 (Latin-1) character set.

• n is an integer between 1 and 1,073,741,823 (1G).

• Empty quotes (' ') are used to represent a blank string. In this case, the return value of the LENGTH function is not

0, but is the fixed length defined in CHAR(n). That is, if you enter a blank string into a column with CHAR(10),

the LENGTH is 10; if you enter a blank value into a CHAR with no length specified, the LENGTH is the default

value 1.

• Space characters used as filling characters are considered to be smaller than any other characters, including special

characters.

Example 1

If you specify 'pacesetter' as CHAR(12), 'pacesetter ' is stored (a 10-character string

plus two whitespace characters).

If you specify 'pacesetter ' as CHAR(10), 'pacesetter' is stored (a 10-character string;

two whitespace characters are truncated).

If you specify 'pacesetter' as CHAR(4), 'pace' is stored (truncated as the length of the

character string is greater than 4).

If you specify 'p ' as CHAR, 'p' is stored (if n is not specified, the length is set to

the default value 1).

Example 2

If you specify '큐브리드' as CHAR(10) in the EUC-KR encoding, it is processed normally.

CUBRID SQL Guide

83

If you specify '큐브리드' as CHAR(10) and the use the CHAR_LENGTH() function in the EUC-KR

encoding, 10 is stored.

If you specify '큐브리드, as CHAR(10) in the utf-8 encoding, the last character is broken

(one Korean character takes up three bytes in the utf-8 encoding so it requires two more

bytes).

If you specify '큐브리드' as CHAR(12) in the utf-8 encoding, it is processed normally.

VARCHAR(n)/CHAR VARYING(n)

Description

Variable-length character strings are represented as VARCHAR(n), where n is the maximum number of ASCII

character strings. Each English character takes up one byte. For Korean characters, note that the number of bytes taken

up by each character differs depending on the character set of the data input environment (e.g. EUC-KR: 2 bytes, utf-8:

3 bytes). If n is not specified, the length is set to the maximum length of 1,073,741,823.

When the length of a character string exceeds n, they are truncated. When character string which is shorter than n is

stored, whitespace characters are used to fill up the trailing space; for VARCHAR(n), the length of string used are

stored.

VARCHAR(n), CHARACTER, VARYING(n), and CHAR VARYING(n) are used interchangeably.

Remark

• STRING is the same as the VARCHAR (maximum length).

• n is an integer between 1 and 1,073,741,823 (1G).

• Empty quotes (' ') are used to represent a blank string. In this case, the return value of the LENGTH function is not

0.

Example 1

If you specify 'pacesetter' as CHAR(4), 'pace' is stored (truncated as the length of the

character string is greater than 4).

If you specify 'pacesetter' as VARCHAR(12), 'pacesetter' is stored (a 10-character string).

If you specify 'pacesetter ' as VARCHAR(12), 'pacesetter ' is stored (a 10-character

string plus two whitespace characters).

If you specify 'pacesetter ' as VARCHAR(10), 'pacesetter' is stored (a 10-character string;

two whitespace characters are truncated).

If you specify 'p ' as VARCHAR, 'p' is stored (if n is not specified, the default value

1,073,741,823 is used, and the trailing space is not filled with whitespace characters).

Example 2

If you specify '큐브리드' as VARCHAR(10) in the EUC-KR encoding, it is processed normally.

If you specify '큐브리드' as CHAR(10) and then use CHAR_LENGTH() function in the EUC-KR

encoding, 8 is stored.

If you specify '큐브리드, as CHAR(10) in the utf-8 encoding, the last character is broken

(one Korean character takes up three bytes in the utf-8 encoding so it requires two more

bytes).

If you specify '큐브리드' as VARCHAR(12) in the utf-8 encoding, it is processed normally.

STRING

Description

STRING is a variable-length character string data type. STRING is the same as the VARCHAR with the length

specified to the maximum value. That is, STRING and VARCHAR(1,073,741,823) have the same value.

CUBRID 2008 R4.0 Help

84

NCHAR(n)

Description

NCHAR(n) is used to store non-English character strings. It can be used only for character sets supported by CUBRID

described above. n is the number of characters. If n is omitted, the length is specified as the default value 1. When the

length of a character string exceeds n, they are truncated. When character string which is shorter than n is stored,

whitespace characters are used to fill up the space.

To store a Korean character string as a national character string type, you must set the locale of the operating system to

Korean, or set the value of the CUBRID_LANG environment variable to ko_KR.euckr before creating the table.

Remark

• n is an integer between 1 and 5,368,709,111.

• The number of national character sets that can be used in a single database is set to be one. For example, 8-bit ISO

8889-1 (Latin-1) and EUC code sets cannot be used simultaneously in the same database.

• An error occurs if a non-national character string (whether it is fixed-length or variable-length) is specified for an

attribute declared as a national character string.

• Using two different character code sets at the same time also causes an error.

Example

If you specify „큐브리드‟ as NCHAR(5) in the EUC-KR encoding, it is processed normally.

If you specify '큐브리드' as NCHAR(5) and then use the CHAR_LENGTH() function in the EUC-KR

encoding, 5 is stored.

If you specify '큐브리드' as NCHAR(5) in the utf-8 encoding, an error occurs (utf-8

character set is not supported).

NCHAR VARYING(n)

Description

NCHAR VARYING(n) is a variable-length character string type. For details, see description and note of NCHAR(n).

The difference is that the right part (trailing space) of the character string is not filled with whitespace characters, even

when the number of strings is smaller than n.

NCHAR VARYING(n), NATIONAL CHAR VARYING(n), and NATIONAL CHARACTER VARYING(n) are

used interchangeably.

Example

If you specify '큐브리드' as NCHAR VARYING(5) in the EUC-KR encoding, it is processed

normally.

If you specify '큐브리드' as NCHAR VARYING(5) and then use CHAR_LENGTH() function in the

EUC-KR encoding, 4 is stored.

If you specify '큐브리드' as HCHAR VARYING(5) in the utf-8 encoding, an error occurs (utf-8

character set is not supported).

Special Character Escape

Description

CUBRID supports two kinds of methods to escape special characters. One is using quotes and the other is using

backslash (\).

CUBRID SQL Guide

85

Escape with Quotes

If you set yes for the system parameter ansi_quotes in the cubrid.conf file, you can use both double quotes (") and

singe quotes (') to wrap strings. The default value for the ansi_quotes parameter is no, and you can use only single

quotes to wrap the string. The numbers 2 and 3 below are applied only if you set for the ansi_quotes parameter to yes.

• You should use two single quotes ('') for the single quotes included in the strings wrapped in single quotes.

• You should use two double quotes ("") for the double quotes included in the strings wrapped in double quotes.

• You don't need to escape the single quotes included in the string wrapped in double quotes.

• You don't need to escape the double quotes included in the string wrapped in single quotes.

Escape with Backslash

You can use escape using backslash (\) only if you set no for the system parameter no_backslash_escapes in the

cubrid.conf file. The default value for the no_backslash_escapes parameter is yes. Depending on the input value, the

following are the special characters.

• \' : Single quotes (')

• \" : Double quotes (")

• \n : Newline, linefeed character

• \r : Carriage return character

• \t : Tab character

• \\ : Backslash

• \% : Percent sign (%). For more information, see the following description.

• _ : Underbar (_). For more information, see the following description.

For all other escapes, the backslash will be ignored. For example, "\x" is the same as entering only "x".

\% and _ are used in the pattern matching syntax such as LIKE to search percent signs and underbars and are used as a

wildcard character if there is no backslash. Outside of the pattern matching syntax, "\%"and "_" are recognized as

normal strings not wildcard characters. For more information, see LIKE Predicate.

Example 1

The following is the result of executing Escape if a value for the system parameter ansi_quotes in the cubrid.conf file

is no, and a value for no_backslash_escapes is no.

SELECT STRCMP('single quotes test('')', 'single quotes test(\')');

 strcmp('single quotes test('')', 'single quotes test('')')

===

 0

SELECT STRCMP("\a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z",

"a\bcdefghijklm\nopq\rs\tuvwxyz");

 strcmp('abcdefghijklm

s uvwxyz', 'abcdefghijklm

s uvwxyz')

===

 0

SELECT LENGTH('\\');

 char_length('\')

===================

 1

Example 2

The following is the result of executing Escape if a value for the system parameter ansi_quotes in the cubrid.conf file

is yes, and a value for no_backslash_escapes is yes.

SELECT STRCMP('single quotes test('')', 'single quotes test(\')');

CUBRID 2008 R4.0 Help

86

In the command from line 2,

ERROR: unterminated string

In the command from line 2,

ERROR: syntax error, unexpected UNTERMINATED_STRING

SELECT STRCMP("\a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z",

"a\bcdefghijklm\nopq\rs\tuvwxyz");

In line 1, column 18,

ERROR: [\a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z] is not defined.

In line 1, column 18,

ERROR: [a\bcdefghijklm\nopq\rs\tuvwxyz] is not defined.

SELECT LENGTH('\\');

 char_length('\\')

====================

 2

Example 3

The following is the result of executing Escape if a value for the system parameter ansi_quotes in the cubrid.conf file

is yes, and a value for no_backslash_escapes is no.

CREATE TABLE t1 (a varchar(200));

INSERT INTO t1 VALUES ('aaabbb'), ('aaa%');

SELECT a FROM t1 WHERE a LIKE 'aaa\%' escape '\\';

 a

======================

 'aaa%'

BLOB/CLOB Data Types

Definition and Characteristics

Definition

An External LOB type is data to process Large Object, such as text or images. When LOB-type data is created and

inserted, it will be stored in a file to an external storage, and the location information of the relevant file (LOB Locator)

will be stored in the CUBRID database. If the LOB Locator is deleted from the database, the relevant file that was

stored in the external storage will be deleted as well. CUBRID supports the following two types of LOB:

• Binary Large Object (BLOB)

• Character Large Object (CLOB)

Related Terms

• LOB (Large Object) : Large-sized objects such as binaries or text.

• FBO (File Based Object) : An object that stores data of the database in an external file.

• External LOB : An object better known as FBO, which stores LOB data in a file into an external DB. It is

supported by CUBRID. Internal LOB is an object that stores LOB data inside the DB.

• External Storage : An external storage to store LOB (example : POSIX file system).

• LOB Locator : The path name of a file stored in external storage.

• LOB Data : Details of a file in a specific location of LOB Locator.

File Name

When storing LOB data in external storage, the following naming convention will be applied:

{table_name}_{unique_name}

CUBRID SQL Guide

87

• table_name : It is inserted as a prefix and able to store the LOB data of many tables in one external storage.

• unique_name : The random name created by the DB server.

Default Storage

• LOB data is stored in the local file system of the DB server. LOB data is stored in the path specified in the -lob-

base-path option value of cubrid createdb; if this value is omitted, the data will be stored in the [db-vol path]/lob

path where the database volume will be created. For more details, see Database Creation and Storage Creation and

Management.

• If the relevant path is deleted despite a LOB data file path being registered in the database location file

(databases.txt), please note that the utility that operates in database server (cub_server) and standalone will not

function normally.

BLOC/CLOB

BLOB

• A type that stores binary data outside the database.

• The maximum length of BLOB data is the maximum file size creatable in an external storage.

• In SQL statements, the BLOB type expresses the input and output value in a bit array. That is, it is compatible with

the BIT(n) and BIT VARYING(n) types, and only an explicit type change is allowed. If data lengths differ from

one another, the maximum length is truncated to fit the smaller one.

• When converting the BLOB type value to a binary value, the length of the converted data cannot exceed 1GB.

When converting binary data to the BLOB type, the size of the converted data cannot exceed the maximum file size

provided by the BLOB storage.

CLOB

• A type that stores character string data outside the database.

• The maximum length of CLOB data is the maximum file size creatable in an external storage.

• In SQL statements, the CLOB type expresses the input and output value in a character string. That is, it is

compatible with the CHAR(n), VARCHAR(n), NCHAR(n), and NCHAR VARYING(n) types. However, only

an explicit type change is allowed, and if data lengths are different from one another, the maximum length is

truncated to fit to the smaller one.

• When converting the CLOB type value to a character string, the length of the converted data cannot exceed 1 GB.

When converting a character string to the CLOB type, the size of the converted data cannot exceed the maximum

file size provided by the CLOB storage.

Creating and Altering Columns

Description

BLOB/CLOB type columns can be created/added/deleted by using a CREATE TABLE statement or an ALTER

TABLE statement.

Note

• You cannot create the index file for a LOB type column.

• You cannot define the PRIMARY KEY, FOREIGN KEY, UNIQUE, and NOT NULL constraints for a LOB

type column. However, SHARED property cannot be defined and DEFAULT property can only be defined by the

NULL value.

• LOB type column/data cannot be the element of collection type data.

• If you are deleting a record containing a LOB type column, all files located inside a LOB column value (Locator)

and the external storage will be deleted. When a record containing a LOB type column is deleted in a basic key

table, and a record of a foreign key table that refers to the foregoing details is deleted at the same time, all LOB

files located in a LOB column value (Locator) and the external storage will be deleted. However, if the relevant

table is deleted by using a DROP TABLE statement, or a LOB column is deleted by using an ALTER

TABLE...DROP statement, only a LOB column value (LOB Locator) is deleted, and the LOB files inside the

external storage which a LOB column refers to will not be deleted.

CUBRID 2008 R4.0 Help

88

Example

-- creating a table and CLOB column

CREATE TABLE doc_t (doc_id VARCHAR(64) PRIMARY KEY, content CLOB);

-- an error occurs when UNIQUE constraint is defined on CLOB column

ALTER TABLE doc_t ADD CONSTRAINT content_unique UNIQUE(content);

-- an error occurs when creating an index on CLOB column

CREATE INDEX ON doc_t (content);

-- creating a table and BLOB column

CREATE TABLE image_t (image_id VARCHAR(36) PRIMARY KEY, doc_id VARCHAR(64) NOT NULL, image

BLOB);

-- an error occurs when adding a BOLB column with NOT NULL constraint

ALTER TABLE image_t ADD COLUMN thumbnail BLOB NOT NULL;

-- an error occurs when adding a BLOB column with DEFAULT attribute

ALTER TABLE image_t ADD COLUMN thumbnail2 BLOB DEFAULT BIT_TO_BLOB(X'010101');

Storing and Updating Columns

Description

In a BLOB/CLOB type column, each BLOB/CLOB type value is stored, and if binary or character string data is input,

you must explicitly change the types by using each BIT_TO_BLOB()/CHAR_TO_CLOB() function.

If a value is input in a LOB column by using an INSERT statement, a file is created in an external storage internally

and the relevant data is stored; the relevant file path (Locator) is stored in an actual column value.

If a record containing a LOB column uses a DELETE statement, a file to which the relevant LOB column refers will

be deleted simultaneously. If a LOB column value is changed using an UPDATE statement, the column value will be

changed following the operation below, according to whether a new value is NULL or not.

• If a LOB type column value is changed to a value that is not NULL : If a Locator that refers to an external file is

already available in a LOB column, the relevant file will be deleted. A new file is created afterwards. After storing

a value that is not NULL, a Locator for a new file will be stored in a LOB column value.

• If changing a LOB type column value to NULL : If a Locator that refers to an external file is already available in a

LOB column, the relevant file will be deleted. And then NULL is stored in a LOB column value.

Example

-- inserting data after explicit type conversion into CLOB type column

INSERT INTO doc_t (doc_id, content) VALUES ('doc-1', CHAR_TO_CLOB('This is a Dog'));

INSERT INTO doc_t (doc_id, content) VALUES ('doc-2', CHAR_TO_CLOB('This is a Cat'));

-- inserting data after explicit type conversion into BLOB type column

INSERT INTO image_t VALUES ('image-0', 'doc-0', BIT_TO_BLOB(X'000001'));

INSERT INTO image_t VALUES ('image-1', 'doc-1', BIT_TO_BLOB(X'000010'));

INSERT INTO image_t VALUES ('image-2', 'doc-2', BIT_TO_BLOB(X'000100'));

-- inserting data from a sub-query result

INSERT INTO image_t SELECT 'image-1010', 'doc-1010', image FROM image_t WHERE image_id =

'image-0';

-- updating CLOB column value to NULL

UPDATE doc_t SET content = NULL WHERE doc_id = 'doc-1';

-- updating CLOB column value

UPDATE doc_t SET content = CHAR_TO_CLOB('This is a Dog') WHERE doc_id = 'doc-1';

-- updating BLOB column value

UPDATE image_t SET image = (SELECT image FROM image_t WHERE image_id = 'image-0') WHERE

image_id = 'image-1';

-- deleting BLOB column value and its referencing files

DELETE FROM image_t WHERE image_id = 'image-1010';

CUBRID SQL Guide

89

Getting Column Values

Description

When you get a LOB type column, the data stored in a file to which the column refers will be displayed. You can

execute an explicit type change by using CAST operator, CLOB_TO_CHAR() function, and BLOB_TO_BIT()

function.

Note

• If the query is executed in CSQL, a column value (Locator) will be displayed, instead of the data stored in a file. To

display the data to which a BLOB/CLOB column refers, it must be changed to strings by

using CLOB_TO_CHAR() function.

• To use the string process function, the strings need to be converted by using the CLOB_TO_CHAR() function.

• You cannot specify a LOB column in GROUP BY clause and ORDER BY clause.

• Comparison operators, relational operators, IN, NOT IN operators cannot be used to compare LOB columns.

However, IS NULL expression can be used to compare whether it is a LOB column value (Locator) or NULL.

This means that TRUE will be returned when a column value is NULL, and if a column value is NULL, there is no

file to store LOB data.

• When a LOB column is created, and the file is deleted after data input, a LOB column value (Locator) will become

a state that is referring to an invalid file. As such, using CLOB_TO_CHAR(), BLOB_TO_BIT(),

CLOB_LENGTH(), and BLOB_LENGTH() functions on the columns that have mismatching LOB Locator and

a LOB data file enables them to display NULL.

Example

-- displaying locator value when selecting CLOB and BLOB column in CSQL interpreter

SELECT doc_t.doc_id, content, image FROM doc_t, image_t WHERE doc_t.doc_id =

image_t.doc_id;

 doc_id content image

==

 'doc-1' file:/home1/data1/ces_658/doc_t.00001282208855807171_7329 file:/

home1/data1/ces_318/image_t.00001282208855809474_7474

 'doc-2' file:/home1/data1/ces_180/doc_t.00001282208854194135_5598 file:/

home1/data1/ces_519/image_t.00001282208854205773_1215

2 rows selected.

-- using string functions after coercing its type by CLOB_TO_CHAR()

SELECT CLOB_TO_CHAR(content), SUBSTRING(CLOB_TO_CHAR(content), 10) FROM doc_t;

 clob_to_char(content) substring(clob_to_char(content) from 10)

==

 'This is a Dog' ' Dog'

 'This is a Cat' ' Cat'

2 rows selected.

SELECT CLOB_TO_CHAR(content) FROM doc_t WHERE CLOB_TO_CHAR(content) LIKE '%Dog%';

 clob_to_char(content)

======================

 'This is a Dog'

SELECT CLOB_TO_CHAR(content) FROM doc_t ORDER BY CLOB_TO_CHAR(content)

 clob_to_char(content)

======================

 'This is a Cat'

 'This is a Dog'

-- an error occurs when LOB column specified in WHERE/ORDER BY/GROUP BY clauses

SELECT * FROM doc_t WHERE content LIKE 'This%';

SELECT * FROM doc_t ORDER BY content;

CUBRID 2008 R4.0 Help

90

Functions and Operators

CAST Operator

By using CAST operator, you can execute an explicit type change between BLOB/CLOB type and binary type/string

type. For more details, see CAST Operator.

Syntax

CAST (<bit_type_column_or_value> AS CLOB)

CAST (<bit_type_column_or_value> AS BLOB)

CAST (<char_type_column_or_value> AS BLOB)

CAST (<char_type_column_or_value> AS CLOB)

LOB Data Process and Type Change Functions

The next table shows the functions provided to process and change BLOB/CLOB types.

Function Expression Description

CLOB_TO_CHAR (<clob_type_column>) Changes number type, date/time type, and CLOB type to

VARCHAR type.

BLOB_TO_BIT (<blob_type_column>) Changes BLOB type to VARYING BIT type.

CHAR_TO_CLOB(<char_type_column_or_value>

)

Changes text string type (CHAR, VARCHAR, NCHAR,

NVACHAR) to CLOB type.

BIT_TO_BLOB(<blob_type_column_or_value>) Changes bit array type (BIT, VARYING BIT) to BLOB type.

CHAR_TO_BLOB(<char_type_colulmn_or_value

>)

Changes text string type (CHAR, VARCHAR, NCHAR,

NVACHAR) to BLOB type.

CLOB_FROM_FILE(<file_pathname>) Reads file details from the file path of VARCHAR type and

changes to CLOB type data. <file_pathname> is analyzed to a

path of server which is operated by the DB client, such as CAS or

CSQL. If a path is specified targeting this, the upper path will be

the current work direction of the process.

The statement that calls this function will not cache execution

plans.

BLOB_FROM_FILE(<file_pathname>) Reads file details from the file path of VARCHAR type, and

changes to BLOB type data. The file path specified in is

interpreted using the same method as the CLOB_FROM_FILE()

function.

CLOB_LENGTH(<clob_column>) Returns the length of LOB data stored in a CLOB file in bytes.

BLOB_LENGTH(<blob_column>) Returns the length of LOB data stored in a BLOB file in bytes.

<blob_or_clob_column> IS NULL Use an IS NULL expression to compare whether it is a LOB

column value (Locator) or NULL; returns TRUE if NULL.

Creating and Managing Storage

LOB File Path Specification

By default, the LOB data file is stored in the <db-volumn-path>/lob directory where database volume is created.

However, if the --lob-base-path option of cubrid createdb utility is used when creating the database, a LOB data file

can be stored in the directory specified by option value. However, if there is no directory specified by option value,

attempt to create a directory, and display an error message if it fails to create the directory. For more details, see the --

lob-base-path option in Creating Database.

image_db volume is created in the current work directory, and a LOB data file will be

stored.

cubrid createdb image_db

LOB data file is stored in the "/home1/data1" path within a local file system.

CUBRID SQL Guide

91

cubrid createdb --lob-base-path="file:/home1/data1" image_db

Check LOB File Store Directory

You can check a directory where a LOB file will be stored by executing the cubrid

spacedb utility.

cubrid spacedb image_db

Space description for database 'image_db' with pagesize 16.0K. (log pagesize: 16.0K)

Volid Purpose total_size free_size Vol Name

 0 GENERIC 512.0M 510.1M /home1/data1/image_db

Space description for temporary volumes for database 'image_db' with pagesize 16.0K.

Volid Purpose total_size free_size Vol Name

LOB space description file:/home1/data1

Change or Expand LOB File Store Directory

Secure disk space to create additional file storage, expand the lob-base-path of databases.txt, and change to the disk

location. Restart the database server to apply the changes made to databases.txt. However, even if you change the lob-

base-path of databases.txt, access to the LOB data saved in a previous storage is possible.

You can change to a new directory from the lob-base-path of databases.txt file.

sh> cat $CUBRID_DATABASES/databases.txt

#db-name vol-path db-host log-path lob-base-path

image_db /home1/data1 localhost /home1/data1 file:/home1/data2

Backup and Recovery of LOB Files

While backup/recovery is not supported for LOB data files, LOB type column value (Locator) is supported with such

service.

Copying a Database with LOB Files

If you are copying a database by using the cubrid copydb utility, you must configure the databases.txt additionally, as

the LOB file directory path will not be copied if the related option is not specified. For more details, see the -B and --

copy-lob-path options in Copying/Moving Database.

Supporting and Recovering Transactions

Definition

Commit/rollback for LOB data changes are supported. That is, it ensures the validation of mapping between LOB

Locator and actual LOB data within transactions, and it supports recovery during DB errors. This means that an error

will be displayed in case of mapping errors between LOB Locator and LOB data due to the rollback of the relevant

transactions, as the database is terminated during transactions. See the example below.

Example

;AUTOCOMMIT OFF

CREATE TABLE doc_t (doc_id VARCHAR(64) PRIMARY KEY, content CLOB);

INSERT INTO doc_t VALUES ('doc-10', CHAR_TO_CLOB('This is content'));

COMMIT;

UPDATE doc_t SET content = CHAR_TO_CLOB('This is content 2') where doc_id = 'doc-10';

ROLLBACK;

SELECT doc_id, CLOB_TO_CHAR(content) FROM doc_t WHERE doc_id = 'doc-10';

 doc_id content

===

 'doc-10' 'This is content '

INSERT INTO doc_t VALUES ('doc-11', CHAR_TO_CLOB ('This is content'));

COMMIT;

UPDATE doc_t SET content = CHAR_TO_CLOB('This is content 3') WHERE doc_id = 'doc-11';

CUBRID 2008 R4.0 Help

92

-- system crash occurred and then restart server

SELECT doc_id, CLOB_TO_CHAR(content) FROM doc_t WHERE doc_id = 'doc-11';

-- Error : LOB Locator references to the previous LOB data because only LOB Locator is

rollbacked.

Note

• When selecting LOB data in an application through a driver such as JDBC, the driver can get ResultSet from DB

server and fetch the record while changing the cursor location on Resultset. That is, only Locator, the LOB column

value, is stored at the time ResultSet is imported, and LOB data that is referred by a File Locator will be fetched

from the file Locator at the time a record is fetched. Therefore, if LOB data is updated between two different points

of time, there could be an error, as the mapping of LOB Locator and actual LOB data will be invalid.

• Since backup/recovery is supported only for LOB type column value (Locator), an error is likely to occur, as the

mapping of LOB Locator and LOB data is invalid if recovery is performed based on a specific point of time.

• If the DB is operated in different equipment like S1 and S2, and you want to store LOB data in the DB of S1

equipment to S2 equipment, you must read the LOB data which the LOB column value of S1 equipment is

referring to, and INSERT LOB. The LOB column value (Locator) of S1 equipment is valid only in the relevant

local system.

Caution Up to CUBRID 2008 R3.0, Large Objects are processed by using glo (Generalized Large Object) classes.

However, the glo classes has been deprecated since the CUBRID 2008 R3.1. Instead of it, LOB/CLOB data type is

supported. Hence, both DB schema and application must be modified when upgrading CUBRID in an environment

using the previous version of glo classes.

Collection Types

Definition and Characteristics

Definition

Allowing multiple data values to be stored in a single attribute is an extended feature of relational database. Elements of

a collection are possible to have different domain each other. The domain can be one of the primitive data types or

classes excluding virtual classes. For example, SET (INTEGER, tbl_1) can specify an integer or a set of row values of

the user-defined class tbl_1 as a domain. When a domain list is not specified (e.g. SET ()), all data types are allowed as

elements including user-defined classes.

The data of a collection-type column with at least two domain lists can be retrieved by using the csql utility or the C-

API. It cannot be retrieved in CUBRID manager or CUBRID API (JDBC, ODBC, OLEDB, PHP, CCI).

Collection Types Supported by CUBRID

Type Description Definition Input Data Stored Data

SET A union

which does

not allow

duplicates

col_name SET

VARCHAR(20)

col_name SET

(int,

VARCHAR(20))

{'c','c','c','b','b',

'a'}{3,3,3,2,2,1,0,'c','c','c','b','b',

'a'}

{'a','b','c'}

{0,1,2,3,'a','b','c'}

MULTISET A union

which

allows

duplicates

col_name

MULTISET

VARCHAR(20)

col_name

MULTISET (int,

VARCHAR(20))

{'c','c','c','b','b',

'a'}{3,3,3,2,2,1,0,'c','c','c','b','b',

'a'}

{'a','b','b','c','c','c'}

{0,1,2,2,3,3,3,'a','b','b',

'c','c','c'}

LIST

SEQUENCE

SEQUENCE

A union

which

allows

duplicates

and stores

data in the

col_name LIST

VARCHAR(20)

col_name LIST

(int,

VARCHAR(20))

{'c','c','c','b','b', 'a'}

{3,3,3,2,2,1,0,'c','c','c','b','b',

'a'}

{'c','c','c','b','b','a'}

{3,3,3,2,2,1,0,'c','c','c','b','b','a'}

CUBRID SQL Guide

93

order of

input

As you see the table above, the value specified as a collection type can be inputted with braces ('{', '}') each value is

separated with a comma (,).

Characteristics

Coercions

If the specified domains are identical, the collection types can be cast explicitly by using the CAST operator. The

following table shows the collection types that allow explicit coercions.

Explicit Coercions

 TO

SET MULTISET LIST

FROM SET - O O

MULTISET O - X

LIST O O -

SET

Description

SET is a set type in which each element has different values. Elements of a SET can have many different data types or

even instances of different classes.

Example

CREATE TABLE set_tbl (col_1 set(int, CHAR(1)));

INSERT INTO set_tbl VALUES ({3,3,3,2,2,1,0,'c','c','c','b','b','a'});

INSERT INTO set_tbl VALUES ({NULL});

INSERT INTO set_tbl VALUES ({''});

SELECT * FROM set_tbl;

 col_1

======================

{0, 1, 2, 3, 'a', 'b', 'c'}

{NULL}

{' '}

SELECT CAST(col_1 AS MULTISET), CAST(col_1 AS LIST) FROM set_tbl;

 cast(col_1 as multiset) cast(col_1 as sequence)

==

 {0, 1, 2, 3, 'a', 'b', 'c'} {0, 1, 2, 3, 'a', 'b', 'c'}

 {NULL} {NULL}

 {' '} {' '}

INSERT INTO set_tbl VALUES ('');

ERROR: Cannot coerce '' to type set.

MULTISET

Description

MULTISET is a collection type in which duplicated elements are allowed. Elements of a MULTISET can have many

different data types or even instances of different classes.

CUBRID 2008 R4.0 Help

94

Example

CREATE TABLE multiset_tbl (col_1 multiset(int, CHAR(1)));

INSERT INTO multiset_tbl VALUES ({3,3,3,2,2,1,0,'c','c','c','b','b', 'a'});

SELECT * FROM multiset_tbl;

 col_1

======================

 {0, 1, 2, 2, 3, 3, 3, 'a', 'b', 'b', 'c', 'c', 'c'}

SELECT CAST(col_1 AS SET), CAST(col_1 AS LIST) FROM multiset_tbl;

 cast(col_1 as set) cast(col_1 as sequence)

==

 {0, 1, 2, 3, 'a', 'b', 'c'} {3, 3, 3, 2, 2, 1, 0, 'c', 'c', 'c', 'b', 'b', 'a

'}

LIST/SEQUENCE

Description

LIST (=SEQUENCE) is a collection type in which the input order of elements is preserved, and duplications are

allowed. Elements of a LIST can have many different data types or even instances of different classes.

Example

CREATE TABLE list_tbl (col_1 list(int, CHAR(1)));

INSERT INTO list_tbl VALUES ({3,3,3,2,2,1,0,'c','c','c','b','b', 'a'});

SELECT * FROM list_tbl;

 col_1

======================

{3, 3, 3, 2, 2, 1, 0, 'c', 'c', 'c', 'b', 'b', 'a'}

SELECT CAST(col_1 AS SET), CAST(col_1 AS MULTISET) FROM list_tbl;

 cast(col_1 as set) cast(col_1 as multiset)

==

 {0, 1, 2, 3, 'a', 'b', 'c'} {0, 1, 2, 2, 3, 3, 3, 'a', 'b', 'b', 'c', 'c', 'c

'}

Implicit Type Conversion

Rules

An implicit type conversion represents an automatic conversion of a type of expression to a corresponding type. SET,

MULTISET, LIST and SEQUENCE should be converted explicitly.

If you convert the DATETIME and TIMESTAMP types to the DATE type or TIME type, data loss may occur. If you

convert the DATE type to the DATETIME type or TIMESTAMP type, the time will be set to '12:00:00: AM.'

If you convert a string type or an exact numeric type to a floating-point numeric type, it may not be accurate. Because a

string type and an exact type use a decimal precision to represent the value, but a floating-point numeric type uses a

binary precision.

The implicit type conversion executed by CUBRID is as follows:

Implicit Type Conversion Table 1

From \ To DATETIME DATE TIME TIMESTAMP DOUBLE FLOAT NUMERIC BIGINT

DATETIME - O O O

DATE O - O

TIME -

TIMESTAMP O O O -

DOUBLE - O O O

FLOAT O - O O

CUBRID SQL Guide

95

NUMERIC O O - O

BIGINT O O O -

INT O O O O

SHORT O O O O

MONETARY O O O O

BIT

VARBIT

CHAR O O O O O O O O

VARCHAR O O O O O O O O

NCHAR O O O O O O O O

VARNCHAR O O O O O O O O

Implicit Type Conversion Table 2

From \ To INT SHORT MONETARY BIT VARBIT CHAR VARCHAR NCHAR VARNCHAR

DATETIME O O O O

DATE O O O O

TIME O O O O

TIMESTAMP O O O O

DOUBLE O O O O O O O

FLOAT O O O O O O O

NUMERIC O O O O O O O

BIGINT O O O O O O O

INT - O O O O O O

SHORT O - O O O O O

MONETARY O O - O O O O

BIT - O O O O O

VARBIT O - O O O O

CHAR O O O O O - O O O

VARCHAR O O O O O O - O O

NCHAR O O O O O O O - O

VARNCHAR O O O O O O O O -

INSERT and UPDATE

The type will be converted to the type of the column affected.

CREATE TABLE t(i INT);

INSERT INTO t VALUES('123');

SELECT * FROM t;

 i

=============

 123

CUBRID 2008 R4.0 Help

96

Function

If the parameter value entered in the function can be converted to the specified type, the parameter type will be

converted. The strings are converted to numbers because the input parameter expected in the following function is a

number.

SELECT MOD('123','2');

 mod('123', '2')

==========================

 1.000000000000000e+00

You can enter multiple type values in the function. If the type value not specified in the function is delivered, the type

will be converted depending on the following priority order.

• Date/Time Type (DATETIME > TIMESTAMP > DATE > TIME)

• Approximate Numeric Type (MONETARY > DOUBLE > FLOAT)

• Exact Numeric Type (NUMERIC > BIGINT > INT > SHORT)

• String Type (CHAR/NCHAR > VARCHAR/VARNCHAR)

Comparison Operation

The following are the conversion rules according to an operand type of the comparison operator.

operand1 Type operand2 Type Conversion Comparison

Numeric Type Numeric Type None NUMERIC

 String Type Converts operand2 to DOUBLE NUMERIC

 Date/Time Type None N/a

String Type Numeric Type Converts operand1 to DOUBLE NUMERIC

 String Type None String

 Date/Time Type Converts operand1 to date/time type Date/Time

Date/Time Type Numeric Type None N/a

 String Type Converts operand2 to date/time type Date/Time

 Date/Time Type Converts it to the type with higher priority Date/Time

The following are the exceptions in the conversion rules for comparison operators:

• operand1 <operator> host variable

operand1 Type operand2 Type Conversion Comparison

String Type Numeric Type Converts operand2 to the string type String

• COLUMN <operator> value

operand1 Type operand2 Type Conversion Comparison

String type Numeric type Converts operand2 to the string type String

 Date/Time type Converts operand2 to the string type String

If operand2 is a set operator(IS IN, IS NOT IN, = ALL, = ANY, < ALL, < ANY, <= ALL, <= ANY, >= ALL, >=

ANY), the exception above is not applied.

Numeric Type & String Type Operands

The string type operand will be converted to DOUBLE.

CREATE TABLE t(i INT, s STRING);

INSERT INTO t VALUES(1,'1'),(2,'2'),(3,'3'),(4,'4'), (12,'12');

SELECT i FROM t WHERE i < '11.3';

CUBRID SQL Guide

97

 i

=============

 1

 2

 3

 4

SELECT ('2' <= 11);

 ('2'<11)

=============

 1

String Type & Date/Time Type Operands

The string type operand will be converted to the date/time type.

SELECT ('2010-01-01' < date'2010-02-02');

 ('2010-01-01'<date '2010-02-02')

==================================

 1

SELECT (date'2010-02-02' >= '2010-01-01');

 (date '2010-02-02'>='2010-01-01')

===================================

 1

String Type & Numeric Type Host Variable Operands

The numeric type host variable will be converted to the string type.

PREPARE s FROM 'SELECT s FROM t WHERE s < ?';

EXECUTE s USING 11;

 s

===================

 '1'

String Type & Numeric Type value Operands

The numeric type value will be converted to the string type.

SELECT s FROM t WHERE s > 11;

 s

==================

 '2'

 '3'

 '4'

 '12'

SELECT s FROM t WHERE s BETWEEN 11 AND 33;

 s

======================

 '2'

 '3'

 '12'

String Type Column & Date/Time Type Value Operands

The date/time type value will be converted to the string type.

SELECT s FROM t;

 s

======================

 '01/01/1998'

 '01/01/1999'

 '01/01/2000'

SELECT s FROM t WHERE s <= date'02/02/1998';

CUBRID 2008 R4.0 Help

98

 s

======================

 '01/01/1998'

 '01/01/1999'

 '01/01/2000'

Range Operation

Numeric Type and String Type Operands

The string type operand will be converted to DOUBLE.

SELECT i FROM t WHERE i <= all {'11','12'};

 i

=============

 1

 2

 3

 4

String Type and Date/Time Type Operands

The string type operand will be converted to the date/time type.

SELECT s FROM t2;

 s

======================

 '01/01/2000'

 '01/01/1999'

 '01/01/1998'

SELECT s FROM t2 WHERE s <= ALL {date'02/02/1998',date'01/01/2000'};

 s

======================

 '01/01/1998'

If it is impossible to convert to the corresponding type, an error is returned.

Arithmetic Operation

Date/Time Type Operand

If the date/time type operands are given to '-' operator and the types are different from each other, it will be converted to

the type with a higher priority. The following example shows that the operand data type on the left is converted from

DATE to DATETIME, so that the result of '-' operation of DATETIME can be displayed in milliseconds.

SELECT date'2002-01-01' - datetime'2001-02-02 12:00:00 am';

 date '2002-01-01'- datetime '2001-02-02 12:00:00 am'

===

 28771200000

Numeric Type Operand

If the numeric type operands are given and the types are different from each other, it will be converted to the type with

the higher priority.

Date/Time Type & Numeric Type Operands

If the date/time type and the numeric type operands are given to '+' or '-' operator, the numeric type operand is converted

to either BIGINT, INT or SHORT.

CUBRID SQL Guide

99

Date/Time Type & String Type Operands

If a date/time type and a string type are operands, only '+' and '-' operators are allowed. If the '+' operator is used, it will

be applied according to the following rules.

• The string type will be converted to BIGINT with an interval value. The interval is the smallest unit for operands

in the Date/Time type, and the interval for each type is as follows:

• DATE : Days

• TIME, TIMESTAMP : Seconds

• DATETIME : Milliseconds

• Floating-point numbers are rounded.

• The result type is the type of an date/time operand.

SELECT date'2002-01-01' + '10';

 date '2002-01-01'+'10'

======================

 01/11/2002

If the date/time type and a string type are operands and the '-' operator is used, they will be applied according to the

following rules.

• If the date/time type operands are DATE, DATETIME and TIMESTAMP, the string will be converted to

DATETIME; if the date/time operand is TIME, the string is converted to TIME.

• The result type is always BIGINT.

SELECT date'2002-01-01'-'2001-01-01';

 date '2002-01-01'-'2001-01-01'

================================

 31536000000

-- this causes an error

SELECT date'2002-01-01'-'10';

 In line 1, column 13,

 ERROR: Cannot coerce '10' to type datetime.

Numeric Type & String Type Operands

If a numeric type and a string type are operands, they will be applied according to the following rules.

• Strings will be converted to DOUBLE when possible.

• The result type is DOUBLE or MONETARY and depends on the type of the numeric operand.

SELECT 4 + '5.2';

 4+'5.2'

==========================

 9.199999999999999e+00

Unlike CUBRID 2008 R3.1 and the earlier versions, the string in the date/time format, that is, the string such as '2010-

09-15' is not converted to the date/time type. You can use a literal (DATE'2010-09-15') with the date/time type for

addition and subtraction operations.

SELECT '2002-01-01'+1;

 ERROR: Cannot coerce '2002-01-01' to type double.

SELECT DATE'2002-01-01'+1;

 date '2002-01-01'+1

=====================

 01/02/2002

String Type Operand

If you multiply, divide or subtract both strings, the result returns a DOUBLE type value.

SELECT '3'*'2';

CUBRID 2008 R4.0 Help

100

 '3'*'2'

============================

 6.000000000000000e+00

The '+' operator action depends on how to set the system parameter plus_as_concat in the cubrid.conf file. For more

information, see Syntax/Type Related Parameter.

• If a value for plus_as_concat is yes, the concatenation of two strings will be returned.

SELECT '1'+'1';

 '1'+'1'

======================

 '11'

• If a value for plus_as_concat is no and two strings can be converted to numbers, the DOUBLE type value will be

returned by adding the two numbers.

SELECT '1'+'1';

 '1'+'1'

==========================

 2.000000000000000e+00

If it is impossible to convert to the corresponding type, an error is returned.

CUBRID SQL Guide

101

Table Definition

CREATE TABLE

Table Definition

Description

To create a table, use the CREATE TABLE syntax.

Syntax

CREATE {TABLE | CLASS} <table_name>

 [<subclass_definition>]

 [(<column_definition> [,<table_constraint>]...)]

 [AUTO_INCREMENT = initial_value]]

 [CLASS ATTRIBUTE (<column_definition_comma_list>)]

 [METHOD <method_definition_comma_list>]

 [FILE <method_file_comma_list>]

 [INHERIT <resolution_comma_list>]

 [REUSE_OID]

<column_definition> ::=

column_name column_type [[<default_or_shared>] | [<column_constraint>]]...

<default_or_shared> ::=

{SHARED <value_specification> | DEFAULT <value_specification> } |

AUTO_INCREMENT [(seed, increment)]

<column_constraint> ::=

NOT NULL | UNIQUE | PRIMARY KEY | FOREIGN KEY <referential definition>

<table_constraint> ::=

[CONSTRAINT [<constraint_name>]] UNIQUE [KEY | INDEX](column_name_comma_list) |

[{ KEY | INDEX } [<constraint_name>](column_name_comma_list) |

[PRIMARY KEY (column_name_comma_list)] |

[<referential_constraint>]

<referential_constraint> ::=

FOREIGN KEY [<foreign_key_name>](column_name_comma_list) <referential definition>

<referential definition> ::=

REFERENCES [referenced_table_name] (column_name_comma_list)

[<referential_triggered_action> ...]

<referential_triggered_action> ::=

{ ON UPDATE <referential_action> } |

{ ON DELETE <referential_action> } |

{ ON CACHE OBJECT cache_object_column_name }

<referential_action> ::=

CASCADE | RESTRICT | NO ACTION | SET NULL

<subclass_definition> ::=

{ UNDER | AS SUBCLASS OF } table_name_comma_list

<method_definition> ::=

[CLASS] method_name

[([argument_type_comma_list])]

[result_type]

[FUNCTION function_name]

<resolution> ::=

[CLASS] { column_name | method_name } OF superclass_name

[AS alias]

• table_name : Specifies the name of the table to be created (maximum : 255 bytes).

• column_name : Specifies the name of the column to be created.

CUBRID 2008 R4.0 Help

102

• column_type : Specifies the data type of the column.

• [SHARED value | DEFAULT value] : Specifies the initial value of the column (see Column Definition for more

information).

• column_constraints : Specifies the constraint of the column. Available constraints are NOT NULL, UNIQUE,

PRIMARY KEY and FOREIGN KEY (see Constraint Definition for more information).

Example

CREATE TABLE olympic (

 host_year INT NOT NULL PRIMARY KEY,

 host_nation VARCHAR(40) NOT NULL,

 host_city VARCHAR(20) NOT NULL,

 opening_date DATE NOT NULL,

 closing_date DATE NOT NULL,

 mascot VARCHAR(20) ,

 slogan VARCHAR(40) ,

 introduction VARCHAR(1500)

)

Column Definition

A column is a set of data values of a particular simple type, one for each row of the table.

<column_definition> ::=

column_name column_type [[<default_or_shared>] | [<column_constraint>]]...

<default_or_shared> ::=

{ SHARED <value_specification> | DEFAULT <value_specification> } |

AUTO_INCREMENT [(seed, increment)]

<column_constraint> ::=

NOT NULL | UNIQUE | PRIMARY KEY | FOREIGN KEY <referential definition>

Column Name

Description

How to create a column name, see Identifier.

You can alter created column name by using RENAME COLUMN clause of the ALTER TABLE.

Example

The following is an example of creating the manager2 table that has the following two columns: full_name and age.

CREATE TABLE manager2 (full_name VARCHAR(40), age INT);

Caution

• The first character of a column name must be an alphabet. The maximum length is 255 characters.

• The column name must be unique in the table.

Setting the Column Initial Value (SHARED, DEFAULT)

Description

SHARED and DEFAULT are attributes related to the initial value of the column. You can change the value of

SHARED and DEFAULT in the ALTER TABLE statement.

• SHARED : Column values are identical in all rows. If a value different from the initial value is INSERTed, the

column value is updated to a new one in every row.

• DEFAULT : The initial value set when the DEFAULT attribute was defined is saved even if the column value is

not specified when a new row is inserted. Note that if you set SYS_TIMESTAMP as a DEFAULT value when

creating a table, the TIMESTAMP value at the point of CREATE TABLE, not the point at which the data is

INSERTed, is specified by default. Therefore, you must specify the SYS_TIMESTAMP value for the VALUES

of the INSERT statement when entering data.

CUBRID SQL Guide

103

Example

CREATE TABLE colval_tbl

(id INT, name VARCHAR SHARED 'AAA', phone VARCHAR DEFAULT '000-0000');

INSERT INTO colval_tbl(id) VALUES (1),(2);

SELECT * FROM colval_tbl;

 id name phone

===

 1 'AAA' '000-0000'

 2 'AAA' '000-0000'

--updating column values on every row

INSERT INTO colval_tbl(id, name) VALUES (3,'BBB');

INSERT INTO colval_tbl(id) VALUES (4),(5);

SELECT * FROM colval_tbl;

 id name phone

===

 1 'BBB' '000-0000'

 2 'BBB' '000-0000'

 3 'BBB' '000-0000'

 4 'BBB' '000-0000'

 5 'BBB' '000-0000'

--changing DEFAULT value in the ALTER TABLE statement

ALTER TABLE colval_tbl CHANGE phone DEFAULT '111-1111'

INSERT INTO colval_tbl(id) VALUES (6);

SELECT * FROM colval_tbl;

 id name phone

===

 1 'BBB' '000-0000'

 2 'BBB' '000-0000'

 3 'BBB' '000-0000'

 4 'BBB' '000-0000'

 5 'BBB' '000-0000'

 6 'BBB' '111-1111'

AUTO INCREMENT

Description

You can define the AUTO_INCREMENT attribute for the column to automatically give serial numbers to column

values. This can be defined only for SMALLINT, INTEGER, BIGINT(p,0), and NUMERIC(p,0) domains.

DEFAULT, SHARED and AUTO_INCREMENT cannot be defined for the same column. Make sure the value

entered directly by the user and the value entered by the auto increment attribute do not conflict with each other.

You can change the initial value of AUTO_INCREMENT by using the ALTER TABLE statement. For more

information, see AUTO_INCREMENT Statement of ALTER TABLE.

Syntax

CREATE TABLE table_name (id int AUTO_INCREMENT[(seed, increment)]) |

CREATE TABLE table_name (id int AUTO_INCREMENT) AUTO_INCREMENT = seed;

• seed : The initial value from which the number starts. Only positive integers are allowed. The default is 1.

• increment : The increment value of each row. Only positive integers are allowed. The default value 1.

When you use the CREATE TABLE table_name (id int AUTO_INCREMENT) AUTO_INCREMENT = seed;

statement, the constraints are as follows:

• You should define only one column with the AUTO_INCREMENT attribute.

• Don't use (seed, increment) and AUTO_INCREMENT = seed together.

Example

CREATE TABLE auto_tbl(id INT AUTO_INCREMENT, name VARCHAR);

INSERT INTO auto_tbl VALUES(NULL, 'AAA'),(NULL, 'BBB'),(NULL, 'CCC');

CUBRID 2008 R4.0 Help

104

INSERT INTO auto_tbl(name) VALUES ('DDD'),('EEE');

SELECT * FROM auto_tbl;

 id name

===================================

 1 'AAA'

 2 'BBB'

 3 'CCC'

 4 'DDD'

 5 'EEE'

CREATE TABLE tbl (id int AUTO_INCREMENT, val string) AUTO_INCREMENT = 3;

INSERT INTO tbl VALUES (NULL,'cubrid');

SELECT * FROM tbl;

 id val

===================================

 3 'cubrid'

CREATE TABLE t (id int AUTO_INCREMENT, id2 int AUTO_INCREMENT) AUTO_INCREMENT = 5; ERROR:

To avoid ambiguity, the AUTO_INCREMENT table option requires the table to have exactly

one AUTO_INCREMENT column and no seed/increment specification.

CREATE TABLE t (i int AUTO_INCREMENT(100, 2)) AUTO_INCREMENT = 3; ERROR: To avoid

ambiguity, the AUTO_INCREMENT table option requires the table to have exactly one

AUTO_INCREMENT column and no seed/increment specification.

Caution

• Even if a column has auto increment, the UNIQUE constraint is not satisfied.

• If NULL is specified in the column where auto increment is defined, the value of auto increment is stored.

• The initial value and the final value obtained by auto increment cannot exceed the minimum and maximum values

allowed in the given domain.

• Because auto increment has no cycle, an error occurs when the maximum value of the type exceeds, and no

rollback is executed. Therefore, you must delete and recreate the column in such cases.

• For example, if a table is created as below, the maximum value of A is 32767. Because an error occurs if the value

exceeds 32767, you must make sure that the maximum value of the column A does not exceed the maximum value

of the type when creating the initial table.

create table tb1(A smallint auto_increment, B char(5));

Constraint Definition

Description

You can define NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY as the constraints. You can also create an

index by using INDEX or KEY.

<column_constraint> ::=

NOT NULL | UNIQUE | PRIMARY KEY | FOREIGN KEY <referential definition>

<table_constraint> ::=

[CONSTRAINT [<constraint_name>]] UNIQUE [KEY | INDEX](column_name_comma_list) |

[{ KEY | INDEX } [<constraint_name>](column_name_comma_list) |

[PRIMARY KEY (column_name_comma_list)] |

[<referential_constraint>]

<referential_constraint> ::=

FOREIGN KEY (column_name_comma_list) <referential definition>

<referential definition> ::=

REFERENCES [referenced_table_name] (column_name_comma_list)

[<referential_triggered_action> ...]

<referential_triggered_action> ::=

{ ON UPDATE <referential_action> } |

{ ON DELETE <referential_action> } |

{ ON CACHE OBJECT cache_object_column_name }

<referential_action> ::=

CUBRID SQL Guide

105

CASCADE | RESTRICT | NO ACTION | SET NULL

NOT NULL Constraints

Description

A column for which the NOT NULL constraint has been defined must have a certain value that is not NULL. The NOT

NULL constraint can be defined for all columns. An error occurs if you try to insert a NULL value into a column with

the NOT NULL constraint by using the INSERT or UPDATE statement.

Example

CREATE TABLE const_tbl1(id INT NOT NULL, INDEX i_index(id ASC), phone VARCHAR);

CREATE TABLE const_tbl2(id INT NOT NULL PRIMARY KEY, phone VARCHAR);

INSERT INTO const_tbl2 (NULL,'000-0000');

In line 2, column 25,

ERROR: syntax error, unexpected Null

UNIQUE Constraint

Description

The UNIQUE constraint enforces a column to have a unique value. An error occurs if a new record that has the same

value as the existing one is added by this constraint.

You can place a UNIQUE constraint on either a column or a set of columns. If the UNIQUE constraint is defined for

multiple columns, the uniqueness is ensured not for each column, but the combination of multiple columns.

Example

If a UNIQUE constraint is defined on a set of columns, this ensures the uniqueness of the values in all the columns. As

shown below, the second INSERT statement succeeds because the value of column a is the same, but the value of

column b is unique. The third INSERT statement causes an error because the values of column a and b are the same as

those in the first INSERT statement.

--UNIQUE constraint is defined on a single column only

CREATE TABLE const_tbl5(id INT UNIQUE, phone VARCHAR);

INSERT INTO const_tbl5(id) VALUES (NULL), (NULL);

INSERT INTO const_tbl5 VALUES (1, '000-0000');

SELECT * FROM const_tbl5;

 id phone

===================================

 NULL NULL

 NULL NULL

 1 '000-0000'

INSERT INTO const_tbl5 VALUES (1, '111-1111');

ERROR: Operation would have caused one or more unique constraint violations.

--UNIQUE constraint is defined on several columns

CREATE TABLE const_tbl6(id INT, phone VARCHAR, CONSTRAINT UNIQUE(id,phone));

INSERT INTO const_tbl6 VALUES (1,NULL), (2,NULL), (1,'000-0000'), (1,'111-1111');

SELECT * FROM const_tbl6;

 id phone

===================================

 1 NULL

 2 NULL

 1 '000-0000'

 1 '111-1111'

CUBRID 2008 R4.0 Help

106

PRIMARY KEY Constraint

Description

A key in a table is a set of column(s) that uniquely identifies each row. A candidate key is a set of columns that uniquely

identifies each row of the table. You can define one of such candidate keys a primary key. That is, the column defined

as a primary key is uniquely identified in each row.

By default, the index created by defining the primary key is created in ascending order, and you can define the order by

specifying ASC or DESC keyword next to the column.

Syntax

CREATE TABLE pk_tbl (a INT, b INT, PRIMARY KEY (a, b DESC));

Example

CREATE TABLE const_tbl7(

id INT NOT NULL,

phone VARCHAR,

CONSTRAINT pk_id PRIMARY KEY(id));

--CONSTRAINT keyword

CREATE TABLE const_tbl8(

id INT NOT NULL PRIMARY KEY,

phone VARCHAR);

--primary key is defined on multiple columns

CREATE TABLE const_tbl8 (

host_year INT NOT NULL,

event_code INT NOT NULL,

athlete_code INT NOT NULL,

medal CHAR(1) NOT NULL,

score VARCHAR(20),

unit VARCHAR(5),

PRIMARY KEY(host_year, event_code, athlete_code, medal)

);

FOREIGN KEY Constraint

Description

A foreign key is a column or a set of columns that references the primary key in other tables in order to maintain

reference relationship. The foreign key and the referenced primary key must have the same data type. Consistency

between two tables is maintained by the foreign key referencing the primary key, which is called referential integrity.

Syntax

[CONSTRAINT < constraint_name >]

FOREIGN KEY [<foreign_key_name>] (column_name_comma_list)

REFERENCES [referenced_table_name] (column_name_comma_list)

[<referential_triggered_action>]

<referential_triggered_action> :

ON UPDATE <referential_action>

[ON DELETE <referential_action> [ON CACHE OBJECT cache_object_column_name]]

<referential_action> :

CASCADE | RESTRICT | NO ACTION | SET NULL

• constraint_name : Specifies the name of the table to be created.

• foreign_key_name : Specifies a name of the FOREIGN KEY constraint. You can skip the name specification.

However, if you specify this value, constraint_name will be ignored, and the specified value will be used.

• column_name : Specifies the name of the column to be defined as a foreign key after the FOREIGN KEY keyword.

There is no limit on the number of foreign keys to be defined (the number of columns), but it must be the same

number as that of the referred primary keys.

• referenced_table_name : Specifies the name of the table to be referenced.

CUBRID SQL Guide

107

• column_name : Specifies the name of the referred primary key column after the FOREIGN KEY keyword.

• referential_triggered_action : Specifies the trigger action that responds to a certain operation in order to maintain

referential integrity. ON UPDATE, ON DELETE or ON CACHE OBJECT can be specified. Each action can be

defined multiple times, and the definition order is not significant.

• ON UPDATE : Defines the action to be performed when attempting to update the primary key referenced by the

foreign key. You can use either NO ACTION, RESTRICT, or SET NULL option. The default is RESTRICT.

• ON DELETE : Defines the action to be performed when attempting to delete the primary key referenced by the

foreign key. You can use NO ACTION, RESTRICT, CASCADE, or SET NULL option. The default is

RESTRICT.

• ON CACHE OBJECT : You can search an object using a direct object reference in object-oriented model. ON

CACHE OBJECT option supports this feature in association with referential integrity (foreign key). ON CACHE

OBJECT option adds an OID reference to a foreign key configuration. The OID is used as a CACHE point for the

foreign key to the primary key table. Such OID is managed by the system internally; it cannot be changed by users.

To define the ON CACHE OBJECT option, you must have defined a column whose domain is the table with a

primary key and specified the column in the cache_object_column_name.

The attribute defined with ON CACHE OBJECT can use the OID the same way as the one of the existing object

type.

• referential_ action : You can define an option that determines whether to maintain the value of the foreign key

when the primary key value is deleted or updated.

• CASCADE : If the primary key is deleted, the foreign key is deleted as well. This option is supported only for the

ON DELETE operation.

• RESTRICT : Prevents the value of the primary key from being deleted or updated, and rolls back any transaction

that has been attempted.

• SET NULL : When a specific record is being deleted or updated, the column value of the foreign key is updated to

NULL.

• NO ACTION : Its behavior is the same as that of the RESTRICT option.

Example

--creaing two tables where one is referencing the other

CREATE TABLE a_tbl(

id INT NOT NULL DEFAULT 0 PRIMARY KEY,

phone VARCHAR(10));

CREATE TABLE b_tbl(

ID INT NOT NULL,

name VARCHAR(10) NOT NULL,

CONSTRAINT pk_id PRIMARY KEY(id),

CONSTRAINT fk_id FOREIGN KEY(id) REFERENCES a_tbl(id)

ON DELETE CASCADE ON UPDATE RESTRICT);

INSERT INTO a_tbl VALUES(1,'111-1111'), (2,'222-2222'), (3, '333-3333');

INSERT INTO b_tbl VALUES(1,'George'),(2,'Laura'),(3,'Max');

SELECT a.id, b.id, a.phone, b.name FROM a_tbl a, b_tbl b WHERE a.id=b.id;

 id id phone name

==

 1 1 '111-1111' 'George'

 2 2 '222-2222' 'Laura'

 3 3 '333-3333' 'Max'

--when deleting primay key value, it cascades foreign key value

DELETE FROM a_tbl WHERE id=3;

1 rows affected.

SELECT a.id, b.id, a.phone, b.name FROM a_tbl a, b_tbl b WHERE a.id=b.id;

 id id phone name

==

 1 1 '111-1111' 'George'

 2 2 '222-2222' 'Laura'

--when attempting to update primay key value, it restricts the operation

UPDATE a_tbl SET id = 10 WHERE phone = '111-1111';

CUBRID 2008 R4.0 Help

108

In the command from line 1,

ERROR: Update/Delete operations are restricted by the foreign key 'fk_id'.

0 command(s) successfully processed.

Caution

• In a referential constraint, the name of the primary key table to be referenced and the corresponding column names

are defined. If the list of column names are is not specified, the primary key of the primary key table is specified in

the defined order.

• The number of primary keys in a referential constraint must be identical to that of foreign keys. The same column

name cannot be used multiple times for the primary key in the referential constraint.

• The actions cascaded by reference constraints do not activate the trigger action.

• It is not recommended to use referential_triggered_action in the CUBRID HA environment. In the CUBRID HA

environment, the trigger action is not supported. Therefore, if you use referential_triggered_action, the data

between the master database and the slave database can be inconsistent. For more information, see CUBRID HA.

KEY or INDEX

Description

KEY and INDEX are used interchangeably. They create an index that uses the corresponding column as a key. You can

specify the index name. If omitted, a name is assigned automatically.

Example

CREATE TABLE const_tbl3(id INT, phone VARCHAR, INDEX(id DESC, phone ASC));

CREATE TABLE const_tbl4(id INT, phone VARCHAR, KEY i_key(id DESC, phone ASC));

Column Option

Description

You can specify options such as ASC or DESC after the column name when defining UNIQUE or INDEX for a

specific column. This keyword is specified to save the index value in ascending or descending order.

Syntax

column_name [ASC|DESC]

Example

CREATE TABLE const_tbl(

id VARCHAR,

name VARCHAR,

CONSTRAINT UNIQUE INDEX(id DESC, name ASC)

);

INSERT INTO const_tbl VALUES('1000', 'john'), ('1000','johnny'), ('1000', 'jone');

INSERT INTO const_tbl VALUES('1001', 'johnny'), ('1001','john'), ('1001', 'jone');

SELECT * FROM const_tbl WHERE id > '100';

===

 id name

 1001 john

 1001 johnny

 1001 jone

 1000 john

 1000 johnny

 1000 jone

CUBRID SQL Guide

109

Table Option (REUSE_OID)

Description

You can specify the REUSE_OID option when creating a table, so that OIDs that have been deleted due to the deletion

of records (DELETE) can be reused when a new record is inserted (INSERT). Such a table is called an OID reusable

or a non-referable table.

OID (Object Identifier) is an object identifier represented by physical location information such as the volume number,

page number and slot number. By using such OIDs, CUBRID manages the reference relationships of objects and

searches, saves or deletes them. When an OID is used, accessibility is improved because the object in the heap file can

be directly accessed without referring to the table. However, the problem of decreased reusability of the storage occurs

when there are many DELETE/ INSERT operations because the object's OID is kept to maintain the reference

relationship with the object even if it is deleted.

If you specify the REUSE_OID option when creating a table, the OID is also deleted when data in the table is deleted,

so that another INSERTed data can use it. OID reusable tables cannot be referred to by other tables, and OID values of

the objects in the OID reusable tables cannot be viewed.

Example

--creating table with REUSE_OID option specified

CREATE TABLE reuse_tbl (a INT PRIMARY KEY) REUSE_OID;

INSERT INTO reuse_tbl VALUES (1);

INSERT INTO reuse_tbl VALUES (2);

INSERT INTO reuse_tbl VALUES (3);

--an error occurs when column type is a OID reusable table itself

CREATE TABLE tbl_1 (a reuse_tbl);

ERROR: The class 'reuse_tbl' is marked as REUSE_OID and is non-referable. Non-referable

classes can't be the domain of an attribute and their instances' OIDs cannot be returned.

--an error occurs when a table references a OID reusable table

CREATE TABLE tbl_2

(b int, FOREIGN KEY(b) REFERENCES reuse_tbl(a) ON CACHE OBJECT oid_value);

INSERT INTO tbl_2(b) VALUES(1);

SELECT oid_value.a FROM tbl_2;

ERROR: The class 'reuse_tbl' is marked as REUSE_OID and is non-referable. Non-referable

classes can't be the domain of an attribute and their instances' OIDs cannot be returned.

Caution

• OID reusable tables cannot be referred to by other tables.

• Updatable views cannot be created for OID reusable tables.

• OID reusable tables cannot be specified as class attribute domains of other tables.

• OID values of the objects in the OID reusable tables cannot be read.

• Instance methods cannot be called from OID reusable tables. Also, instance methods cannot be called if a subclass

inherited from the class where the method is defined is defined as an OID reusable table.

• OID reusable tables are supported only by CUBRID 2008 R2.2 or above, and backward compatibility is not

ensured. That is, the database in which the OID reusable table is located cannot be accessed from a lower version

database.

• OID reusable tables can be managed as partitioned tables and can be replicated.

CREATE TABLE LIKE

Description

You can create a table that has the same schema as an existing table by using the CREATE TABLE...LIKE statement.

Column attribute, table constraint, and index are replicated from the existing table. An index name created from the

existing table changes according to a new table name, but an index name defined by a user is replicated as it is.

CUBRID 2008 R4.0 Help

110

Therefore, you should be careful at a query statement that is supposed to use a specific index created by using the

USING INDEX.

You cannot create the column definition because the CREATE TABLE...LIKE statement replicates the schema only.

Syntax

CREATE {TABLE | CLASS} <new_table_name> LIKE <old_table_name>

• new_table_name : A table name to be created.

• old_table_name : The name of the original table that already exists in the database. The following tables cannot be

specified as original tables in the CREATE TABLE…LIKE statement.

• Partition table

• Table that contains an AUTO_INCREMENT column

• Table that uses inheritance or methods

Example

CREATE TABLE a_tbl(

id INT NOT NULL DEFAULT 0 PRIMARY KEY,

phone VARCHAR(10));

INSERT INTO a_tbl VALUES(1,'111-1111'), (2,'222-2222'), (3, '333-3333');

--creating an empty table with the same schema as a_tbl

CREATE TABLE new_tbl LIKE a_tbl;

SELECT * FROM new_tbl;

There are no results.

;schema a_tbl

=== <Help: Schema of a Class> ===

 <Class Name>

 a_tbl

 <Attributes>

 id INTEGER DEFAULT 0 NOT NULL

 phone CHARACTER VARYING(10)

 <Constraints>

 PRIMARY KEY pk_a_tbl_id ON a_tbl (id)

Current transaction has been committed.

;schema new_tbl

=== <Help: Schema of a Class> ===

 <Class Name>

 new_tbl

 <Attributes>

 id INTEGER DEFAULT 0 NOT NULL

 phone CHARACTER VARYING(10)

 <Constraints>

 PRIMARY KEY pk_new_tbl_id ON new_tbl (id)

Current transaction has been committed.

CUBRID SQL Guide

111

CREATE TABLE AS SELECT

Description

You can create a new table that contains the result records of the SELECT statement by using the CREATE

TABLE...AS SELECT statement. You can define column and table constraints for the new table. The following rules

are applied to reflect the result records of the SELECT statement.

• If col_1 is defined in the new table and the same column col_1 is specified in select_statement, the result record of

the SELECT statement is stored as col_1 value in the new table. Type casting is attempted if the column names are

identical but the columns types are different.

• If col_1 and col_2 are defined in the new table, col_1, col_2 and col_3 are specified in the column list of the

select_statement and there is a containment relationship between all of them, col_1, col_2 and col_3 are created in

the new table and the result data of the SELECT statement is stored as values for all columns. Type casting is

attempted if the column names are identical but the columns types are different.

• If columns col_1 and col_2 are defined in the new table and col_1 and col_3 are defined in the column list of

select_statement without any containment relationship between them, col_1, col_2 and col_3 are created in the new

table, the result data of the SELECT statement is stored only for col_1 and col_3 which are specified in

select_statement, and NULL is stored as the value of col_2.

• Column aliases can be included in the column list of select_statement. In this case, new column alias is used as a

new table column name. It is recommended to use an alias because invalid column name is created, if an alias does

not exist when a function calling or an expression is used.

• The REPLACE option is valid only when the UNIQUE constraint is defined in a new table column (col_1). When

duplicate values exist in the result record of select_statement, a UNIQUE value is stored for col_1 if the

REPLACE option has been defined, or an error message is displayed if the REPLACE option is omitted due to

the violation of the UNIQUE constraint.

Syntax

CREATE {TABLE | CLASS} <table_name>

 [(<column_definition> [,<table_constraint>]...)]

 [REPLACE] AS <select_statement>

• table_name : A name of the table to be created.

• column_definition : Defines a column. If it is omitted, the column schema of SELECT statement is replicated;

however, the constraint or the AUTO_INCREMENT attribute is not replicated.

• table_constraint : Defines table constraint.

• select_statement : A SELECT statement targeting a source table that already exists in the database.

Example

CREATE TABLE a_tbl(

id INT NOT NULL DEFAULT 0 PRIMARY KEY,

phone VARCHAR(10));

INSERT INTO a_tbl VALUES(1,'111-1111'), (2,'222-2222'), (3, '333-3333');

--creating a table without column definition

CREATE TABLE new_tbl1 AS SELECT * FROM a_tbl;

SELECT * FROM new_tbl1;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

--all of column values are replicated from a_tbl

CREATE TABLE new_tbl2

(id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, phone VARCHAR) AS SELECT * FROM a_tbl;

SELECT * FROM new_tbl2;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

CUBRID 2008 R4.0 Help

112

--some of column values are replicated from a_tbl and the rest is NULL

CREATE TABLE new_tbl3

(id INT, name VARCHAR) AS SELECT id, phone FROM a_tbl;

SELECT * FROM new_tbl3

 name id phone

===

 NULL 1 '111-1111'

 NULL 2 '222-2222'

 NULL 3 '333-3333'

--column alias in the select statement should be used in the column definition

CREATE TABLE new_tbl4

(id1 int, id2 int)AS SELECT t1.id id1, t2.id id2 FROM new_tbl1 t1, new_tbl2 t2;

SELECT * FROM new_tbl4;

 id1 id2

==========================

 1 1

 1 2

 1 3

 2 1

 2 2

 2 3

 3 1

 3 2

 3 3

--REPLACE is used on the UNIQUE column

CREATE TABLE new_tbl5(id1 int UNIQUE) REPLACE AS SELECT * FROM new_tbl4;

SELECT * FROM new_tbl5;

 id1 id2

==========================

 1 3

 2 3

 3 3

ALTER TABLE

Overview

Description

You can modify the structure of a table by using the ALTER statement. You can perform operations on the target table

such as adding/deleting columns, creating/deleting indexes, and type casting existing columns as well as changing table

names, column names and constraints. TABLE and CLASS are used interchangeably VIEW and VCLASS, and

COLUMN and ATTRIBUTE as well.

You can also change the initial value of AUTO_INCREMENT.

Syntax

ALTER [<class_type>] <table_name> <alter_clause> ;

<class_type> ::= TABLE | CLASS | VCLASS | VIEW

<alter_clause> ::= ADD <alter_add> [INHERIT <resolution_comma_list>] |

 ADD { KEY | INDEX } [index_name] (<index_col_name>) |

 ALTER [COLUMN] column_name SET DEFAULT <value_specifiation> |

 DROP <alter_drop> [INHERIT <resolution_comma_list>] |

 DROP { KEY | INDEX } index_name |

 DROP FOREIGN KEY constraint_name |

 DROP PRIMARY KEY |

 RENAME <alter_rename> [INHERIT <resolution_comma_list>] |

 CHANGE <alter_change> |

 INHERIT <resolution_comma_list>

 AUTO_INCREMENT = <initial_value>

CUBRID SQL Guide

113

<alter_add> ::= [ATTRIBUTE | COLUMN] [(]<class_element_comma_list>[)] [FIRST | AFTER

old_column_name] |

 CLASS ATTRIBUTE <column_definition_comma_list> |

 CONSTRAINT < constraint_name > <column_constraint> (column_name)|

 FILE <file_name_comma_list> |

 METHOD <method_definition_comma_list> |

 QUERY <select_statement> |

 SUPERCLASS <class_name_comma_list>

<alter_change> ::= FILE <file_path_name> AS <file_path_name> |

 METHOD <method_definition_comma_list> |

 QUERY [<unsigned_integer_literal>] <select_statement> |

 <column_name> DEFAULT <value_specifiation>

<alter_drop> ::= [ATTRIBUTE | COLUMN | METHOD]

 <column_name_comma_list> |

 FILE <file_name_comma_list> |

 QUERY [<unsigned_integer_literal>] |

 SUPERCLASS <class_name_comma_list> |

 CONSTRAINT <constraint_name>

<alter_rename> ::= [ATTRIBUTE | COLUMN | METHOD]

 <old_column_name> AS <new_column_name> |

 FUNCTION OF <column_name> AS <function_name>

 FILE <file_path_name> AS <file_path_name>

<resolution> ::= { column_name | method_name } OF <superclass_name>

 [AS alias]

<class_element> ::= <column_definition> | <table_constraint>

<column_constraint> ::= UNIQUE [KEY] | PRIMARY KEY | FOREIGN KEY

<index_col_name> ::=

column_name [(length)] [ASC | DESC]

Caution

The table name can be changed only by the table owner, DBA and DBA members. The other users must be granted to

change the name by the owner or DBA (see Granting Authorization for more information on authorization).

ADD COLUMN Clause

Description

You can add a new column by using the ADD COLUMN clause. You can specify the location of the column to be

added by using the FIRST or AFTER keyword.

If the newly added column has the NOT NULL constraint but no DEFAULT constraint, it will have the hard default

when the database server configuration parameter, add_column_update_hard_default is set to yes. However, when

the parameter is set to no, the column will have NULL even with the NOT NULL constraint.

If the newly added column has the PRIMARY KEY or UNIQUE constraints, an error will be returned when the

database server configuration parameter add_column_update_hard_default is set to yes. When the parameter is set to

no, all data will have NULL. The default value of add_column_update_hard_default is no.

For add_column_update_hard_default and the hard default, see CHANGE Clause.

Syntax

ALTER [TABLE | CLASS | VCLASS | VIEW] table_name

ADD [COLUMN | ATTRIBUTE] [(]<column_definition>[)] [FIRST | AFTER old_column_name]

column_definition ::=

column_name column_type

 { [NOT NULL | NULL] |

 [{ SHARED <value_specification> | DEFAULT <value_specification> }

 | AUTO_INCREMENT [(seed, increment)]] |

CUBRID 2008 R4.0 Help

114

 [UNIQUE [KEY] |

 [PRIMARY KEY | FOREIGN KEY REFERENCES

 [referenced_table_name](column_name_comma_list)

 [<referential_triggered_action> ...]

]

] } ...

<referential_triggered_action> ::=

{ ON UPDATE <referential_action> } |

{ ON DELETE <referential_action> } |

{ ON CACHE OBJECT cache_object_column_name }

<referential_action> ::=

CASCADE | RESTRICT | NO ACTION | SET NULL

• table_name : Specifies the name of a table that has a column to be added.

• column_definition : Specifies the name, data type, and constraints of a column to be added.

• AFTER oid_column_name : Specifies the name of an existing column before the column to be added.

Example

CREATE TABLE a_tbl;

ALTER TABLE a_tbl ADD COLUMN age INT DEFAULT 0 NOT NULL;

INSERT INTO a_tbl(age) VALUES(20),(30),(40);

ALTER TABLE a_tbl ADD COLUMN name VARCHAR FIRST;

ALTER TABLE a_tbl ADD COLUMN id INT NOT NULL AUTO_INCREMENT UNIQUE;

ALTER TABLE a_tbl ADD COLUMN phone VARCHAR(13) DEFAULT '000-0000-0000' AFTER name;

SELECT * FROM a_tbl;

 name phone age id

==

 NULL '000-0000-0000' 20 NULL

 NULL '000-0000-0000' 30 NULL

 NULL '000-0000-0000' 40 NULL

--adding multiple columns

ALTER TABLE a_tbl ADD COLUMN (age1 int, age2 int, age3 int);

ADD CONSTRAINT Clause

Description

You can add a new constraint by using the ADD CONSTRAINT clause.

By default, the index created when you add PRIMARY KEY constraints is created in ascending order, and you can

define the key sorting order by specifying the ASC or DESC keyword next to the column name.

Syntax

ALTER [TABLE | CLASS | VCLASS | VIEW] table_name

ADD CONSTRAINT < constraint_name > column_constraint (column_name_comma_list)

column_constraint ::=

UNIQUE [KEY] |

PRIMARY KEY |

FOREIGN KEY [<foreign_key_name>] REFERENCES

[referenced_table_name](column_name_comma_list)

 [<referential_triggered_action> ...]

<referential_triggered_action> ::=

{ ON UPDATE <referential_action> } |

{ ON DELETE <referential_action> } |

{ ON CACHE OBJECT cache_object_column_name }

<referential_action> ::=

CASCADE | RESTRICT | NO ACTION | SET NULL

• table_name : Specifies the name of a table that has a constraint to be added.

CUBRID SQL Guide

115

• constraint_name : Specifies the name of a constraint to be added, or it can be omitted. If omitted, a name is

automatically assigned.

• foreign_key_name : Specifies a name of the FOREIGN KEY constraint. You can skip the name specification.

However, if you specify this value, constraint_name will be ignored, and the specified value will be used.

• column_constraint : Defines a constraint for the specified column. For more information, see Constraint Definition.

Example

ALTER TABLE a_tbl ADD CONSTRAINT PRIMARY KEY(id);

ALTER TABLE a_tbl ADD CONSTRAINT PRIMARY KEY(id, no DESC);

ALTER TABLE a_tbl ADD CONSTRAINT UNIQUE u_key1(id);

ADD INDEX Clause

Description

You can define the index attributes for a specific column by using the ADD INDEX clause.

Syntax

ALTER [TABLE | CLASS] table_name ADD { KEY | INDEX } [index_name] (<index_col_name>)

<index_col_name> ::=

column_name [(length)] [ASC | DESC]

• table_name : Specifies the name of a table to be modified.

• index_name : Specifies the name of an index. If omitted, a name is automatically assigned.

• index_col_name : Specifies the column that has an index to be defined. ASC or DESC can be specified for a

column option; prefix_length of an index key also can be specified for a column option.

Example

ALTER TABLE a_tbl ADD INDEX (age ASC), ADD INDEX(phone DESC);

;schema a_tbl

=== <Help: Schema of a Class> ===

 <Class Name>

 a_tbl

<Attributes>

 name CHARACTER VARYING(1073741823) DEFAULT ''

 phone CHARACTER VARYING(13) DEFAULT '111-1111'

 age INTEGER

 id INTEGER AUTO_INCREMENT NOT NULL

 <Constraints>

 UNIQUE u_a_tbl_id ON a_tbl (id)

 INDEX i_a_tbl_age ON a_tbl (age)

 INDEX i_a_tbl_phone_d ON a_tbl (phone DESC)

Current transaction has been committed.

ALTER COLUMN ... SET DEFAULT Clause

Description

You can specify a new default value for a column that has no default value or modify the existing default value by using

the ALTER COLUMN … SET DEFAULT. You can use the CHANGE clause to change the default value of multiple

columns with a single statement. For more information, see the CHANGE Clause.

CUBRID 2008 R4.0 Help

116

Syntax

ALTER [TABLE | CLASS] table_name ALTER [COLUMN] column_name SET DEFAULT value

• table_name : Specifies the name of a table that has a column whose default value is to be modified.

• column_name : Specifies the name of a column whose default value is to be modified.

• value : Specifies a new default value.

Example

;schema a_tbl

=== <Help: Schema of a Class> ===

 a_tbl

<Attributes>

 name CHARACTER VARYING(1073741823)

 phone CHARACTER VARYING(13) DEFAULT '000-0000-0000'

 age INTEGER

 id INTEGER AUTO_INCREMENT NOT NULL

<Constraints>

 UNIQUE u_a_tbl_id ON a_tbl (id)

Current transaction has been committed.

ALTER TABLE a_tbl ALTER COLUMN name SET DEFAULT '';

ALTER TABLE a_tbl ALTER COLUMN phone SET DEFAULT '111-1111';

;schema a_tbl

=== <Help: Schema of a Class> ===

 <Class Name>

 a_tbl

 <Attributes>

 name CHARACTER VARYING(1073741823) DEFAULT ''

 phone CHARACTER VARYING(13) DEFAULT '111-1111'

 age INTEGER

 id INTEGER AUTO_INCREMENT NOT NULL

 <Constraints>

 UNIQUE u_a_tbl_id ON a_tbl (id)

AUTO_INCREMENT Clause

Description

The AUTO_INCREMENT clause can change the initial value of the increment value that is currently defined.

However, there should be only one AUTO_INCREMENT column defined.

Syntax

ALTER TABLE table_name AUTO_INCREMENT = initial_value;

• table_name : Table name

• initial_value : Initial value to alter

Example

CREATE TABLE t (i int AUTO_INCREMENT);

ALTER TABLE t AUTO_INCREMENT = 5;

-- when 2 AUTO_INCREMENT constraints are defined on one table, it returns error.

CREATE TABLE t (i int AUTO_INCREMENT, j int AUTO_INCREMENT);

CUBRID SQL Guide

117

ALTER TABLE t AUTO_INCREMENT = 5;

ERROR: To avoid ambiguity, the AUTO_INCREMENT table option requires the table to have

exactly one AUTO_INCREMENT column and no seed/increment specification.

Caution

You must be careful not to violate constraints (such as a PRIMARY KEY or UNIQUE) when you alter the initial value

of AUTO_INCREMENT.

CHANGE/MODIFY Clause

Description

The CHANGE clause changes column names or changes the types and the attributes. If the existing column name and a

new column name are the same, only the type and the attribute will be changed. The following is an example in which

the name of a column is changed using the CHANGE clause.

CREATE TABLE t1 (a INTEGER);

ALTER TABLE t1 CHANGE a b INTEGER;

The following is an example of changing the attribute of a column using the CHANGE clause.

ALTER TABLE t1 CHANGE a a INTEGER NOT NULL;

The MODIFY clause can modify the types and the attributes of columns but can not change the names. The following

is an example in which the attribute of a column is changed using the MODIFY clause.

ALTER TABLE t1 MODIFY a INTEGER NOT NULL;

If you set the type and the attribute to apply to a new column with the CHANGE clause or the MODIFY clause, the

attribute that is currently defined will not be passed to the attribute of the new column. The following statement changes

col1 to the BIGINT type but doesn't include the "DEFAULT 1" attribute defined in the existing column.

CREATE TABLE t1 (col1 INT DEFAULT 1);

ALTER TABLE t1 MODIFY col1 BIGINT;

To include the "DEFAULT 1" attribute in the above example, you should write the following:

ALTER TABLE t1 MODIFY col1 BIGINT DEFAULT 1;

When you change data types using the CHANGE clause or the MODIFY clause, the data can be modified. For

example, if you decrease the length of a column, the character string can be truncated so you must be careful.

Note that the CHANGE syntax used in CUBRID 2008 R3.1 and the earlier versions is no longer supported.

Syntax

ALTER TABLE tbl_name table_options;

table_options :

 table_option[, table_option]

table_option :

 CHANGE [COLUMN | CLASS ATTRIBUTE] old_col_name new_col_name column_definition

 [FIRST | AFTER col_name]

 | MODIFY [COLUMN | CLASS ATTRIBUTE] col_name column_definition

 [FIRST | AFTER col_name]

• tbl_name : Specifies the name of the table including the column to change.

• old_col_name : Specifies the existing column name.

• new_col_name : Specifies the column name to change

• column_definition : Specifies the type and the attribute of the column to change.

• col_name : Specifies the column name to which the type and the attribute of the column to change applies.

CUBRID 2008 R4.0 Help

118

Syntax Operation According to Column Attributes

• Type Change : If the value of the system parameter alter_table_change_type_strict is set to no, then changing

values to other types is allowed, but if it is set to yes then changing is not allowed. The default value of the

parameter is no. You can change values to all types allowed by the CAST function. Changing object types is

allowed only by the upper classes (tables) of the objects.

• NOT NULL

• If the NOT NULL constraint is not specified, it will be removed from a new table even though it is present in the

existing table.

• If the NOT NULL constraint is specified in the column to change, the result varies depending on the configuration

of the system parameter, alter_table_change_type_strict.

• If alter_table_change_type_strict is set to yes, the column values will be checked. If NULL exists, an error will

occur, and the change will not be executed.

• If the alter_table_change_type_strict is set to no, every existing NULL value will be changed to a hard default

value of the type to change.

• DEFAULT : If the DEFAULT attribute is not specified in the column to change, it will be removed from a new

table even though it is present in the existing table.

• AUTO_INCREMENT : If the AUTO_INCREMENT attribute is not specified in the column to change, it will be

removed from a new table even though it is present in the existing table.

• FOREIGN KEY : You can not change the column with the foreign key constraint that is referred to or refers to.

• Single Column PRIMARY KEY

• If the PRIMARY KEY constraint is specified in the column to change, a PRIMARY KEY is re-created only in

which a PRIMARY KEY constraint exists in the existing column and the type is upgraded.

• If the PRIMARY KEY constraint is specified in the column to change but doesn't exists in the existing column, a

PRIMARY KEY will be created.

• If a PRIMARY KEY constraint exists but is not specified in the column to change, the PRIMARY KEY will be

maintained.

• Multicolumn PRIMARY KEY : If the PRIMARY KEY constraint is specified and the type is upgraded, a

PRIMARY KEY will be re-created.

• Single Column UNIQUE KEY

• If the type is upgraded, a UNIQUE KEY will be re-created.

• If a UNIQUE KEY exists in the existing column and it is not not specified in the column to change, it will be

maintained.

• If a UNIQUE KEY exists in the existing column to change, it will be created.

• Multicolumn UNIQUE KEY : If the column type is changed, an index will be re-created.

• Column with a Non-unique Index : If the column type is changed, an index will be re-created.

• Partition Column: If a table is partitioned by a column, the column can not be changed. Partitions can not be added.

• Column with a Class Hierarchy : You can only change the tables that do not have a lower class. You can not change

the lower class that inherits from an uppder class. You can not change the inherited attributes.

• Trigger and View : You must redefine triggers and views directly because they are not changed according to the

definition of the column to change.

• Column Sequence : You can change the sequence of columns.

• Name Change : You can change names as long as they do not conflict.

Syntax Operation According to the System Parameter, alter_table_change_type_strict

The alter_table_change_type_strict parameter determines whether the value conversion is allowed according to the

type change. If the value is no, it can be changed when you change a column type or add a NOT NULL constraint. The

default value is no.

When the value of the parameter, alter_table_change_type_strict is no, it will operate depending on the conditions as

follows:

• Overflow Occurred while Converting Numbers or Character Strings to Numbers: The minimum value or the

maximum value are specified according to the result type conditions, and the warning message will be recorded in

the log for the record where overflow has occurred.

• If input values are numbers, their signs will be written to the log.

CUBRID SQL Guide

119

• If input values are character strings, the signs of the values converted to DOUBLE types will be written in the log.

• Character Strings to Convert to Shorter Ones: The record will be updated to the hard default value of the type that is

defined and the warning message will be recorded in a log.

• Conversion Failure Due to Other Reasons : The record will be updated to the hard default value of the type that is

defined and the warning message will be recorded in a log.

If the value of the alter_table_change_type_strict parameter is yes, an error message will be displayed and the changes

will be rolled back.

The ALTER CHANGE statement checks the possibility of type conversion before updating a record but the type

conversion of specific values may fail. For example, if the value format is not correct when you convert VARCHAR to

DATE, the conversion may fail. In this case, the hard default value of the DATE type will be assigned.

The hard default value is a value that will be used when you add columns with the ALTER TABLE â€¦

ADD COLUMN statement, add or change by converting types with the ALTER TABLE â€¦ CHANGE/MODIFY

statement. The operation will vary depending on the system parameter, add_column_update_hard_default in the

ADD COLUMN statement.

Hard Default Value by Type

Type Existence of Hard Default Value Hard Default Value

INTEGER Yes 0

FLOAT Yes 0

DOUBLE ìœ 0

SMALLINT Yes 0

DATE Yes date'01/01/0001'

TIME Yes time'00:00'

DATETIME Yes datetime'01/01/0001 00:00'

TIMESTAMP Yes timestamp'00:00:00 PM

01/01/1970'

MONETARY Yes 0

NUMERIC Yes 0

CHAR Yes ''

VARCHAR Yes ''

NCHAR Yes N''

VARNCHAR Yes N''

SET Yes {}

MULTISET Yes {}

SEQUENCE Yes {}

BIGINT Yes 0

BIT Yes

VARBIT No

OBJECT No

BLOB No

CLOB No

ELO No

CUBRID 2008 R4.0 Help

120

Example 1

-- changing the name and position of a column

CREATE TABLE t1(i1 int,i2 int);

INSERT INTO t1 VALUE (1,11),(2,22),(3,33);

SELECT * FROM t1 ORDER BY 1;

 i1 i2

==========================

 1 11

 2 22

 3 33

ALTER TABLE t1 CHANGE i2 i0 INTEGER FIRST;

SELECT * FROM t1 ORDER BY 1;

 i0 i1

==========================

 11 1

 22 2

 33 3

Example 2

-- adding NOT NULL constraint (strict)

-- alter_table_change_type_strict=yes

CREATE TABLE t1(i int);

INSERT INTO t1 values (11),(NULL),(22);

ALTER TABLE t1 change i i1 integer not null;

In the command from line 1,

ERROR: Cannot add NOT NULL constraint for attribute "i1": there are existing NULL values

for this attribute.

Example 3

-- adding NOT NULL constraint

-- alter_table_change_type_strict=no

CREATE TABLE t1(i int);

INSERT INTO t1 VALUES (11),(NULL),(22);

ALTER TABLE t1 CHANGE i i1 INTEGER NOT NULL;

SELECT * FROM t1;

 i1

=============

 22

 0

 11

Example 4

-- change the column's data type (no errors)

CREATE TABLE t1 (i1 int);

INSERT INTO t1 VALUES (1),(-2147483648),(2147483647);

ALTER TABLE t1 CHANGE i1 s1 CHAR(11);

SELECT * FROM t1;

 s1

======================

 '2147483647 '

 '-2147483648'

 '1 '

CUBRID SQL Guide

121

Example 5

-- change the column's data type (errors), strict mode

-- alter_table_change_type_strict=yes

CREATE TABLE t1 (i1 int);

INSERT INTO t1 VALUES (1),(-2147483648),(2147483647);

ALTER TABLE t1 CHANGE i1 s1 CHAR(4);

In the command from line 1,

ERROR: ALTER TABLE .. CHANGE : changing to new domain : cast failed, current configuration

doesn't allow truncation or overflow.

-- change the column's data type (errors)

-- alter_table_change_type_strict=no

CREATE TABLE t1 (i1 INT);

INSERT INTO t1 VALUES (1),(-2147483648),(2147483647);

ALTER TABLE t1 CHANGE i1 s1 CHAR(4);

SELECT * FROM t1;

 s1

======================

 ' '

 ' '

 '1 '

-- hard default values have been placed instead of signaling overflow

RENAME COLUMN Clause

Description

You can change the name of the column by using the RENAME COLUMN clause.

Syntax

ALTER [TABLE | CLASS | VCLASS | VIEW] table_name

RENAME [COLUMN | ATTRIBUTE] old_column_name { AS | TO } new_column_name

• table_type : Specifies the name of a table that has a column to be renamed.

• old_column_name : Specifies the name of a column.

• new_column_name : Specifies a new column name after the AS keyword.

Example

ALTER TABLE a_tbl RENAME COLUMN name AS name1

DROP COLUMN Clause

Description

You can delete a column in a table by using the DROP COLUMN clause. You can specify multiple columns to delete

simultaneously by separating them with commas (,).

Syntax

ALTER [TABLE | CLASS | VCLASS | VIEW] table_name

DROP [COLUMN | ATTRIBUTE] column_name, ...

• table_name : Specifies the name of a table that has a column to be deleted.

• column_ name : Specifies the name of a column to be deleted. Multiple columns can be specified by separating

them with commas (,).

CUBRID 2008 R4.0 Help

122

Example

ALTER TABLE a_tbl DROP COLUMN age1,age2,age3;

DROP CONSTRAINT Clause

Description

You can drop the constraints pre-defined for the table, such as UNIQUE, PRIMARY KEY and FOREIGN KEY by

using the DROP CONSTRAINT clause. In this case, you must specify a constraint name. You can check these names

by using the CSQL command (;schema table_name).

Syntax

ALTER [TABLE | CLASS] table_name

DROP CONSTRAINT constraint_name

• table_name : Specifies the name of a table that has a constraint to be dropped.

• constraint_name : Specifies the name of a constraint to be dropped.

Example

ALTER TABLE a_tbl DROP CONSTRAINT pk_a_tbl_id;

ALTER TABLE a_tbl DROP CONSTRAINT fk_a_tbl_id;

ALTER TABLE a_tbl DROP CONSTRAINT u_a_tbl_id;

DROP INDEX Clause

Description

You can delete an index defined for a column by using the DROP INDEX clause.

Syntax

ALTER [TABLE | CLASS] table_name DROP INDEX index_name

• table_name : Specifies the name of a table that has an index attribute to be deleted.

• index_name : Specifies the name of an index to be deleted.

Example

ALTER TABLE a_tbl DROP INDEX i_a_tbl_age;

DROP PRIMARY KEY Clause

Description

You can delete a primary key constraint defined for a table by using the DROP PRIMARY KEY clause. You do have

to specify the name of the primary key constraint because only one primary key can be defined by table.

Syntax

ALTER [TABLE | CLASS] table_name DROP INDEX PRIMARY KEY

• table_name : Specifies the name of a table that has a primary key constraint to be deleted.

Example

ALTER TABLE a_tbl DROP PRIMARY KEY;

DROP FOREIGN KEY Clause

Description

You can drop a foreign key constraint defined for a table using the DROP FOREIGN KEY clause.

CUBRID SQL Guide

123

Syntax

ALTER [TABLE | CLASS] table_name DROP FOREIGN KEY constraint_name

• table_name : Specifies the name of a table whose constraint is to be deleted.

• constraint_name : Specifies the name of foreign key constraint to be deleted.

Example

ALTER TABLE a_tbl DROP FOREIGN KEY fk_a_tbl_id;

DROP TABLE

Description

You can drop an existing table by the DROP statement. Multiple tables can be dropped by a single DROP statement.

All rows of table are also dropped. If you use it together with the IF EXISTS statement, you can prevent errors from

occurring and specify multiple tables in one statement.

Syntax

DROP [TABLE | CLASS] [IF EXISTS] <table_specification_comma_list>

<table_specification_comma_list> ::=

<single_table_spec> | (<table_specification_comma_list>)

<single_table_spec> ::=

|[ONLY] table_name

| ALL table_name [(EXCEPT table_name, ...)]

• table_name : Specifies the name of the table to be dropped. You can delete multiple tables simultaneously by

separating them with commas.

• If a super class name is specified after the ONLY keyword, only the super class, not the subclasses inheriting from

it, is deleted. If a super class name is specified after the ALL keyword, the super classes as well as the subclasses

inheriting from it are all deleted. You can specify the list of subclasses not to be deleted after the EXCEPT

keyword.

• If subclasses that inherit from the super class specified after the ALL keyword are specified after the EXCEPT

keyword, they are not deleted.

Example

DROP TABLE history ;

CREATE TABLE t (i INT);

-- DROP TABLE IF EXISTS

DROP TABLE IF EXISTS history, t;

 2 command(s) successfully processed.

 SELECT * FROM t; In line 1, column 10, ERROR: Unknown class "t".

RENAME TABLE

Description

You can change the name of a table by using the RENAME TABLE statement and specify a list of the table name to

change the names of multiple tables. You can use TO instead of AS.

Syntax

RENAME [TABLE | CLASS | VIEW | VCLASS] old_table_name { AS | TO } new_table_name [,

old_table_name { AS | TO } new_table_name, ...]

• old_table_name : Specifies the old table name to be renamed.

• new_table_name : Specifies a new table name.

CUBRID 2008 R4.0 Help

124

Example

RENAME TABLE a_tbl AS aa_tbl;

RENAME TABLE a_tbl TO aa_tbl, b_tbl TO bb_tbl;

Caution

The table name can be changed only by the table owner, DBA and DBA members. The other users must be granted to

change the name by the owner or DBA (see Granting Authorization for more information on authorization).

CUBRID SQL Guide

125

Index Definition

CREATE INDEX

Description

Use the CREATE INDEX statement to create an index in the specified table.

Syntax

CREATE [REVERSE] [UNIQUE] INDEX [index_name]

ON table_name (column_name[(prefix_length)] [ASC | DESC] [{, column_name[(prefix_length)]

[ASC | DESC]} ...]) [;]

• REVERSE : Creates an index in the reverse order. A reverse index helps to increase sorting speed in descending

order.

• UNIQUE : Creates an index with unique values.

• index_name : Specifies the name of the index to be created. The index name must be unique in the table. If omitted,

a name is automatically assigned.

• prefix_length : When you specify an index for character- or bit string-type column, you can create an index by

specifying the beginning part of the column name as a prefix. You can specify the length of the prefix in bytes in

parentheses next to the column name. You cannot specify prefix_length in a multiple column index or a UNIQUE

index. It is impossible to create an index by specifying prefix_length as a host variable. If you want to guarantee the

query result order in the index in which prefix_length is specified, you must specify the ORDER BY clause.

• table_name : Specifies the name of the table where the index is to be created.

• column_name : Specifies the name of the column where the index is to be applied. To create a composite index,

specify two or more column names.

• ASC | DESC : Specifies the sorting order of columns. In case of a REVERSE index, ASC is ignored and DESC is

applied.

Example 1

The following is an example of creating a reverse index.

CREATE REVERSE INDEX gold_index ON participant(gold);

Example 2

The following is an example of creating a multiple column index.

CREATE INDEX name_nation_idx ON athlete(name, nation_code);

CREATE INDEX game_date_idx ON game(game_date);

Example 3

The following is an example of creating a single column index. In this example, 1-byte long prefix is specified for the

nation_code column when creating an index.

CREATE INDEX ON game(nation_code(1));

CREATE INDEX game_date_idx ON game(game_date);

ALTER INDEX

Description

Use the ALTER INDEX statement to rebuild an index. (That is, drop and rebuild an index.) There are the following

two ways to specify an index to be rebuilt:

• Specifying it as the name of the index

• Specifying it as the name of the table or the column where the index is specified

CUBRID 2008 R4.0 Help

126

Syntax

ALTER [REVERSE] [UNIQUE] INDEX index_name

[ON { ONLY } table_name (column_name [{, column_name } ...)] REBUILD [;]

ALTER [REVERSE] [UNIQUE] INDEX

ON { ONLY } table_name (column_name [{, column_name } ...) REBUILD [;]

• REVERSE : Creates an index in the reverse order. A reverse index helps to increase sorting speed in descending

order.

• UNIQUE : Creates an index with unique values.

• index_name : Specifies the name of the index to be altered. The index name must be unique in the table.

• table_name : Specifies the name of the table where the index is to be created.

• column_name : Specifies the name of the column where the index is to be applied. To create a multiple column

index, specify two or more column names.

Example

The following are examples of many ways of re-creating indexes:

ALTER INDEX i_game_medal ON game(medal) REBUILD;

ALTER INDEX game_date_idx REBUILD;

DROP INDEX

Description

Use the DROP INDEX statement to drop an index. There are the following two ways to specify the index to be dropped:

• To specify the name of the index

• To specify the name of the table or the column where the index is specified

Syntax

DROP [REVERSE] [UNIQUE] INDEX index_name

[ON table_name (column_name [{, column_name } ...)] []

DROP [REVERSE] [UNIQUE] INDEX

 ON table_name (column_name [{, column_name } ...) []

• REVERSE : Specifies that the index to be dropped is a reverse index.

• UNIQUE : Specifies that the index to be dropped is a unique index.

• index_name : Specifies the name of the index to be dropped.

• table_name : Specifies the name of the table whose index is to be dropped.

• column_name : Specifies the name of the column whose index is to be dropped.

Example

The following are examples of many ways of dropping indexes:

DROP INDEX ON game(medal)

DROP INDEX game_date_idx

DROP REVERSE INDEX gold_index ON participant(gold)

DROP INDEX name_nation_idx ON athlete(name, nation_code)

CUBRID SQL Guide

127

VIEW

CREATE VIEW

Overview

Description

A view is a virtual table that does not exist physically. You can create a view by using an existing table or a query.

VIEW and VCLASS are used interchangeably.

Use CREATE VIEW statement to create a view.

Syntax

CREATE [OR REPLACE] {VIEW | VCLASS} <view_name>

 [<subclass_definition>]

 [(<view_column_def_comma_list>)]

 [CLASS ATTRIBUTE

 (<column_definition_comma_list>)]

 [METHOD <method_definition_comma_list>]

 [FILE <method_file_comma_list>]

 [INHERIT <resolution_comma_list>]

 [AS <select_statement>]

 [WITH CHECK OPTION]

<view_column_definition> ::= <column_definition> | <column_name>

<column_definition> :

column_name column_type [<default_or_shared>] [<column_constraint_list>]

<default_or_shared> :

{SHARED [<value_specification>] | DEFAULT <value_specification> } |

AUTO_INCREMENT [(seed, increment)]

<column_constraint> :

NOT NULL | UNIQUE | PRIMARY KEY | FOREIGN KEY REFERENCES...

<subclass_definition> :

{ UNDER | AS SUBCLASS OF } table_name_comma_list

<method_definition> :

[CLASS] method_name

[([argument_type_comma_list])]

[result_type]

[FUNCTION function_name]

<resolution> :

[CLASS] { column_name | method_name } OF superclass_name

[AS alias]

• OR REPLACE : If the keyword OR REPLACE is specified after CREATE, the existing virtual table is replaced

by a new one without displaying any error message, even when the view_name overlaps with the existing virtual

table name.

• view_name : Specify the name of the table to be created. Must be unique in the database.

• view_column_definition

• column_name : Defines a column of the virtual table.

• column_type : Specifies the data type of the column.

AS select_statement : A valid SELECT statement must be specified. A virtual table is created on this basis.

WITH CHECK OPTION : If this option is specified, the update or insert operation is possible only when the condition

specified in the WHERE clause of the select_statement is satisfied. Therefore, this option is used to disallow the update

of a virtual table that violates the condition.

CUBRID 2008 R4.0 Help

128

Example

CREATE TABLE a_tbl(

id INT NOT NULL,

phone VARCHAR(10));

INSERT INTO a_tbl VALUES(1,'111-1111'), (2,'222-2222'), (3, '333-3333'), (4, NULL), (5,

NULL);

--creating a new view based on AS select_statement from a_tbl

CREATE VIEW b_view AS SELECT * FROM a_tbl WHERE phone IS NOT NULL WITH CHECK OPTION;

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

--WITH CHECK OPTION doesn‟t allow to update column value which violates WHERE clause

UPDATE b_view SET phone=NULL;

In line 1, column 72,

ERROR: Check option exception on view b_view.

--creating view which name is as same as existing view name

CREATE OR REPLACE VIEW b_view AS SELECT * FROM a_tbl ORDER BY id DESC;

--the existing view has been replaced as a new view by OR REPLACE keyword

SELECT * FROM b_view;

 id phone

===================================

 5 NULL

 4 NULL

 3 '333-3333'

 2 '222-2222'

 1 '111-1111'

Condition for Creating Updatable VIEW

Description

To update data in a virtual table, it must be updatable because an option is needed to define data.

A virtual table is updatable if it satisfies the following conditions:

• The FROM clause must include only one table or updatable virtual table. However, two tables included in

parentheses as in FROM (class_x, class_y) can be updated because they represent one table.

• The DISTINCT or UNIQUE statement must not be included.

• The GROUP BY... HAVING statement must not be included.

• Aggregate functions such as SUM() or AVG() must not be included.

• The entire query must consist of queries that can be updated by UNION ALL, not by UNION. However, the table

must exist only in one of the queries that constitute UNION ALL.

• If an row is inserted into a virtual table created by using the UNION ALL statement, the system determines which

table the row will be inserted into. This cannot be done by the user. To control this, the user must manually insert

the row or create a separate virtual table for insertion.

Even when all rules above are satisfied, each column of the updatable virtual table may not be updatable. For a column

to be updatable, the following rules must be observed:

• Path expressions must not be updatable.

• Columns of number type with an arithmetic operator must not be updatable.

Even though the column defined in the virtual table is updatable, the virtual table can be updated only when there is an

appropriate update privilege granted on the table included in the FROM clause. Also, there must be an access privilege

CUBRID SQL Guide

129

on the virtual table. The way to grant an access privilege on a virtual table is the same as on a table. For more

information on granting authorizations, see the Granting Authorization section.

ALTER VIEW

ADD QUERY Clause

Description

You can add a new query to a query specification by using the ADD QUERY clause of the ALTER VIEW statement.

1 is assigned to the query defined when a virtual table was created, and 2 is assigned to the query added by the ADD

QUERY clause.

Syntax

ALTER [VIEW | VCLASS] view_name

ADD QUERY select_statement

[INHERIT resolution [{, resolution }_]]

resolution :

{ column_name | method_name } OF super class_name [AS alias]

• view_name : Specifies the name of the virtual table where the query is to be added.

• select_statement : Specifies the query to be added.

Example

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 4 NULL

 5 NULL

ALTER VIEW b_view ADD QUERY SELECT * FROM a_tbl WHERE id IN (1,2);

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 4 NULL

 5 NULL

 1 '111-1111'

 2 '222-2222'

AS SELECT Clause

Description

You can change the SELECT query defined in the virtual table by using the AS SELECT clause in the ALTER VIEW

statement. This function is working like the CREATE OR REPLACE statement. You can also change the query by

specifying the query number 1 in the CHANGE QUERY clause of the ALTER VIEW statement.

Syntax

ALTER [VIEW | VCLASS] view_name AS select_statement

• view_name : Specifies the name of the virtual table to be modified.

CUBRID 2008 R4.0 Help

130

• select_statement : Specifies the new query statement to replace the SELECT statement defined when the virtual

table is created.

Example

ALTER VIEW b_view AS SELECT * FROM a_tbl WHERE phone IS NOT NULL;

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

CHANGE QUERY Clause

Description

You can change the query defined in the query specification by using the CHANGE QUERY clause reserved word of

the ALTER VIEW statement.

Syntax

ALTER [VIEW | VCLASS] view_name

 CHANGE QUERY [integer] select_statement [;]

• view_name : Specifies the name of the virtual table to be changed.

• integer : Specifies the number value of the query to be changed. The default value is 1.

• select_statement : Specifies the new query that will replace the query whose query number is integer.

Example

--adding select_statement which query number is 2 and 3 for each

ALTER VIEW b_view ADD QUERY SELECT * FROM a_tbl WHERE id IN (1,2);

ALTER VIEW b_view ADD QUERY SELECT * FROM a_tbl WHERE id = 3;

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 4 NULL

 5 NULL

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

--altering view changing query number 2

ALTER VIEW b_view CHANGE QUERY 2 SELECT * FROM a_tbl WHERE phone IS NULL;

SELECT * FROM b_view;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 4 NULL

 5 NULL

 4 NULL

 5 NULL

 3 '333-3333'

DROP QUERY Clause

Description

You can drop a query defined in the query specification by using the DROP QUERY of the ALTER VIEW statement.

CUBRID SQL Guide

131

Example

ALTER VIEW b_view DROP QUERY 2,3;

SELECT * FROM b_view;

;xr

=== <Result of SELECT Command in Line 1> ===

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 4 NULL

 5 NULL

5 rows selected.

DROP VIEW

Description

You can drop a view by using the DROP VIEW clause. The way to drop a view is the same as to drop a regular table.

Syntax

DROP [VIEW | VCLASS] view_name [{ ,view_name , ... }]

• view_name : Specifies the name of the virtual table to be dropped.

Example

DROP VIEW b_view;

RENAME VIEW

Description

You can change the name of a virtual table by using the RENAME VIEW statement.

Syntax

RENAME [TABLE |CLASS | VIEW | VCLASS] old_view_name AS new_view_name [;]

• old_view_name : Specifies the name of the table to be modified.

• new_view_name : Specifies the new name of the virtual table.

Example

The following is an example of renaming a view name to game_2004.

RENAME VIEW game_2004 AS info_2004;

CUBRID 2008 R4.0 Help

132

SERIAL

CREATE SERIAL

Serial is an object that creates a unique sequence number, and has the following characteristics.

• The serial is useful in creating a unique sequence number in multi-user environment.

• Generated serial numbers are not related with table so, you can use the same serial in multiple tables.

• All users including public can create a serial object. Once it is created, all users can get the number by using

CURRENT_VALUE and NEXT_VALUE.

• Only owner of a created serial object and dba can update or delete a serial object. If an owner is public, all users

can update or delete it.

Description

You can create a serial object in the database by using the CREATE SERIAL statement.

Syntax

CREATE SERIAL serial_name

[START WITH initial]

[INCREMENT BY interval]

[MINVALUE min | NOMINVALUE]

[MAXVALUE max | NOMAXVALUE]

[CACHE integer | NOCACHE]

• serial_identifier : Specifies the name of the serial to be generated.

• START WITH initial : Specifies the initial value of serial with 38 digits or less. In the ascending serial, that is its

minimum value. In the descending serial, this is its maximum value.

• INCREMENT BY interval : Specifies the increment of the serial. You can specify any integer with 38 digits or

less except for zero at interval. The absolute value of the interval must be smaller than the difference between

MAXVALUE and MINVALUE. If a negative number is specified, the serial is in descending order otherwise, it is

in ascending order. The default value is 1.

• MINVALUE : Specifies the minimum value of the serial, with 38 digits or less. MINVALUE must be smaller than

or equal to the initial value and smaller than the maximum value.

• NOMINVALUE : 1 is set automatically as a minimum value for the ascending serial -(10)38 for the descending

serial.

• MAXVALUE : Specifies the maximum number of the serial with 38 digits or less. MAXVALUE must be smaller

than or equal to the initial value and greater than the minimum value.

• NOMAXVALUE : (10)37 is set automatically as a maximum value for the ascending serial -1 for the descending

serial.

• CYCLE : Specifies that the serial will be generated continuously after reaching the maximum or minimum value.

When a serial in ascending order reaches the maximum value, the minimum value is created as the next

value; when a serial in descending order reaches the minimum value, the maximum value is created as the next

value.

• NOCYCLE : Specifies that the serial will not be generated any more after reaching the maximum or minimum

value. The default value is NOCYCLE.

• CACHE : Saves as many serials as the number specified by "integer" in the cache to improve the performance of

the serials and fetches a serial value when one is requested. If all cached values are used up, as many serials as

"integer" are fetched again from the disk to the memory. If the database server stops accidently, all cached serial

values are deleted. For this reason, the serial values before and after the restart of the database server may be

discontinuous. Because the transaction rollback dose not affect the cached serial values, the request for the next

serial will return the next value of the value used (or fetched) lastly when the transaction is rolled back. The

"integer" after the CACHE keyword cannot be omitted. If the "integer" is equal to or smaller than 1, the serial

cache is not applied.

• NOCACHE : Does not use the serial cache feature. The serial value is updated every time and a new serial value is

fetched from the disk upon each request.

CUBRID SQL Guide

133

Example 1

--creating serial with default values

CREATE SERIAL order_no;

--creating serial within a specific range

CREATE SERIAL order_no START WITH 10000 INCREMENT BY 2 MAXVALUE 20000;

--creating serial with specifying the number of cached serial values

CREATE SERIAL order_no START WITH 10000 INCREMENT BY 2 MAXVALUE 20000 CACHE 3;

--selecting serial information from the db_serial class

SELECT * FROM db_serial;

 name current_val increment_val max_val min_val c

yclic started cached_num att_name

==

==

'order_no' 10006 2 20000 10000

 0 1 3 NULL

Example 2

The following is an example of creating the athlete_idx table to save athlete codes and names and then creating an

instance by using the order_no. NEXT_VALUE increases the serial number and returns its value.

CREATE TABLE athlete_idx(code INT, name VARCHAR(40));

CREATE SERIAL order_no START WITH 10000 INCREMENT BY 2 MAXVALUE 20000;

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Park');

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Kim');

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Choo');

INSERT INTO athlete_idx VALUES (order_no.CURRENT_VALUE, 'Lee');

SELECT * FROM athlete_idx;

 code name

===================================

 10000 'Park'

 10002 'Kim'

 10004 'Choo'

 10004 'Lee'

ALTER SERIAL

Description

With the ALTER SERIAL statement, you can update the increment of the serial value, set or delete its initial or

minimum/maximum values, and set its cycle attribute.

Syntax

ALTER SERIAL serial_identifier

[INCREMENT BY interval]

[START WITH initial_value]

[MINVALUE min | NOMINVALUE]

[MAXVALUE max | NOMAXVALUE]

[CACHE integer | NOCACHE]

• serial_identifier : Specifies the name of the serial to be created.

• INCREMENT BY interval : Specifies the increment of the serial. For the interval, you can specify any integer

with 38 digits or less except for zero. The absolute value of the interval must be smaller than the difference between

MAXVALUE and MINVALUE. If a negative number is specified, the serial is in descending order; otherwise, it

is in ascending order. The default value is 1.

• START WITH initial_value : Changes the initial value of Serial.

• MINVALUE : Specifies the minimum value of the serial with 38 digits or less. MINVALUE must be smaller than

or equal to the initial value and smaller than the maximum value.

• NOMINVALUE : 1 is set automatically as a minimum value for the ascending serial; -(10)36 for the descending

serial.

CUBRID 2008 R4.0 Help

134

• MAXVALUE : Specifies the maximum number of the serial with 38 digits or less. MAXVALUE must be smaller

than or equal to the initial value and greater than the minimum value.

• NOMAXVALUE : (10)37 is set automatically as a maximum value for the ascending serial; -1 for the descending

serial.

• CYCLE : Specifies that the serial will be generated continuously after reaching the maximum or minimum value.

If the ascending serial reaches the maximum value, the minimum value is generated as the next value. If the

descending serial reaches the minimum value, the maximum value is generated as the next value.

• NOCYCLE : Specifies that the serial will not be generated any more after reaching the maximum or minimum

value. The default is NOCYCLE.

• CACHE : Saves as many serials as the number specified by integer in the cache to improve the performance of the

serials and fetches a serial value when one is requested. The "integer" after the CACHE keyword cannot be omitted.

If a number equal to or smaller than 1 is specified, the serial cache is not applied.

• NOCACHE : It does not use the serial cache feature. The serial value is updated every time and a new serial value

is fetched from the disk upon each request.

Caution In CUBRID 2008 R1.x version, the serial value can be modified by updating the db_serial talbe, a system

catalog. However, in CUBRID 2008 R2.0 version or above, the modification of the db_serial table is not allowed but

use of the ALTER SERIAL statement is allowed. Therefore,if an ALTER SERIAL statement is included in the data

exported (unloaddb) from CUBRID 2008 R2.0 or above, it is not allowed to import (loaddb) the data in CUBRID 2008

R1.x or below.

Example

--altering serial by changing start and incremental values

ALTER SERIAL order_no START WITH 100 INCREMENT BY 2;

--altering serial to operate in cache mode

ALTER SERIAL order_no CACHE 5;

--altering serial to operate in common mode

ALTER SERIAL order_no NOCACHE;

DROP SERIAL

Description

With the DROP SERIAL statement, you can drop a serial object from the database.

Syntax

DROP SERIAL serial_identifier

• serial_identifier : Specifies the name of the serial to be dropped.

Example

The following is an example of dropping the order_no serial.

DROP SERIAL order_no;

Use SERIAL

Description

You can access and update a serial by serial name and a reserved word pair.

Syntax

serial_identifier.CURRENT_VALUE

serial_identifier.NEXT_VALUE

• serial_identifier.CURRENT_VALUE : Returns the current serial value.

• serial_identifier.NEXT_VALUE : Increments the serial value and returns the result.

CUBRID SQL Guide

135

Example

The following is an example to create a table athlete_idx where athlete numbers and names are stored and to create the

instances by using a serial order_no.

CREATE TABLE athlete_idx(code INT, name VARCHAR(40));

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Park');

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Kim');

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Choo');

INSERT INTO athlete_idx VALUES (order_no.NEXT_VALUE, 'Lee');SELECT * FROM athlete_idx;

 code name

===================================

 10000 'Park'

 10002 'Kim'

 10004 'Choo'

 10006 'Lee'

Caution

• When you use a serial for the first time after creating it, NEXT_VALUE returns the initial value. Subsequently, the

sum of the current value and the increment are returned.

CUBRID 2008 R4.0 Help

136

Operators and Functions

Logical Operators

Description

For logical operators, boolean expressions or expressions that evaluates to an integer value are specified as operands;

TRUE, FALSE or NULL is returned as the result. If the INTEGER value is used, 0 is evaluated to FALSE and the

other values are evaluated to TRUE. If a boolean value is used, 1 is evaluated to TRUE and 0 is evaluated to FALSE.

The following table shows the logic operators supported by CUBRID.

Logical Operators Supported by CUBRID

Logical Operator Description Condition

AND, && If all operands are TRUE, it returns TRUE. a AND b

OR, || If none of operands is NULL and one or more operand is TRUE, it

returns TRUE. If pipes_as_concat is no that is a parameter related to

SQL statements, a double pipe symbol can be used as OR operator.

a OR b

XOR If none of operand is NULL and each of operand has a different value, it

returns TRUE.

a XOR b

NOT, ! A unary operator. If a operand is FALSE, it returns TRUE. If it

is TRUE, returns FALSE.

NOT a

True Table of Logical Operators

a b a AND b a OR b NOT a a XOR b

TRUE TRUE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE

TRUE NULL NULL TRUE FALSE NULL

FALSE FALSE FALSE FALSE TRUE FALSE

FALSE NULL FALSE NULL TRUE NULL

Note

You should put the logical expressions in brackets in the SELECT list.

SELECT 1 = 1 FROM db_root;

ERROR: syntax error, unexpected '='

SELECT (1 = 1) FROM db_root;

 (1=1)

=============

 1

Comparison Operators

Description

The comparison operator compares the operand on the left and on the right, and returns 1 or 0. Operands of the

comparison operation must be of the same data type. Therefore, implicit type casting by the system or implicit type

casting by the user is required.

The following table shows the comparison operators supported by CUBRID and their return values.

Comparison Operators Supported by CUBRID

CUBRID SQL Guide

137

Comparison Operator Description Predicate Return Value

= A general equal sign. It compares whether the

values of the left and right operands are the same.

Returns NULL if one or more operand is NULL.

1=>2

1=NULL

0

NULL

<=> A NULL-safe equal sign. It compares whether the

values of the left and right operands are the same

including NULL. Returns 1 if both operands are

NULL.

1<==>2

1<=>

NULL

0

0

<>, != The value of left operand is not equal to that of

right operand. If any operand value is NULL,

NULL is returned.

1<>2 1

> The value of left operand is greater than that of

right operand. If any operand value is NULL,

NULL is returned.

1>2 0

< The value of left operand is less than that of right

operand. If any operand value is NULL, NULL is

returned.

1<2 1

>= The value of left operand is greater than or equal to

that of right operand. If any operand value is

NULL, NULL is returned.

1>=2 0

<= The value of left operand is less than or equal to

that of right operand. If any operand value is

NULL, NULL is returned.

1<=2 1

IS boolean_value Compares whether the value of the left operand is

the same as boolean value of the right. The boolean

value may be TRUE, FALSE (or NULL).

1 IS FALSE 0

IN NOT
boolean_value

Compares whether the value of the left operand is

the same as boolean value of the right. The boolean

value may be TRUE, FALSE (or NULL).

1 IS NOT

FALSE

1

Syntax 1

expression comparison_operator expression

expression :

• bit string

• character string

• numeric value

• date-time value

• collection value

• NULL

comparison_operator :

=

| <=>

| <>

| !=

| >

| <

| >=

| <=

Syntax 2

expression IS [NOT] boolean_value

expression :

• bit string

• character string

• numeric value

• date-time value

CUBRID 2008 R4.0 Help

138

• collection value

• NULL

boolean_value :

< UNKNOWN | NULL>

| TRUE

| FALSE

• expression : Declares an expression to be compared.

• bit string : A Boolean operation can be performed on bit strings, and all comparison operators can be used for

comparison between bit strings. If you compare two expressions with different lengths, 0s are padded at the end of

the shorter one.

• character string : When compared by a comparison operator, two character strings must have the same character

sets. The comparison is determined by the collation sequence of the character code set. If you compare two

character strings with different lengths, blanks are padded at the end of the shorter one before comparison so that

they have the same length.

• numeric value : The Boolean operator can be performed for all numeric values and any types of comparison

operator can be used. When two different numeric types are compared, the system implicitly performs type casting.

For example, when an INTEGER value is compared with a DECIMAL value, the system first casts INTEGER to

DECIMAL before it performs comparison. When you compare a FLOAT value, you must specify the range

instead of an exact value because the processing of FLOAT is dependent on the system.

• date-time value : If two date-time values with the same type are compared, the order is determined in time order.

That is, when comparing two date-time values, the earlier date is considered to be smaller than the later date. You

cannot compare date-time values with different type by using a comparison operator; therefore, you must explicitly

convert it. However, comparison operation can be performed between DATE, TIMESTAMP, and DATETIME

because they are implicitly converted.

• collection value : When comparing two sequences each element of the two sequences is compared in the order that

is specified at the time of sequence creation. Comparison between sets or multisets is overloaded by an appropriate

operator. You can perform comparison operations on sets, multisets, lists or sequence sets by using a containment

operator explained later in this chapter. For more information, see Containment Operators.

• NULL : The NULL value is not included in the value range of any data type. Therefore, comparison between

NULL values is only allowed to determine if the given value is NULL or not. An implicit type cast does not take

place when a NULL value is assigned to a different data type. For example, when an attribute of INTEGER type

has a NULL and is compared with a floating point type, the NULL value is not coerced to FLOAT before

comparison is made. A comparison operation on the NULL value does not return a result.

Example

EVALUATE (1 <> 0); -- 1 is outputted because it is TRUE.

EVALUATE (1 != 0); -- 1 is outputted because it is TRUE.

EVALUATE (0.01 = '0.01'); -- An error occurs because a numeric data type is compared with

a character string type.

EVALUATE (1 = NULL); -- NULL is outputted.

EVALUATE (1 <=> NULL); -- 0 is outputted because it is FALSE.

EVALUATE (1.000 = 1); -- 1 is outputted because it is TRUE.

EVALUATE ('cubrid' = 'CUBRID'); -- 0 is outputted because it is case sensitive.

EVALUATE ('cubrid' = 'cubrid'); -- 1 is outputted because it is TRUE.

EVALUATE (SYSTIMESTAMP = CAST(SYSDATETIME AS TIMESTAMP)); -- 1 is outputted after casting

the type explicitly and then performing comparison operator.

EVALUATE (SYSTIMESTAMP = SYSDATETIME)); 0 is outputted after casting the type implicitly

and then performing comparison operator.

EVALUATE (SYSTIMESTAMP <> NULL); -- NULL is returned without performing comparison

operator.

EVALUATE (SYSTIMESTAMP IS NOT NULL); -- 1 is returned because it is no NULL.

Arithmetic Operators

Arithmetic Operators

Description

For arithmetic operators, there are binary operators for addition, subtraction, multiplication, or division, and unary

operators to represent whether the number is positive or negative. The unary operators to represent the numbers'

positive/negative status have higher priority over the binary operators.

CUBRID SQL Guide

139

Arithmetic Operators Supported by CUBRID

Arithmetic Operator Description Operator Return Value

+ Addition 1+2 3

- Subtraction 1-2 -1

* Multiplication 1*2 2

/ Division. Returns quotient. 1/2.0 0.500000000

DIV Division. Returns quotient. 1 DIV 2 0

%, MOD Division. Returns quotient.

An operator must be an integer type, and it

always returns integer. If an operand is real

number, the MOD function can be used.

1 % 2

1 MOD 2

1

Syntax

expression mathematical_operator expression

expression :

• bit string

• character string

• numeric value

• date-time value

• collection value

• NULL

mathematical_operator :

• set_arithmetic_operator

• arithmetic_operator

arithmetic_operator :

• +

• -

• *

• /, DIV

• %, MOD

set_arithmetic_operator :

• UNION (Union)

• DIFFERENCE (Difference)

• INTERSECT | INTERSECTION (Intersection)

• expression : Declares the mathematical operation to be calculated.

• mathematical_operator : A operator that performs an operation the arithmetic and the set operators are applicable.

• set_arithmetic_operator : A set arithmetic operator that performs operations such as union, difference and

intersection on collection type operands.

• arithmetic_operator : An operator to perform the four fundamental arithmetic operations.

Arithmetic Operations and Type Casting of Numeric Data Types

Description

All numeric data types can be used for arithmetic operations. The result type of the operation differs depending on the

data types of the operands and the type of the operation. The following table shows the result data types of

addition/subtraction/multiplication for each operand type.

Result Data Type by Operand Type

 INT NUMERIC FLOAT DOUBLE MONETARY

INT INT
(BIGINT)

NUMERIC FLOAT DOUBLE MONETARY

NUMERIC NUMERIC NUMERIC
(p and s are

also converted)

DOUBLE DOUBLE MONETARY

CUBRID 2008 R4.0 Help

140

FLOAT FLOAT DOUBLE FLOAT DOUBLE MONETARY

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE MONETARY

MONETARY MONETARY MONETARY MONETARY MONETARY MONETARY

Note that the result type of the operation does not change if all operands are of the same data type but type casting

occurs exceptionally in division operations. An error occurs when a denominator, i.e. a divisor, is 0.

If one of the operands is a MONETARY type, all operation results are cast to MONETARY type because a

MONETARY type uses the same operation methods as the DOUBLE type.

The following table shows the total number of digits (p) and the number of digits after the decimal point (s) of the

operation results when all operands are of the NUMERIC type.

Result of NUMERIC Type Operation

Operation Maximum Precision Maximum Scale

N(p1, s1) + N(p2, s2) max(p1-s1, p2-s2)+max(s1, s2) +1 max(s1, s2)

N(p1, s1) - N(p2, s2) max(p1-s1, p2-s2)+max(s1, s2) max(s1, s2)

N(p1, s1) * N(p2, s2) p1+p2+1 s1+s2

N(p1, s1) / N(p2, s2) Let Pt = p1+max(s1, s2) + s2 - s1 when s2 > 0 and Pt = p1 in other cases; St

= s1 when s1 > s2 and s2 in other cases; the number of decimal places is

min(9-St, 38-Pt) + St when St < 9 and St in other cases.

Example

--int * int

SELECT 123*123;

 123*123

=============

 15129

-- int * int returns overflow error

SELECT (1234567890123*1234567890123);

ERROR: Data overflow on data type bigint.

-- int * numeric returns numeric type

SELECT (1234567890123*CAST(1234567890123 AS NUMERIC(15,2)));

 (1234567890123* cast(1234567890123 as numeric(15,2)))

======================

 1524157875322755800955129.00

-- int * float returns float type

SELECT (1234567890123*CAST(1234567890123 AS FLOAT));

 (1234567890123* cast(1234567890123 as float))

===

 1.524158e+024

-- int * double returns double type

SELECT (1234567890123*CAST(1234567890123 AS DOUBLE));

 (1234567890123* cast(1234567890123 as double))

==

 1.524157875322756e+024

-- numeric * numeric returns numeric type

SELECT (CAST(1234567890123 AS NUMERIC(15,2))*CAST(1234567890123 AS NUMERIC(15,2)));

 (cast(1234567890123 as numeric(15,2))* cast(1234567890123 as numeric(15,2)))

======================

 1524157875322755800955129.0000

-- numeric * float returns double type

SELECT (CAST(1234567890123 AS NUMERIC(15,2))*CAST(1234567890123 AS FLOAT));

 (cast(1234567890123 as numeric(15,2))* cast(1234567890123 as float))

===

 1.524157954716582e+024

CUBRID SQL Guide

141

-- numeric * double returns double type

SELECT (CAST(1234567890123 AS NUMERIC(15,2))*CAST(1234567890123 AS DOUBLE));

 (cast(1234567890123 as numeric(15,2))* cast(1234567890123 as double))

==

 1.524157875322756e+024

-- float * float returns float type

SELECT (CAST(1234567890123 AS FLOAT)*CAST(1234567890123 AS FLOAT));

 (cast(1234567890123 as float)* cast(1234567890123 as float))

===

 1.524158e+024

-- float * double returns float type

SELECT (CAST(1234567890123 AS FLOAT)*CAST(1234567890123 AS DOUBLE));

 (cast(1234567890123 as float)* cast(1234567890123 as double))

==

 1.524157954716582e+024

-- double * double returns float type

SELECT (CAST(1234567890123 AS DOUBLE)*CAST(1234567890123 AS DOUBLE));

 (cast(1234567890123 as double)* cast(1234567890123 as double))

===

 1.524157875322756e+024

-- int / int returns int type without type conversion or rounding

SELECT 100100/100000;

 100100/100000

===============

 1

-- int / int returns int type without type conversion or rounding

SELECT 100100/200200;

 100100/200200

===============

 0

-- int / zero returns error

SELECT 100100/(100100-100100);

ERROR: Attempt to divide by zero.

Arithmetic Operations and Type Casting of DATE/TIME Data Types

Description

If all operands are date/time type, only a subtraction operation is allowed and its return value is INT. Note that the unit

of the operation differs depending on the types of the operands. Both addition and subtraction operations are allowed in

case of date/time and integer types In this case, operation units and return values are date/time data type.

The following table shows operations allowed for each operand type, and their result types.

Allowable Operation and Result Data Type by Operand Type

 TIME

(in seconds)

DATE

(in day)

TIMESTAMP

(in seconds)

DATETIME

(in milliseconds)

INT

TIME A subtraction

is allowed.

INT

X X X An addition and

a subtraction are

allowed.

INT

DATE X A subtraction

is allowed.

INT

A subtraction is

allowed.

INT

A subtraction is

allowed.

INT

An addition and

a subtraction are

allowed.

DATE

TIMESTAMP X A subtraction

is allowed.

INT

A subtraction is

allowed.

INT

A subtraction is

allowed.

INT

An addition and

a subtraction are

allowed.

TIMESTAMP

DATETIME X A subtraction A subtraction is A subtraction is An addition and

CUBRID 2008 R4.0 Help

142

is allowed.

INT

allowed.

INT

allowed.

INT

a subtraction are

allowed.

DATETIME

INT An addition

and

a subtraction

are allowed.

TIME

An addition

and

a subtraction

are allowed.

DATE

An addition and

a subtraction are

allowed.

TIMESTAMP

An addition and

a subtraction are

allowed.

DATETIME

All operations

are allowed.

Remark

If any of the date/time arguments contains NULL, NULL is returned.

Example

-- initial systimestamp value

SELECT SYSDATETIME;

 SYSDATETIME

===============================

 07:09:52.115 PM 01/14/2010

-- time type + 10(seconds) returns time type

SELECT (CAST (SYSDATETIME AS TIME) + 10);

 (cast(SYS_DATETIME as time)+10)

====================================

 07:10:02 PM

-- date type + 10 (days) returns date type

SELECT (CAST (SYSDATETIME AS DATE) + 10);

 (cast(SYS_DATETIME as date)+10)

====================================

 01/24/2010

-- timestamp type + 10(seconds) returns timestamp type

SELECT (CAST (SYSDATETIME AS TIMESTAMP) + 10);

 (cast(SYS_DATETIME as timestamp)+10)

===

 07:10:02 PM 01/14/2010

-- systimestamp type + 10(milliseconds) returns systimestamp type

SELECT (SYSDATETIME + 10);

 (SYS_DATETIME +10)

===============================

 07:09:52.125 PM 01/14/2010

SELECT DATETIME '09/01/2009 03:30:30.001 pm'- TIMESTAMP '08/31/2009 03:30:30 pm';

 datetime '09/01/2009 03:30:30.001 pm'-timestamp '08/31/2009 03:30:30 pm'

=======================================

 86400001

SELECT TIMESTAMP '09/01/2009 03:30:30 pm'- TIMESTAMP '08/31/2009 03:30:30 pm';

 timestamp '09/01/2009 03:30:30 pm'-timestamp '08/31/2009 03:30:30 pm'

=======================================

 86400

Set Operators

Set Arithmetic Operators

Set Arithmetic Operators

To evaluate set operations such as union, difference or intersection for SET, MULTISET or LIST (SEQUENCE)

types, you can use +, - or * operators respectively.

The following table shows a summary of how to use these operators.

Result Data Type by Operand Type

CUBRID SQL Guide

143

 SET MULTISET LIST

(=SEQUENCE)

SET +, -, * : SET +, -, * : MULTISET +, -, * : MULTISET

MULTISET +, -, * : MULTISET +, -, * : MULTISET +, -, * : MULTISET

LIST (=SEQUENCE) + : MULTISET

- : MULTISET

* : MULTISET

+ : MULTISET

- : MULTISET

* : MULTISET

+ : LIST

- : MULTISET

* : MULTISET

Syntax

value_expression set_arithmetic_operator value_expression

value_expression :

• collection value

• NULL

set_arithmetic_operator :

• + (union)

• - (difference)

• * (intersection)

Example

SELECT ((CAST ({3,3,3,2,2,1} AS SET))+(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as set))+(cast({4, 3, 3, 2} as multiset)))

======================

 {1, 2, 2, 3, 3, 3, 4}

SELECT ((CAST ({3,3,3,2,2,1} AS MULTISET))+(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as multiset))+(cast({4, 3, 3, 2} as multiset)))

======================

 {1, 2, 2, 2, 3, 3, 3, 3, 3, 4}

SELECT ((CAST ({3,3,3,2,2,1} AS LIST))+(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as sequence))+(cast({4, 3, 3, 2} as multiset)))

======================

 {1, 2, 2, 2, 3, 3, 3, 3, 3, 4}

SELECT ((CAST ({3,3,3,2,2,1} AS SET))-(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as set))-(cast({4, 3, 3, 2} as multiset)))

======================

 {1}

SELECT ((CAST ({3,3,3,2,2,1} AS MULTISET))-(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as multiset))-(cast({4, 3, 3, 2} as multiset)))

======================

 {1, 2, 3}

SELECT ((CAST ({3,3,3,2,2,1} AS LIST))-(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as sequence))-(cast({4, 3, 3, 2} as multiset)))

======================

 {1, 2, 3}

SELECT ((CAST ({3,3,3,2,2,1} AS SET))*(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as set))*(cast({4, 3, 3, 2} as multiset)))

======================

 {2, 3}

SELECT ((CAST ({3,3,3,2,2,1} AS MULTISET))*(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as multiset))*(cast({4, 3, 3, 2} as multiset)))

======================

 {2, 3, 3}

SELECT ((CAST ({3,3,3,2,2,1} AS LIST))*(CAST ({4,3,3,2} AS MULTISET)));

 ((cast({3, 3, 3, 2, 2, 1} as sequence))*(cast({4, 3, 3, 2} as multiset)))

======================

{2, 3, 3}

CUBRID 2008 R4.0 Help

144

Assigning Collection Value to Variable

For a collection value to be assigned to a variable, the outer query must return a single row as the result. The following

is an example of assigning a collection value to a variable. The outer query must return only a single row as follows:

SELECT SET(SELECT name

FROM people

WHERE ssn in {'1234', '5678'})

TO :"names"

FROM TABLE people;

Statement Set Operators

Description

Statement set operators are used to get union, difference or intersection on the result of more than one query statement

specified as an operand. Note that the data types of the data to be retrieved from the target tables of the two query

statements must be identical or implicitly castable.

The following table shows statement set operators supported by CUBRID and their examples.

Statement Set Operators Supported by CUBRID

Statement Set Operator Description Note

UNION Union

Duplicates are not

allowed.

Outputs all instance results containing duplicates with

UNION ALL

DIFFERENCE Difference

Duplicates are not

allowed.

Same as the EXCEPT operator

Outputs all instance results containing duplicates with

DIFFERENCE ALL

INTERSECTION Intersection

Duplicates are not

allowed.

Same as the INTERSECTION operator

Outputs all instance results containing duplicates with

INTERSECTION ALL

Syntax

query_term statement_set_operator[qualifier] query_term

[{statement_set_operator[qualifier] query_term}];

query_term :

• query_specification

• subquery

qualifier :

• DISTINCT or DISTINCTROW (A returned instance is a distinct value.)

• UNIQUE (A returned instance is a unique value.)

• ALL (All instances are returned. Duplicates are allowed.)

statement_set_operator :

• UNION (union)

• DIFFERENCE (difference)

• INTERSECTION | INTERSECT (intersection)

Example

CREATE TABLE nojoin_tbl_1 (ID INT, Name VARCHAR(32));

INSERT INTO nojoin_tbl_1 VALUES (1,'Kim');

INSERT INTO nojoin_tbl_1 VALUES (2,'Moy');

INSERT INTO nojoin_tbl_1 VALUES (3,'Jonas');

INSERT INTO nojoin_tbl_1 VALUES (4,'Smith');

INSERT INTO nojoin_tbl_1 VALUES (5,'Kim');

INSERT INTO nojoin_tbl_1 VALUES (6,'Smith');

INSERT INTO nojoin_tbl_1 VALUES (7,'Brown');

CREATE TABLE nojoin_tbl_2 (id INT, Name VARCHAR(32));

CUBRID SQL Guide

145

INSERT INTO nojoin_tbl_2 VALUES (5,'Kim');

INSERT INTO nojoin_tbl_2 VALUES (6,'Smith');

INSERT INTO nojoin_tbl_2 VALUES (7,'Brown');

INSERT INTO nojoin_tbl_2 VALUES (8,'Lin');

INSERT INTO nojoin_tbl_2 VALUES (9,'Edwin');

INSERT INTO nojoin_tbl_2 VALUES (10,'Edwin');

--Using UNION to get only distict rows

SELECT id, name FROM nojoin_tbl_1

UNION

SELECT id,name FROM nojoin_tbl_2;

 id name

===================================

 1 'Kim'

 2 'Moy'

 3 'Jonas'

 4 'Smith'

 5 'Kim'

 6 'Smith'

 7 'Brown'

 8 'Lin'

 9 'Edwin'

 10 'Edwin'

--Using UNION ALL not eliminating duplicate selected rows

SELECT id, name FROM nojoin_tbl_1

UNION ALL

SELECT id,name FROM nojoin_tbl_2;

 id name

===================================

 1 'Kim'

 2 'Moy'

 3 'Jonas'

 4 'Smith'

 5 'Kim'

 6 'Smith'

 7 'Brown'

 5 'Kim'

 6 'Smith'

 7 'Brown'

 8 'Lin'

 9 'Edwin'

 10 'Edwin'

--Using DEFFERENCE to get only rows returned by the first query but not by the second

SELECT id, name FROM nojoin_tbl_1

DIFFERENCE

SELECT id,name FROM nojoin_tbl_2;

 id name

===================================

 1 'Kim'

 2 'Moy'

 3 'Jonas'

 4 'Smith'

--Using INTERSECTION to get only those rows returned by both queries

SELECT id, name FROM nojoin_tbl_1

INTERSECT

SELECT id,name FROM nojoin_tbl_2;

 id name

===================================

 5 'Kim'

 6 'Smith'

 7 'Brown'

CUBRID 2008 R4.0 Help

146

Containment Operators

Containment Operators

Description

Containment operators are used to check the containment relationship by performing comparison operation on operands

of the set data type. Set data types or subqueries can be specified as operands. The operation returns TRUE or FALSE if

there is a containment relationship between the two operands of identical/different/subset/proper subset.

The description and returned values about the containment operators supported by CUBRID are as follows:

Containment Operators Supported by CUBRID

Containment Operator Description Predicates Return Value

A SETEQ B A = B

Elements in A and B are same

each other.

{1,2} SETEQ {1,2,2} 0

A SETNEQ B A ≠ B

Elements in A and B are not

same each other.

{1,2} SETNEQ

{1,2,3}

1

A SUPERSET B A ⊃ B

B is a proper subset of A.

{1,2} SUPERSET

{1,2,3}

0

A SUBSET B A ⊂ B

A is a proper subset of B.

{1,2} SUBSET {1,2,3} 1

A SUPERSETEQ B A ⊇ B

B is a subset of A.

{1,2} SUPERSETEQ

{1,2,3}

0

A SUBSETEQ B A ⊆ B

A is a subset of B.

{1,2} SUBSETEQ

{1,2,3}

1

The following table shows than possibility of operation by operand and type conversion if a containment operator is

used.

Possibility of Operation by Operand

 SET MULTISET LIST(=SEQUENCE)

SET Operation

possible

Operation possible Operation possible

MULTISET Operation

possible

Operation possible Operation possible

(LIST is converted into

MULTISET)

LIST(=SEQUENCE) Operation

possible

Operation possible

(LIST is converted into

MULTISET)

Some operation possible

(SETEQ, SETNEQ)

Error occurs for the rest of

operators.

Syntax

collection_operand containment_operator collection_operand

collection_operand:

• set

• multiset

• sequence(or list)

• subquery

• NULL

containment_operator:

• SETEQ

• SETNEQ

CUBRID SQL Guide

147

• SUPERSET

• SUBSET

• SUPERSETEQ

• SUBSETEQ

• collection_operand : This expression that can be specified as an operand is a single SET-valued attribute, an

arithmetic expression containing a SET operator or a SET value enclosed in braces. If the type is not specified, the

SET value enclosed in braces is treated as a LIST type by default.

Subqueries can be specified as operands. If a column which is not a SET type is queried, a SET data type keyword

is required for the subquery (e.g. SET(subquery)). The column retrieved by a subquery must return a single set so

that it can be compared with the set of the other operands.

If the element type is an object, the OIDs, not its contents, are compared. For example, two objects with different

OIDs are considered to be different even though they have the same attribute values.

• NULL : Any of operands to be compared is NULL, NULL is returned.

--empty set is a subset of any set

EVALUATE ({} SUBSETEQ (CAST ({3,1,2} AS SET)));

 Result

=============

 1

--operation between set type and null returns null

EVALUATE ((CAST ({3,1,2} AS SET)) SUBSETEQ NULL);

 Result

=============

 NULL

--{1,2,3} seteq {1,2,3} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SETEQ (CAST ({1,2,3,3} AS SET)));

 Result

=============

 1

--{1,2,3} seteq {1,2,3,3} returns false

EVALUATE ((CAST ({3,1,2} AS SET)) SETEQ (CAST ({1,2,3,3} AS MULTISET)));

 Result

=============

 0

--{1,2,3} setneq {1,2,3,3} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SETNEQ (CAST ({1,2,3,3} AS MULTISET)));

 Result

=============

 1

--{1,2,3} subseteq {1,2,3,4} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SUBSETEQ (CAST ({1,2,4,4,3} AS SET)));

 Result

=============

 1

--{1,2,3} subseteq {1,2,3,4,4} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SUBSETEQ (CAST ({1,2,4,4,3} AS MULTISET)));

 Result

=============

 1

--{1,2,3} subseteq {1,2,4,4,3} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SUBSETEQ (CAST ({1,2,4,4,3} AS LIST)));

 Result

=============

 0

--{1,2,3} subseteq {1,2,3,4,4} returns true

EVALUATE ((CAST ({3,1,2} AS SET)) SUBSETEQ (CAST ({1,2,3,4,4} AS LIST)));

 Result

=============

 1

--{3,1,2} seteq {3,1,2} returns true

EVALUATE ((CAST ({3,1,2} AS LIST)) SETEQ (CAST ({3,1,2} AS LIST)));

CUBRID 2008 R4.0 Help

148

 Result

=============

 1

--error occurs because LIST subseteq LIST is not supported

EVALUATE ((CAST ({3,1,2} AS LIST)) SUBSETEQ (CAST ({3,1,2} AS LIST)));

 Result

=============

 error

SETEQ Operator

Description

The SETEQ operator returns TRUE if the first operand is the same as the second one. It can perform comparison

operator for all collection data type.

Syntax

collection_operand SETEQ collection_operand

Example

--creating a table with SET type address column and LIST type zip_code column

CREATE TABLE contain_tbl (id int primary key, name char(10), address SET varchar(20),

zip_code LIST int);

INSERT INTO contain_tbl VALUES(1, 'Kim', {'country', 'state'},{1, 2, 3});

INSERT INTO contain_tbl VALUES(2, 'Moy', {'country', 'state'},{3, 2, 1});

INSERT INTO contain_tbl VALUES(3, 'Jones', {'country', 'state', 'city'},{1,2,3,4});

INSERT INTO contain_tbl VALUES(4, 'Smith', {'country', 'state', 'city',

'street'},{1,2,3,4});

INSERT INTO contain_tbl VALUES(5, 'Kim', {'country', 'state', 'city', 'street'},{1,2,3,4});

INSERT INTO contain_tbl VALUES(6, 'Smith', {'country', 'state', 'city',

'street'},{1,2,3,5});

INSERT INTO contain_tbl VALUES(7, 'Brown', {'country', 'state', 'city', 'street'},{});

--selecting rows when two collection_operands are same in the WEHRE clause

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SETEQ {'country','state',

'city'};

 id name address zip_code

===

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

1 row selected.

--selecting rows when two collection_operands are same in the WEHRE clause

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SETEQ {1,2,3};

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

1 rows selected.

SETNEQ Operator

Description

The SETNEQ operator returns TRUE(1) if a first operand is different from a second operand. A comparable operation

can be performed for all collection data types.

Syntax

collection_operand SETNEQ collection_operand

Example

--selecting rows when two collection_operands are not same in the WEHRE clause

CUBRID SQL Guide

149

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SETNEQ

{'country','state', 'city'};

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

 2 'Moy ' {'country', 'state'} {3, 2, 1}

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

6 rows selected.

--selecting rows when two collection_operands are not same in the WEHRE clause

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SETNEQ {1,2,3};

 id name address zip_code

===

 2 'Moy ' {'country', 'state'} {3, 2, 1}

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

SUPERSET Operator

Description

The SUPERSET operator returns TRUE(1) when a second operand is a proper subset of a first operand; that is, the first

one is larger than the second one. If two operands are identical, FALSE(0) is returned. Note that SUPERSET is not

supported if all operands are LIST type.

Syntax

collection_operand SUPERSET collection_operand

Example

--selecting rows when the first operand is a superset of the second operand and they are

not same

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SUPERSET

{'country','state','city'};

 id name address zip_code

===

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

--SUPERSET operator cannot be used for comparison between LIST and LIST type values

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUPERSET {1,2,3};

ERROR: ' superset ' operator is not defined on types sequence and sequence.

--Comparing operands with a SUPERSET operator after casting LIST type as SET type

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUPERSET (CAST ({1,2,3}

AS SET));

 id name address zip_code

===

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

CUBRID 2008 R4.0 Help

150

SUPERSETEQ Operator

Description

The SUPERSETEQ operator returns TRUE(1) when a second operand is a subset of a first operand; that is, the first

one is identical to or larger than the second one. Note that SUPERSETEQ is not supported if an operand is LIST type.

Syntax

collection_operand SUPERSETEQ collection_operand

Example

--selecting rows when the first operand is a superset of the second operand

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SUPERSETEQ

{'country','state','city'};

 id name address zip_code

===

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

--SUPERSETEQ operator cannot be used for comparison between LIST and LIST type values

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUPERSETEQ {1,2,3};

ERROR: ' superseteq ' operator is not defined on types sequence and sequence.

--Comparing operands with a SUPERSETEQ operator after casting LIST type as SET type

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUPERSETEQ (CAST

({1,2,3} AS SET));

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

 4 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 5 'Kim ' {'city', 'country', 'state', 'street'} {1, 2, 3, 4}

 6 'Smith ' {'city', 'country', 'state', 'street'} {1, 2, 3, 5}

SUBSET Operator

Description

The SUBSET operator returns TRUE(1) if the second operand contains all elements of the first operand. If the first and

the second collection have the same elements, FALSE(0) is returned. Note that both operands are the LIST type, the

SUBSET operation is not supported.

Syntax

collection_operand SUBSET collection_operand

Example

--selecting rows when the first operand is a subset of the second operand and they are not

same

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SUBSET

{'country','state','city'};

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

 2 'Moy ' {'country', 'state'} {3, 2, 1}

--SUBSET operator cannot be used for comparison between LIST and LIST type values

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUBSET {1,2,3};

ERROR: ' subset ' operator is not defined on types sequence and sequence.

CUBRID SQL Guide

151

--Comparing operands with a SUBSET operator after casting LIST type as SET type

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUBSET (CAST ({1,2,3}

AS SET));

 id name address zip_code

===

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

SUBSETEQ Operator

Description

The SUBSETEQ operator returns TRUE(1) when a first operand is a subset of a second operand; that is, the second

one is identical to or larger than the first one. Note that SUBSETEQ is not supported if an operand is LIST type.

Syntax

collection_operand SUBSETEQ collection_operand

Example

--selecting rows when the first operand is a subset of the second operand

SELECT id, name, address, zip_code FROM contain_tbl WHERE address SUBSETEQ

{'country','state','city'};

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

 2 'Moy ' {'country', 'state'} {3, 2, 1}

 3 'Jones ' {'city', 'country', 'state'} {1, 2, 3, 4}

3 rows selected.

--SUBSETEQ operator cannot be used for comparison between LIST and LIST type values

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUBSETEQ {1,2,3};

ERROR: ' subseteq ' operator is not defined on types sequence and sequence.

--Comparing operands with a SUBSETEQ operator after casting LIST type as SET type

SELECT id, name, address, zip_code FROM contain_tbl WHERE zip_code SUBSETEQ (CAST ({1,2,3}

AS SET));

 id name address zip_code

===

 1 'Kim ' {'country', 'state'} {1, 2, 3}

 7 'Brown ' {'city', 'country', 'state', 'street'} {}

2 rows selected.

BIT Functions and Operators

Bitwise Operator

A Bitwise operator performs operations in bits, and can be used in arithmetic operations. An integer type is specified as

the operand and the BIT type cannot be specified. An integer of BIGINT type (64-bit integer) is returned as the result

of the operation. If one or more operand is NULL, NULL is returned.

The following table shows the bitwise operators supported by CUBRID.

The bitwise operators supported by CUBRID

Bitwise operator Description Expression Return Value

& Performs AND operation in bits and returns a BIGINT

integer.

17 & 3 1

| Performs OR operation in bits and returns a BIGINT

integer.

17 | 3 19

^ Performs XOR operation in bits and returns a BIGINT

integer.

17 ^ 3 18

CUBRID 2008 R4.0 Help

152

~ A unary operator. It performs complementary operation

that reverses (INVERT) the bit order of the operand and

returns a BIGINT integer.

~17 -18

<< Performs the operation of moving bits of the left operand

as far to the left as the value of the right operand, and

returns a BIGINT integer.

17 << 3 136

>> Performs the operation of moving bits of the left operand

as far to the right as the value of the right operand, and

returns a BIGINT integer.

17 >> 3 2

BIT_AND Function

Description

An aggregate function. It performs AND operations in bits on every bit of expr. The return value is a BIGINT type. If

there is no row that satisfies the expression, NULL is returned.

Syntax

BIT_AND(expr)

• expr : An expression of integer type

Example

CREATE TABLE bit_tbl(id int);

INSERT INTO bit_tbl VALUES (1), (2), (3), (4), (5);

SELECT 1&3&5, BIT_AND(id) FROM bit_tbl WHERE id in(1,3,5);

 1&3&5 bit_and(id)

==

 1 1

BIT_OR Function

Description

An aggregate function. It performs OR operations in bits on every bit of expr. The return value is a BIGINT type. If

there is no row that satisfies the expression, NULL is returned.

Syntax

BIT_OR(expr)

• expr : An expression of integer type

Example

SELECT 1|3|5, BIT_OR(id) FROM bit_tbl WHERE id in(1,3,5);

 1|3|5 bit_or(id)

==

 7 7

BIT_XOR Function

Description

An aggregate function. It performs XOR operations in bits on every bit of expr. The return value is a BIGINT type. If

there is no row that satisfies the expression, NULL is returned.

Syntax

BIT_XOR(expr)

• expr : An expression of integer type

CUBRID SQL Guide

153

Example

SELECT 1^2^3^, BIT_XOR(id) FROM bit_tbl WHERE id in(1,3,5);

 ` 1^3^5 bit_xor(id)

==

 7 7

BIT_COUNT Function

Description

The BIT_COUNT function returns the number of bits of expr that have been set to 1; it is not an aggregate function.

The return value is a BIGINT type.

Syntax

BIT_COUNT (expr)

• expr : An expression of integer type

Example

SELECT BIT_COUNT(id) FROM bit_tbl WHERE id in(1,3,5);

 bit_count(id)

================

 1

 2

 2

String Functions and Operators

Concatenation Operator

Description

A concatenation operator gets a character string or bit string data type as an operand and returns a concatenated string.

The plus sign (+) and double pipe symbol (||) are provided as concatenation operators for character string data. If NULL

is specified as an operand, a NULL value is returned.

If pipes_as_concat that is a parameter related to SQL statement is set to no, a double pipe (||) symbol is interpreted as

an OR operator. Therefore, to concatenate string or bit string, a plus operator (+) or the CONCAT function should be

used.

Syntax

concat_operand1 + concat_operand1

concat_operand2 || concat_operand2

concat_operand1 :

• bit string

• NULL

concat_operand2 :

• bit string

• character string

• NULL

• concat_operand1 : Left string after concatenation. String or bit string can be specified.

• concat_operand2 : Right string after concatenation. String or bit string can be specified.

Example

SELECT CONCAT('CUBRID', '2008' , 'R3.0');

 concat('CUBRID', '2008', 'R3.0')

======================

'CUBRID2008R3.0'

CUBRID 2008 R4.0 Help

154

--it returns null when null is specified for one of parameters

SELECT CONCAT('CUBRID', '2008' , 'R3.0', NULL);

 concat('CUBRID', '2008', 'R3.0', null)

======================

 NULL

--it converts number types and then returns concatenated strings

SELECT CONCAT(2008, 3.0);

 concat(2008, 3.0)

======================

 '20083.0'

BIT_LENGTH Function

Description

The BIT_LENGTH function returns the length (bits) of a character string or bit string as an integer value. The return

value of the BIT_LENGTH function may differ depending on the character set, because for the character string, the

number of bytes taken up by a single character is different depending on the character set of the data input environment

(e.g., EUC-KR: 2*8 bits). For details about character sets supported by CUBRID, see Definition and Characteristics.

Syntax

BIT_LENGTH (string)

string :

• bit string

• character string

• NULL

• string : Specifies the character string or bit string whose number of bits is to be calculated. If this value is NULL,

NULL is returned.

Example

SELECT BIT_LENGTH('');

 bit_length('')

=================

 0

SELECT BIT_LENGTH('CUBRID');

 bit_length('CUBRID')

=======================

 48

SELECT BIT_LENGTH('큐브리드');

 bit_length('큐브리드')

=========================

 64

SELECT BIT_LENGTH(B'010101010');

 bit_length(B'010101010')

===========================

 9

CREATE TABLE bit_length_tbl (char_1 CHAR, char_2 CHAR(5), varchar_1 VARCHAR, bit_var_1 BIT

VARYING);

INSERT INTO bit_length_tbl VALUES('', '', '', B''); --Length of empty string

INSERT INTO bit_length_tbl VALUES('a', 'a', 'a', B'010101010'); --English character

INSERT INTO bit_length_tbl VALUES(NULL, '큐', '큐', B'010101010'); --Korean character and

NULL

INSERT INTO bit_length_tbl VALUES(' ', ' 큐', ' 큐', B'010101010'); --Korean character and

space

SELECT BIT_LENGTH(char_1), BIT_LENGTH(char_2), BIT_LENGTH(varchar_1), BIT_LENGTH(bit_var_1)

FROM bit_length_tbl;

CUBRID SQL Guide

155

bit_length(char_1) bit_length(char_2) bit_length(varchar_1) bit_length(bit_var_1)

==

8 40 0 0

8 40 8 9

NULL 40 16 9

8 40 24 9

CHAR_LENGTH, CHARACTER_LENGTH, LENGTHB, LENGTH Function

Description

CHAR_LENGTH, LENGTHB, and LENGTH are used interchangeably.

They return the length of a character string (byte) as an integer. The return value may be different depending on the

character set (e.g., EUC-KR: 2 bites).

For details about the character sets supported by CUBRID, see Definition and Characteristics.

Syntax

CHAR_LENGTH(string)

CHARACTER_LENGTH(string)

LENGTHB(string)

LENGTH(string)

string :

• character string

• NULL

• string : Specifies the character string whose number of characters is to be calculated. If the character string is

NULL, NULL is returned.

Remark

• The length of each space character that is included in a character string is one byte.

• For multi-byte strings, the length of a single character is calculated as 2 or 3 bytes depending on the character set of

the data input environment.

• The length of empty quotes (") to represent a space character is 0. Note that in a CHAR(n) type, the length of a

space character is n, and it is specified as 1 if n is omitted.

Example

--character set is euc-kr for Korean characters

SELECT LENGTH('');

char length('')

==================

 0

SELECT LENGTH('CUBRID');

char length('CUBRID')

==================

 6

SELECT LENGTH('큐브리드');

char length('큐브리드')

==================

 8

CREATE TABLE length_tbl (char_1 CHAR, char_2 CHAR(5), varchar_1 VARCHAR, varchar_2

VARCHAR);

INSERT INTO length_tbl VALUES('', '', '', ''); --Length of empty string

INSERT INTO length_tbl VALUES('a', 'a', 'a', 'a'); --English character

INSERT INTO length_tbl VALUES(NULL, '큐', '큐', '큐'); --Korean character and NULL

INSERT INTO length_tbl VALUES(' ', ' 큐', ' 큐', ' 큐'); --Korean character and space

SELECT LENGTH(char_1), LENGTH(char_2), LENGTH(varchar_1), LENGTH(varchar_2) FROM

length_tbl;

CUBRID 2008 R4.0 Help

156

char_length(char_1) char_length(char_2) char_length(varchar_1) char_length(varchar_2)

==

1 5 0 0

1 5 1 1

NULL 5 2 2

1 5 3 3

CHR Function

Description

The CHR function returns a character that corresponds to the return value of the expression specified as an argument. It

returns 0 if it exceeds range of character code.

Syntax

CHR(number_operand)

• number_operand : Specifies an expression that returns a numeric value.

Example

SELECT CHR(68) || CHR(68-2);

 chr(68)|| chr(68-2)

======================

 'DB'

CONCAT Function

Description

The CONCAT function has at least one argument specified for it and returns a string as a result of concatenating all

argument values. The number of parameters that can be specified is unlimited. Automatic type casting takes place if a

non-string type is specified as the argument. If any of the arguments is specified as NULL, NULL is returned.

If you want to insert separators between strings specified as arguments for concatenation, use the CONCAT_WS

Function.

Syntax

CONCAT(string1, string2 [,string3 [, ... [, stringN]...]])

string :

• character string

• NULL

Example

SELECT CONCAT('CUBRID', '2008' , 'R3.0')

======================

'CUBRID2008R3.0'

--it returns null when null is specified for one of parameters

SELECT CONCAT('CUBRID', '2008' , 'R3.0', NULL)

======================

 NULL

--it converts number types and then returns concatenated strings

SELECT CONCAT(2008, 3.0)

======================

 '20083.0'

CUBRID SQL Guide

157

CONCAT_WS Function

Description

The CONCAT_WS function has at least two arguments specified for it. The function uses the first argument value as

the separator and returns the result.

CONCAT_WS(string1, string2 [,string3 [, ... [, stringN]...]])

string :

• character string

• NULL

Example

SELECT CONCAT_WS(' ', 'CUBRID', '2008' , 'R3.0');

concat_ws(' ', 'CUBRID', '2008', 'R3.0')

======================

 'CUBRID 2008 R3.0'

--it returns strings even if null is specified for one of parameters

SELECT CONCAT_WS(' ', 'CUBRID', '2008', NULL, 'R3.0');

concat_ws(' ', 'CUBRID', '2008', null, 'R3.0')

======================

 'CUBRID 2008 R3.0'

--it converts number types and then returns concatenated strings with separator

SELECT CONCAT_WS(' ',2008, 3.0);

concat_ws(' ', 2008, 3.0)

======================

 '2008 3.0'

ELT Function

Description

If N is 1, the ELT function returns string1 and if N is 2, it returns string2. The return value is a VARCHAR type. You

can add conditional expressions as needed.

The maximum length of the character string is 33,554,432 and if this length is exceeded, NULL will be returned.

If N is 0 or a negative number, an empty string will be returned. If N is greater than the number of this input character

string, NULL will be returned as it is out of range. If N is a type that can not be converted to an integer, an error will be

returned.

Syntax

ELT(N, string1, string2, ...)

string :

• character string

• NULL

Example

SELECT ELT(3,'string1','string2','string3');

 elt(3, 'string1', 'string2', 'string3')

======================

 'string3'

SELECT ELT('3','1/1/1','23:00:00','2001-03-04');

 elt('3', '1/1/1', '23:00:00', '2001-03-04')

======================

 '2001-03-04'

SELECT ELT(-1, 'string1','string2','string3');

 elt(-1, 'string1','string2','string3')

======================

 NULL

CUBRID 2008 R4.0 Help

158

SELECT ELT(4,'string1','string2','string3');

 elt(4, 'string1', 'string2', 'string3')

======================

 NULL

SELECT ELT(3.2,'string1','string2','string3');

 elt(3.2, 'string1', 'string2', 'string3')

======================

 'string3'

SELECT ELT('a','string1','string2','string3');

ERROR: Cannot coerce value of domain "character" to domain "bigint".

FIELD Function

Description

The FIELD function returns the location index value (position) of a string of string1, string2. The function returns 0 if

it does not have a parameter value which is the same as search_string. It returns 0 if search_string is NULL because it

cannot perform the comparison operation with the other arguments.

If all arguments specified for FIELD() are of string type, string comparison operation is performed: if all of them are of

number type, numeric comparison operation is performed. If the type of one argument is different from that of another,

a comparison operation is performed by casting each argument to the type of the first argument. If type casting fails

during the comparison operation with each argument, the function considers the result of the comparison operation as

FALSE and resumes the other operations.

Syntax

FIELD(search_string, string1 [,string2 [, ... [, stringN]...]])

string :

• character string

• NULL

Example

SELECT FIELD('abc', 'a', 'ab', 'abc', 'abcd', 'abcde');

 field('abc', 'a', 'ab', 'abc', 'abcd', 'abcde')

==

 3

--it returns 0 when no same string is found in the list

SELECT FIELD('abc', 'a', 'ab', NULL);

 field('abc', 'a', 'ab', null)

================================

 0

--it returns 0 when null is specified in the first parameter

SELECT FIELD(NULL, 'a', 'ab', NULL);

 field(null, 'a', 'ab', null)

===============================

 0

SELECT FIELD('123', 1, 12, 123.0, 1234, 12345);

 field('123', 1, 12, 123.0, 1234, 12345)

==

 0

SELECT FIELD(123, 1, 12, '123.0', 1234, 12345);

 field(123, 1, 12, '123.0', 1234, 12345)

==

 3

CUBRID SQL Guide

159

INSERT Function

Description

The INSERT function inserts a partial character string as long as the length from the specific location of the input

character string. The return value is a VARCHAR type.

The maximum length of the character string is 33,554,432 and if this length is exceeded, NULL will be returned.

Syntax

INSERT(str, pos, len, string)

• str : Input character string

• pos : str location. Starts from 1. If pos is smaller than 1 or greater than the length of string + 1, the string will not be

inserted and the str will be returned instead.

• len : Length of string to insert pos of str. If len exceeds the length of the partial character string, insert as many

values as string in the pos of the str. If len is a negative number, str will be the end of the character string.

• string : Partial character string to insert to str

Example

SELECT INSERT('cubrid',2,2,'dbsql');

 insert('cubrid', 2, 2, 'dbsql')

======================

 'cdbsqlrid'

SELECT INSERT('cubrid',0,3,'db');

 insert('cubrid', 0, 3, 'db')

======================

 'cubrid'

SELECT INSERT('cubrid',-3,3,'db');

 insert('cubrid', -3, 3, 'db')

======================

 'cubrid'

SELECT INSERT('cubrid',3,100,'db');

 insert('cubrid', 3, 100, 'db')

======================

 'cudb'

SELECT INSERT('cubrid',7,100,'db');

 insert('cubrid', 7, 100, 'db')

======================

 'cubriddb'

SELECT INSERT('cubrid',3,-1,'db');

 insert('cubrid', 3, -1, 'db')

======================

 'cudb'

INSTR Function

Description

The INSTR function, similarly to the POSITION, returns the position of a substring within string; the position. For the

INSTR function, you can specify the starting position of the search for substring to make it possible to search for

duplicate substring.

Note that the function calculates the starting position and the length of the character string in bytes, not in characters.

For a multi-byte character set, the number of bite representing onc character is different, so the return value may not be

the same.

Syntax

INSTR(string , substring [, position])

CUBRID 2008 R4.0 Help

160

string , substring :

• character string

• NULL

position :

• INT

• NULL

• string : Specifies the input character string.

• substring : Specifies the character string whose position is to be returned.

• position : Optional. Represents the position of a string where the search begins. If omitted, the default value 1 is

applied. The first position of the string is specified as 1. If the value is negative, the system counts backward from

the end of the string.

Example

--character set is euc-kr for Korean characters

--it returns position of the first 'b'

SELECT INSTR ('12345abcdeabcde','b');

 instr('12345abcdeabcde', 'b', 1)

===================================

 7

-- it returns position of the first '나' on double byte charset

SELECT INSTR ('12345가나다라마가나다라마', '나');

 instr('12345가나다라마가나다라마', '나', 1)

=================================

 8

-- it returns position of the second '나' on double byte charset

SELECT INSTR ('12345가나다라마가나다라마', '나', 16);

 instr('12345가나다라마가나다라마', '나', 16)

=================================

 18

--it returns position of the 'b' searching from the 8th position

SELECT INSTR ('12345abcdeabcde','b', 8);

 instr('12345abcdeabcde', 'b', 8)

===================================

 12

--it returns position of the 'b' searching backwardly from the end

SELECT INSTR ('12345abcdeabcde','b', -1);

 instr('12345abcdeabcde', 'b', -1)

====================================

 12

--it returns position of the 'b' searching backwardly from a specified position

SELECT INSTR ('12345abcdeabcde','b', -8);

 instr('12345abcdeabcde', 'b', -8)

====================================

 7

LCASE, LOWER Function

Description

The LOWER function converts uppercase characters that are included in a character string to lowercase characters; it

works the same as the LCASE function. Note that the LOWER function may not work properly in character sets that

are not supported by CUBRID. For details about the character sets supported by CUBRID, see Definition and

Characteristics.

Syntax

LCASE (string)

LOWER (string)

CUBRID SQL Guide

161

string :

• character string

• NULL

• string : Specifies the string in which uppercase characters are to be converted to lowercase. If the value is NULL,

NULL is returned.

Example

SELECT LOWER('');

 lower('')

======================

 ''

SELECT LOWER(NULL);

 lower(null)

======================

 NULL

SELECT LOWER('Cubrid');

 lower('Cubrid')

======================

 'cubrid'

LEFT Function

Description

The LEFT function returns a length number of characters from the leftmost of string. If any of the arguments is NULL,

NULL is returned. If a value greater than the length of the string or a negative number is specified for a length, the

entire string is returned.

To extract a length number of characters from the rightmost of the string, use the RIGHT Function.

Syntax

LEFT(string , length)

string :

• character string

• NULL

length :

• INT

• NULL

Example

SELECT LEFT('CUBRID', 3);

 left('CUBRID', 3)

======================

 'CUB'

SELECT LEFT('CUBRID', 10);

 left('CUBRID', 10)

======================

 'CUBRID'

LOCATE Function

Description

The LOCATE function returns the location index value of a substring within a character string. The third argument

position can be omitted. If this argument is specified, the function searches for substring from the given position and

returns the location index value of the first occurrence. If the substring cannot be found within the string, 0 is returned.

The LOCATE function is working like the POSITION Function, but you cannot use LOCATE for bit strings.

CUBRID 2008 R4.0 Help

162

Syntax

LOCATE (substring, string [, position])

string :

• character string

• NULL

Example

--it returns 1 when substring is empty space

SELECT LOCATE ('', '12345abcdeabcde');

===============================

 1

--it returns position of the first 'abc'

SELECT LOCATE ('abc', '12345abcdeabcde');

================================

 6

--it returns position of the second 'abc'

SELECT LOCATE ('abc', '12345abcdeabcde', 8) FROM db_root;

======================================

 11

--it returns 0 when no substring found in the string

SELECT LOCATE ('ABC', '12345abcdeabcde');

=================================

 0

LPAD Function

Description

The LPAD function pads the left side of a string with a specific set of characters.

Syntax

LPAD(char1, n, [, char2])

char1 :

• character string

• string valued column

• NULL

n :

• integer

• NULL

char2 :

• character string

• NULL

• char1 : Specifies the string to pad characters to. If n is smaller than the length of char1, padding is not performed,

and char1 is truncated to length n and then returned. A single character is processed as 2 or 3 bytes in multi-byte

character set environment. If char1 is truncated up to the first byte representing a character according to a value of

n, the last byte is removed and a space character (1 byte) is added to the left because the last character cannot be

represented normally. If the value is NULL, NULL is returned.

• n : Specifies the total length of char1 in bytes. Note that the number and the length of the character strings may be

different in multi-byte character set environment. If the value is NULL, NULL is returned.

• char2 : Specifies the string to pad to the left until the length of char1 reaches n. If it is not specified, empty

characters (' ') are used as a default. If the value is NULL, NULL is returned.

Example

--character set is euc-kr for Korean characters

--it returns only 3 characters if not enough length is specified

SELECT LPAD ('CUBRID', 3, '?');

 lpad('CUBRID', 3, '?')

CUBRID SQL Guide

163

======================

 'CUB'

--on multi-byte charset, it returns the first character only with a left padded space

SELECT LPAD ('큐브리드', 3, '?');

 lpad('큐브리드', 3, '?')

======================

 ' 큐'

--padding spaces on the left till char_length is 10

SELECT LPAD ('CUBRID', 10);

 lpad('CUBRID', 10)

======================

 ' CUBRID'

--padding specific characters on the left till char_length is 10

SELECT LPAD ('CUBRID', 10, '?');

 lpad('CUBRID', 10, '?')

======================

 '????CUBRID'

--padding specific characters on the left till char_length is 10

SELECT LPAD ('큐브리드', 10, '?');

 lpad('큐브리드', 10, '?')

======================

 '??큐브리드'

--padding 4 characters on the left

SELECT LPAD ('큐브리드', LENGTH('큐브리드')+4, '?');

 lpad('큐브리드', char_length('큐브리드')+4, '?')

======================

 '????큐브리드'

LTRIM Function

Description

The LTRIM function removes all specified characters from the left-hand side of a string.

Syntax

LTRIM(string [, trim_string])

string :

• character string

• string valued column

• NULL

trim_string :

• character string

• NULL

• string : Enters a string or string-type column to trim. If this value is NULL, NULL is returned.

• trim_string : You can specify a specific string to be removed in the left side of string. If it is not specified, empty

characters (' ') is automatically specified so that the empty characters in the left side are removed.

Example

--trimming spaces on the left

SELECT LTRIM (' Olympic ');

 ltrim(' Olympic ')

======================

 'Olympic '

--If NULL is specified, it returns NULL

SELECT LTRIM ('iiiiiOlympiciiiii', NULL);

CUBRID 2008 R4.0 Help

164

 ltrim('iiiiiOlympiciiiii', null)

======================

 NULL

-- trimming specific strings on the left

SELECT LTRIM ('iiiiiOlympiciiiii', 'i');

 ltrim('iiiiiOlympiciiiii', 'i')

======================

 'Olympiciiiii'

MID Function

Description

The MID function extracts a string with the length of substring_length from a position within the string and then returns

it. If a negative number is specified as a position value, the position is calculated in a reverse direction from the end of

the string. substring_length cannot be omitted. If a negative value is specified, the function considers this as 0 and

returns an empty string.

The MID function is working like the SUBSTR Function, but there are differences in that it cannot be used for bit

strings, that the substring_length argument must be specified, and that it returns an empty string if a negative number is

specified for substring_length.

Syntax

string :

• character string

• NULL

position :

• integer

• NULL

substring_length :

• integer

• NULL

• string : Specifies an input character string. If this value is NULL, NULL is returned.

• position : Specifies the starting position from which the string is to be extracted. The position of the first character

is 1. It is considered to be 1 even if it is specified as 0. If the input value is NULL, NULL is returned.

• substring_lenghth : Specifies the length of the string to be extracted. If 0 or a negative number is specified, an

empty string is returned; if NULL is specified, NULL is returned.

Example

CREATE TABLE mid_tbl(a VARCHAR);

INSERT INTO mid_tbl VALUES('12345abcdeabcde');

--it returns empty string when substring_length is 0

SELECT MID(a, 6, 0), SUBSTR(a, 6, 0), SUBSTRING(a, 6, 0) FROM mid_tbl;

 mid(a, 6, 0) substr(a, 6, 0) substring(a from 6 for 0)

==

 '' '' ''

--it returns 4-length substrings counting from the 6th position

SELECT MID(a, 6, 4), SUBSTR(a, 6, 4), SUBSTRING(a, 6, 4) FROM mid_tbl;

 mid(a, 6, 4) substr(a, 6, 4) substring(a from 6 for 4)

==

 'abcd' 'abcd' 'abcd'

--it returns a empty string when substring_length < 0

SELECT MID(a, 6, -4), SUBSTR(a, 6, -4), SUBSTRING(a, 6, -4) FROM mid_tbl;

 mid(a, 6, -4) substr(a, 6, -4) substring(a from 6 for -4)

==

 '' NULL 'abcdeabcde'

--it returns 4-length substrings at 6th position counting backward from the end

SELECT MID(a, -6, 4), SUBSTR(a, -6, 4), SUBSTRING(a, -6, 4) FROM mid_tbl;

CUBRID SQL Guide

165

 mid(a, -6, 4) substr(a, -6, 4) substring(a from -6 for 4)

==

 'eabc' 'eabc' '1234'

OCTET_LENGTH Function

Description

The OCTET_LENGTH function returns the length (byte) of a character string or bit string as an integer. Therefore, it

returns 1 (byte) if the length of the bit string is 8 bits, but 2 (bytes) if the length is 9 bits.

Syntax

OCTET_LENGTH (string)

string :

• bit string

• character string

• NULL

• string : Specifies the character or bit string whose length is to be returned in bytes. If the value is NULL, NULL is

returned.

Example

--character set is euc-kr for Korean characters

SELECT OCTET_LENGTH('');

 octet_length('')

==================

 0

SELECT OCTET_LENGTH('CUBRID');

 octet_length('CUBRID')

==================

 6

SELECT OCTET_LENGTH('큐브리드');

 octet_length('큐브리드')

==================

 8

SELECT OCTET_LENGTH(B'010101010');

 octet_length(B'010101010')

==================

 2

CREATE TABLE octet_length_tbl (char_1 CHAR, char_2 CHAR(5), varchar_1 VARCHAR, bit_var_1

BIT VARYING);

INSERT INTO octet_length_tbl VALUES('', '', '', B''); --Length of empty string

INSERT INTO octet_length_tbl VALUES('a', 'a', 'a', B'010101010'); --English character

INSERT INTO octet_length_tbl VALUES(NULL, '큐', '큐', B'010101010'); --Korean character and

NULL

INSERT INTO octet_length_tbl VALUES(' ', ' 큐', ' 큐', B'010101010'); --Korean character

and space

SELECT OCTET_LENGTH(char_1), OCTET_LENGTH(char_2), OCTET_LENGTH(varchar_1),

OCTET_LENGTH(bit_var_1) FROM octet_length_tbl;

octet_length(char_1) octet_length(char_2) octet_length(varchar_1) octet_length(bit_var_1)

==

1 5 0 0

1 5 1 2

NULL 5 2 2

1 5 3 2

CUBRID 2008 R4.0 Help

166

POSITION Function

Description

The POSITION function returns the position of a character string corresponding to substring within a character string

corresponding to string. Note that it returns the position in bytes, not in characters. Therefore, the return values may

differ because the number of bytes representing a single character is different in multi-byte character sets.

An expression that returns a character string or a bit string can be specified as an argument of this function. The return

value is an integer greater than or equal to 0. This function returns the position value in bytes for a character string, and

in bits for a bit string.

The POSITION function is occasionally used in combination with other functions. For example, if you want to extract

a certain string from another string, you can use the result of the POSITION function as an input to the SUBSTRING

function.

Syntax

POSITION (substring IN string)

substring :

• bit string

• character string

• NULL

• substring : Specifies the character string whose position is to be returned. If the value is an empty character, 1 is

returned. If the value is NULL, NULL is returned.

Example

--character set is euc-kr for Korean characters

--it returns 1 when substring is empty space

SELECT POSITION ('' IN '12345abcdeabcde');

 position('' in '12345abcdeabcde')

===============================

 1

--it returns position of the first 'b'

SELECT POSITION ('b' IN '12345abcdeabcde');

 position('b' in '12345abcdeabcde')

================================

 7

-- it returns position of the first '나' on double byte charset

SELECT POSITION ('나' IN '12345가나다라마가나다라마');

 position('나' in '12345가나다라마가나다라마')

=================================

 8

--it returns 0 when no substring found in the string

SELECT POSITION ('f' IN '12345abcdeabcde');

 position('f' in '12345abcdeabcde')

=================================

 0

SELECT POSITION (B'1' IN B'000011110000');

 position(B'1' in B'000011110000')

=================================

 5

CUBRID SQL Guide

167

REPEAT Function

Description

The REPEAT function returns the character string with a length equal to the number of repeated input character strings.

The return value is a VARCHAR type. The maximum length of the characcter string is 33,554,432 and if it this length

is exceeded, NULL will be returned. If one of the parameters is NULL, NULL will be returned.

Syntax

REPEAT(string, count)

• string : Character string

• count : Repeat count. If you enter 0 or a negative number, an empty string will be returned and if you enter a non-

numeric data type, an error will be returned.

Example

SELECT REPEAT('cubrid',3);

 repeat('cubrid', 3)

======================

 'cubridcubridcubrid'

SELECT REPEAT('cubrid',32000000);

 repeat('cubrid', 32000000)

======================

 NULL

SELECT REPEAT('cubrid',-1);

 repeat('cubrid', -1)

======================

 ''

SELECT REPEAT('cubrid','a');

ERROR: Cannot coerce value of domain "character" to domain "integer".

REPLACE Function

Description

The REPLACE function searches for a character string, search_string, within a given character string, string, and

replaces it with a character string, replacement_string. If the string to be replaced, replacement_string is omitted, all

search_strings retrieved from string are removed. If NULL is specified as an argument, NULL is returned.

Syntax

REPLACE(string, search_string [, replacement_string])

string :

• character string

• NULL

search_string :

• character string

• NULL

replacement_string :

• character string

• NULL

• string : Specifies the original string. If the value is NULL, NULL is returned.

• search_string : Specifies the string to be searched. If the value is NULL, NULL is returned.

• replacement_string : Specifies the string to replace the search_string. If this value is omitted, string is returned

with the search_string removed. If the value is NULL, NULL is returned.

CUBRID 2008 R4.0 Help

168

Example

--it returns NULL when an argument is specified with NULL value

SELECT REPLACE('12345abcdeabcde','abcde',NULL);

======================

 NULL

--not only the first substring but all substrings into 'ABCDE' are replaced

SELECT REPLACE('12345abcdeabcde','abcde','ABCDE');

======================

 '12345ABCDEABCDE'

--it removes all of substrings when replace_string is omitted

SELECT REPLACE('12345abcdeabcde','abcde');

======================

 '12345'

REVERSE Function

Description

The REVERSE function returns string converted in the reverse order.

Syntax

REVERSE(string)

string :

• character string

• NULL

• substring : Specifies an input character string. If the value is an empty string, empty value is returned. If the value is

NULL, NULL is returned.

Example

SELECT REVERSE('CUBRID');

 reverse ('CUBRID')

======================

 'DIRBUC'

RIGHT Function

Description

The RIGHT function returns a length number of characters from the rightmost of a string. If any of the arguments is

NULL, NULL is returned. If a value greater than the length of the string or a negative number is specified for a length,

the entire string is returned.

To extract a length number of characters from the leftmost of the string, use the LEFT Function.

Syntax

RIGHT(string , length)

string :

• character string

• NULL

length :

• INT

• NULL

Example

SELECT RIGHT('CUBRID', 3);

CUBRID SQL Guide

169

 right('CUBRID', 3)

======================

 'RID'

SELECT RIGHT ('CUBRID', 10);

 right('CUBRID', 10)

======================

 'CUBRID'

RPAD Function

Description

The RPAD function pads the right side of a string with a specific set of characters.

Syntax

RPAD(char1, n, [, char2])

char1 :

• character string

• string valued column

• NULL

n :

• integer

• NULL

char2 :

• character string

• NULL

• char1 : Specifies the string to pad characters to. If n is smaller than the length of char1, padding is not performed,

and char1 is truncated to length n and then returned. A single character is processed as 2 or 3 bytes in multi-byte

character set environment. If char1 is truncated up to the first byte representing a character according to a value of

n, the last byte is removed and an empty character (1 byte) is added to the left because the last character cannot be

represented normally. If the value is NULL, NULL is specified.

• n : Specifies the total length of char1 in bytes. Note that the number and the length of the character strings may be

different in multi-byte character set environment. If the value is NULL, NULL is specified.

• char2 : Specifies the string to pad to the right until the length of char1 reaches n. If it is not specified, empty

characters (' ') are used as a default. If the value is NULL, NULL is returned.

Example

--character set is euc-kr for Korean characters

--it returns only 3 characters if not enough length is specified

SELECT RPAD ('CUBRID', 3, '?');

======================

 'CUB'

--on multi-byte charset, it returns the first character only with a right-padded space

SELECT RPAD ('큐브리드', 3, '?');

======================

 '큐 '

--padding spaces on the right till char_length is 10

SELECT RPAD ('CUBRID', 10);

======================

 'CUBRID '

--padding specific characters on the right till char_length is 10

SELECT RPAD ('CUBRID', 10, '?');

======================

CUBRID 2008 R4.0 Help

170

 'CUBRID????'

--padding specific characters on the right till char_length is 10

SELECT RPAD ('큐브리드', 10, '?');

======================

 '큐브리드??'

--padding 4 characters on the right

SELECT RPAD ('큐브리드', LENGTH('큐브리드')+4, '?');

======================

 '큐브리드????'

RTRIM Function

Description

The RTRIM function removes specified characters from the right-hand side of a string.

Syntax

RTRIM(string [, trim_string])

string :

• character string

• string valued column

• NULL

trim_string :

• character string

• NULL

• string : Enters a string or string-type column to trim. If this value is NULL, NULL is returned.

• trim_string : You can specify a specific string to be removed in the right side of string. If it is not specified, empty

characters (' ') is automatically specified so that the empty characters in the right side are removed.

Example

SELECT RTRIM (' Olympic ');

 rtrim(' Olympic ')

======================

 ' Olympic'

--If NULL is specified, it returns NULL

SELECT RTRIM ('iiiiiOlympiciiiii', NULL);

 rtrim('iiiiiOlympiciiiii', null)

======================

 NULL

-- trimming specific strings on the right

SELECT RTRIM ('iiiiiOlympiciiiii', 'i');

 rtrim('iiiiiOlympiciiiii', 'i')

======================

 'iiiiiOlympic'

SPACE Function

Description

The SPACE function returns as many empy strings as the number specified. The return value is a VARCHAR type.

Syntax

SPACE(N)

CUBRID SQL Guide

171

• N : Space count. Can not be greater than the value specified in the system parameter, string_max_size_bytes

(default 1048576). If it exceeds the specified value, NULL will be returned. The maximum value is 33,554,432; if

this length is exceeded, NULL will be returned. If you enter 0 or a negative number, an empty string will be

returned; if you enter a type that can't be converted to a numeric value, an error will be returned.

Example

SELECT SPACE(8);

 space(8)

======================

 ' '

SELECT LENGTH(space(1048576));

 char_length(space(1048576))

===============================

 1048576

SELECT LENGTH(space(1048577));

 char_length(space(1048577))

===============================

 NULL

-- string_max_size_bytes=33554432

SELECT LENGTH(space('33554432'));

 char_length(space('33554432'))

==================================

 33554432

SELECT SPACE('aaa');

ERROR: Cannot coerce value of domain "character" to domain "bigint".

STRCMP Function

Description

The STRCMP function compares two strings, string1 and string2, and returns 0 if they are identical, 1 if string1 is

greater, or -1 if string1 is smaller. If any of the parameters is NULL, NULL is returned.

Syntax

STRCMP(string1 , string2)

string :

• character string

• NULL

Example

SELECT STRCMP('abc', 'abc');

=======================

 0

SELECT STRCMP ('acc', 'abc');

=======================

 1

--STRCMP works case-insensitively

SELECT STRCMP ('ABC','abc');

=======================

 0

CUBRID 2008 R4.0 Help

172

SUBSTR Function

Description

The SUBSTR function extracts a character string with the length of substring_length from a position, position, within

character string, string, and then returns it. If a negative number is specified as a position value, the position is

calculated in a reverse direction from the end of the string. If substring_length is omitted, character strings between the

given position, position, and the end of the string are extracted, and then returned.

Note that it returns the starting position and the length of character string in bytes, not in characters. Therefore, in a

multi-byte character set, you must specify the parameter in consideration of the number of bytes representing a single

character.

Syntax

SUBSTR(string, position [, substring_length])

string :

• character string

• bit string

• NULL

position :

• integer

• NULL

substring_length :

• integer

• string : Specifies the input character string. If the input value is NULL, NULL is returned.

• position : Specifies the position from where the string is to be extracted in bytes. Even though the position of the

first character is specified as 1 or a negative number, it is considered as 1. If a value greater than the string length or

NULL is specified, NULL is returned.

• substring_length : Specifies the length of the string to be extracted in bytes. If this argument is omitted, character

strings between the given position, position, and the end of them are extracted. NULL cannot be specified as an

argument value of this function. If 0 is specified, an empty string is returned; if a negative value is specified, NULL

is returned.

Example

--character set is euc-kr for Korean characters

--it returns empty string when substring_length is 0

SELECT SUBSTR('12345abcdeabcde',6, 0);

 substr('12345abcdeabcde', 6, 0)

======================

 ''

--it returns 4-length substrings counting from the position

SELECT SUBSTR('12345abcdeabcde', 6, 4), SUBSTR('12345abcdeabcde', -6, 4);

 substr('12345abcdeabcde', 6, 4) substr('12345abcdeabcde', -6, 4)

==

 'abcd' 'eabc'

--it returns substrings counting from the position to the end

SELECT SUBSTR('12345abcdeabcde', 6), SUBSTR('12345abcdeabcde', -6);

 substr('12345abcdeabcde', 6) substr('12345abcdeabcde', -6)

==

 'abcdeabcde' 'eabcde'

-- it returns 4-length substrings counting from 16th position on double byte charset

SELECT SUBSTR ('12345가나다라마가나다라마', 16 , 4);

 substr('12345가나다라마가나다라마', 16 , 4)

======================

 '가나'

CUBRID SQL Guide

173

SUBSTRING Function

Description

The SUBSTRING function, operating like SUBSTR, extracts a character string having the length of substring_length

from a position, position, within character string, string, and returns it.

If a negative number is specified to the position value, the SUBSTRING function calculates the position from the

beginning of the string. And SUBSTR function calculates the position from the end of the string. If a negative number

is specified to the substring_length value, the SUBSTRING function handles the argument is omitted, but the SUBSTR

function returns NULL.

Syntax

SUBSTRING(string, position [, substring_length])

SUBSTRING(string FROM position [FOR substring_length])

string :

• bit string

• character string

• NULL

position :

• integer

• NULL

substring_length :

• integer

• string : Specifies the input character string. If the input value is NULL, NULL is returned.

• position : Specifies the position from where the string is to be extracted in bytes. Even though the position of the

first character is specified as 1 or a negative number, it is considered as 1. If a value greater than the string length is

specified, an empty string is returned. If NULL, NULL is returned.

• substring_length : Specifies the length of the string to be extracted in bytes. If this argument is omitted, character

strings between the given position, position, and the end of them are extracted. NULL cannot be specified as an

argument value of this function. If 0 is specified, an empty string is returned; if a negative value is specified, NULL

is returned.

Example

SELECT SUBSTRING('12345abcdeabcde', -6 ,4), SUBSTR('12345abcdeabcde', -6 ,4);

==

 '1234' 'eabc'

SELECT SUBSTRING('12345abcdeabcde', 16), SUBSTR('12345abcdeabcde', 16);

==

 '' NULL

SELECT SUBSTRING('12345abcdeabcde', 6, -4), SUBSTR('12345abcdeabcde', 6, -4);

==

 'abcdeabcde' NULL

SUBSTRING_INDEX Function

Description

The SUBSTRING_INDEX function counts the separators included in the partial character string and will return the

partial character string before countth. The return value is a VARCHAR type.

Syntax

SUBSTRING_INDEX (string, delim, count)

• string : Input character string. The maximum length is 33,554,432 and if this length is exceeded, NULL will be

returned.

CUBRID 2008 R4.0 Help

174

• delim : Delimiter. It is case-sensitive.

• count : Delimiter occurrence count. If you enter a positive number, it counts the character string from the left and if

you enter a negative number, it counts it from the right. If it is 0, an empty string will be returned. If the type can

not be converted, an error wll be returned.

Example

SELECT SUBSTRING_INDEX('www.cubrid.org','.','2');

 substring_index('www.cubrid.org', '.', '2')

======================

 'www.cubrid'

SELECT SUBSTRING_INDEX('www.cubrid.org','.','2.3');

 substring_index('www.cubrid.org', '.', '2.3')

======================

 'www.cubrid'

SELECT SUBSTRING_INDEX('www.cubrid.org',':','2.3');

 substring_index('www.cubrid.org', ':', '2.3')

======================

 'www.cubrid.org'

SELECT SUBSTRING_INDEX('www.cubrid.org','cubrid',1);

 substring_index('www.cubrid.org', 'cubrid', 1)

======================

 'www.'

SELECT SUBSTRING_INDEX('www.cubrid.org','.',100);

 substring_index('www.cubrid.org', '.', 100)

======================

 'www.cubrid.org'

TRANSLATE Function

Description

The TRANSLATE function searches for a character specified as a character string, from_substring, within a given

character string, string, and replaces it with a character specified as a character string, to_substring, if exists.

Correspondence relationship is determined according to the order of characters specified by from_substring and

to_substring. All characters in from_substring that do not have a one to one correspondence relationship with the

characters in to_substring are removed from the string. The TRANSLATE function is working like the REPLACE

function, but you cannot omit the to_substring argument with this function.

Syntax

TRANSLATE(string, from_substring, to_substring)

string :

• character string

• NULL

from_substring :

• character string

• NULL

to_substring :

• character string

• NULL

• string : Specifies the original string. If the value is NULL, NULL is returned.

• from_substring : Specifies the string to be retrieved. If the value is NULL, NULL is returned.

• to_substring : Specifies the character string in the from_substring to be replaced. It cannot be omitted. If the value

is NULL, NULL is returned.

Example

--it returns NULL when an argument is specified with NULL value

CUBRID SQL Guide

175

SELECT TRANSLATE('12345abcdeabcde','abcde', NULL);

 translate('12345abcdeabcde', 'abcde', null)

======================

 NULL

--it translates 'a','b','c','d','e' into '1', '2', '3', '4', '5' respectively

SELECT TRANSLATE('12345abcdeabcde', 'abcde', '12345');

 translate('12345abcdeabcde', 'abcde', '12345')

======================

 '123451234512345'

--it translates 'a','b','c' into '1', '2', '3' respectively and removes 'd's and 'e's

SELECT TRANSLATE('12345abcdeabcde','abcde', '123');

 translate('12345abcdeabcde', 'abcde', '123')

======================

 '12345123123'

--it removes 'a's,'b's,'c's,'d's, and 'e's in the string

SELECT TRANSLATE('12345abcdeabcde','abcde', '');

 translate('12345abcdeabcde', 'abcde', '')

======================

 '12345'

--it only translates 'a','b','c' into '3', '4', '5' respectively

SELECT TRANSLATE('12345abcdeabcde','ABabc', '12345');

 translate('12345abcdeabcde', 'ABabc', '12345')

======================

 '12345345de345de'

TRIM Function

Description

The TRIM function trims leading and/or trailing characters from a character string.

Syntax

TRIM ([[LEADING | TRAILING | BOTH] [trim_string] FROM] string)

trim_string :

• character string

• NULL

string :

• character string literal

• string valued column

• NULL

• trim_string : You can specify a specific string to be removed that is in front of or at the back of the target string. If

it is not specified, an empty character (' ') is automatically specified so that spaces in front of or at the back of the

target string are removed.

• string : Enters a string or string-type column to trim. If this value is NULL, NULL is returned.

• [LEADING | TRAILING | BOTH] : You can specify an option to trim a specified string that is in a certain

position of the target string. If it is LEADING, trimming is performed in front of a character string if it is

TRAILING, trimming is performed at the back of a character string if it is BOTH, trimming is performed in front

and at the back of a character string. If the option is not specified, BOTH is specified by default.

• The character string of trim_string and string should have the same character set.

Example

--trimming NULL returns NULL

SELECT TRIM (NULL);

 trim(both from null)

======================

 NULL

--trimming spaces on both leading and trailing parts

SELECT TRIM (' Olympic ');

 trim(both from ' Olympic ')

CUBRID 2008 R4.0 Help

176

======================

 'Olympic'

--trimming specific strings on both leading and trailing parts

SELECT TRIM ('i' FROM 'iiiiiOlympiciiiii');

 trim(both 'i' from 'iiiiiOlympiciiiii')

======================

 'Olympic'

--trimming specific strings on the leading part

SELECT TRIM (LEADING 'i' FROM 'iiiiiOlympiciiiii');

 trim(leading 'i' from 'iiiiiOlympiciiiii')

======================

 'Olympiciiiii'

--trimming specific strings on the trailing part

SELECT TRIM (TRAILING 'i' FROM 'iiiiiOlympiciiiii');

 trim(trailing 'i' from 'iiiiiOlympiciiiii')

======================

 'iiiiiOlympic'

UCASE, UPPER Function

Description

The UCASE and UPPER functions convert lowercase characters that are included in a character string to uppercase

characters. Note that the UPPER function may not work properly in character sets that are not supported by CUBRID.

For details about the character sets supported by CUBRID, see Definition and Characteristics.

Syntax

UCASE (string)

UPPER (string)

string :

• character string

• NULL

• string : Specifies the string in which lowercase characters are to be converted to uppercase. If the value is NULL,

NULL is returned.

Example

SELECT UPPER('');

 upper('')

======================

 ''

SELECT UPPER(NULL);

 upper(null)

======================

 NULL

SELECT UPPER('Cubrid');

 upper('Cubrid')

======================

 'CUBRID'

Numeric and Operator Functions

ABS Function

Description

The ABS function returns the absolute value of a given number. The data type of the return value is the same as that of

the argument.

CUBRID SQL Guide

177

Syntax

ABS(number_operand)

• number_operand : An operator which returns a numeric value

Example

--it returns the absolute value of the argument

SELECT ABS(12.3), ABS(-12.3), ABS(-12.3000), ABS(0.0);

 abs(12.3) abs(-12.3) abs(-12.3000) abs(0.0)

==

 12.3 12.3 12.3000 .0

ACOS Function

Description

The ACOS function returns an arc cosine value of the argument. That is, it returns a value whose cosine is x in radian.

The return value is a DOUBLE type. x must be a value between -1 and 1, inclusive. Otherwise, NULL is returned.

Syntax

ACOS(x)

• x : An expression that returns a numeric value.

Example

SELECT ACOS(1), ACOS(0), ACOS(-1);

 acos(1) acos(0) acos(-1)

==

 0.000000000000000e+00 1.570796326794897e+00 3.141592653589793e+00

ASIN Function

Description

The ASIN function returns an arc sine value of the argument. That is, it returns a value whose sine is x in radian. The

return value is a DOUBLE type. x must be a value between -1 and 1, inclusive. Otherwise, NULL is returned.

Syntax

ASIN (x)

• x : An expression that returns a numeric value.

Example

SELECT ASIN(1), ASIN(0), ASIN(-1);

 asin(1) asin(0) asin(-1)

==

 1.570796326794897e+00 0.000000000000000e+00 -1.570796326794897e+00

ATAN Function

Description

The ATAN function returns a value whose tangent is x in radian. The argument y can be omitted. If y is specified, the

function calculates the arc tangent value of y/x. The return value is a DOUBLE type.

Syntax

ATAN ([y,] x)

• x, y : An expression that returns a numeric value.

CUBRID 2008 R4.0 Help

178

Example

SELECT ATAN(1), ATAN(-1), ATAN(1,-1);

 atan(1) atan(-1) atan2(1, -1)

==

 7.853981633974483e-01 -7.853981633974483e-01 2.356194490192345e+00

ATAN2 Function

Description

The ATAN2 function returns the arc tangent value of y/x in radian. This function is working like the ATAN Function.

Arguments x and y must be specified. The return value is a DOUBLE type.

Syntax

ATAN2 (y, x)

• x, y : An expression that returns a numeric value.

Example

SELECT ATAN2(1,1), ATAN2(-1,-1), ATAN2(Pi(),0);

atan2(1, 1) atan2(-1, -1) atan2(pi(), 0)

==

 7.853981633974483e-01 -2.356194490192345e+00 1.570796326794897e+00

CEIL Function

Description

The CEIL function returns the smallest integer that is not less than its argument. The return value is determined based

on the valid number of digits that are specified as the number_operand argument.

Syntax

CEIL(number_operand)

• number_operand : An expression that returns a numeric value.

Example

SELECT CEIL(34567.34567), CEIL(-34567.34567);

 ceil(34567.34567) ceil(-34567.34567)

==

 34568.00000 -34567.00000

SELECT CEIL(34567.1), CEIL(-34567.1);

 ceil(34567.1) ceil(-34567.1)

=============================

 34568.0 -34567.0

COS Function

Description

The COS function returns a cosine value of the argument. The argument x must be a radian value. The return value is a

DOUBLE type.

Syntax

COS(x)

• x : An expression that returns a numeric value.

CUBRID SQL Guide

179

Example

SELECT COS(pi()/6), COS(pi()/3), COS(pi());

 cos(pi()/6) cos(pi()/3) cos(pi())

==

 8.660254037844387e-01 5.000000000000001e-01 -1.000000000000000e+00

COT Function

Description

The COT function returns the cotangent value of the argument x. That is, it returns a value whose tangent is x in radian.

The return value is a DOUBLE type.

Syntax

COT (x)

• x : An expression that returns a numeric value.

Example

SELECT COT(1), COT(-1), COT(0);

 cot(1) cot(-1) cot(0)

==

 6.420926159343306e-01 -6.420926159343306e-01 NULL

DEGREES Function

Description

The DEGREES function returns the argument x specified in radian converted to a degree value. The return value is a

DOUBLE type.

Syntax

DEGREES (x)

• x : An expression that returns a numeric value.

Example

SELECT DEGREES(pi()/6), DEGREES(pi()/3), DEGREES (pi());

 degrees(pi()/6) degrees(pi()/3) degrees(pi())

==

 3.000000000000000e+01 5.999999999999999e+01 1.800000000000000e+02

DRANDOM/DRAND Function

Description

The DRANDOM/DRAND function returns a random double-precision floating point value in the range of between 0.0

and 1.0. A seed argument that is INTEGER type can be specified. It rounds up real numbers and an error is returned

when it exceeds the range of INTEGER.

The DRAND function performs the operation only once to produce only one random number regardless of the number

of rows where the operation is output, but the DRANDOM function performs the operation every time the statement is

repeated to produce a different random value for each row. Therefore, to output rows in a random order, you must use

the DRANDOM function in the ORDER BY clause.

To obtain a random integer value, use the RANDOM/RAND Function.

Syntax

DRANDOM([seed])

DRAND([seed])

CUBRID 2008 R4.0 Help

180

Example

SELECT DRAND(), DRAND(1), DRAND(1.4);

 drand() drand(1) drand(1.4)

==

 2.849646518006921e-001 4.163034446537495e-002 4.163034446537495e-002

SELECT * FROM rand_tbl;

 id name

===================================

 1 'a'

 2 'b'

 3 'c'

 4 'd'

 5 'e'

 6 'f'

 7 'g'

 8 'h'

 9 'i'

 10 'j'

--drandom() returns random values on every row

SELECT DRAND(), DRANDOM() FROM rand_tbl;

 drand() drandom()

==

 7.638782921842098e-001 1.018707846308786e-001

 7.638782921842098e-001 3.191320535905026e-001

 7.638782921842098e-001 3.461714529862361e-001

 7.638782921842098e-001 6.791894283883175e-001

 7.638782921842098e-001 4.533829767754143e-001

 7.638782921842098e-001 1.714224677266762e-001

 7.638782921842098e-001 1.698049867244484e-001

 7.638782921842098e-001 4.507583849604786e-002

 7.638782921842098e-001 5.279091769157994e-001

 7.638782921842098e-001 7.021088290047914e-001

--selecting rows in random order

SELECT * FROM rand_tbl ORDER BY DRANDOM();

 id name

===================================

 6 'f'

 2 'b'

 7 'g'

 8 'h'

 1 'a'

 4 'd'

 10 'j'

 9 'i'

 5 'e'

 3 'c'

EXP Function

Description

The EXP function returns ex (the base of natural logarithm) raised to a power.

Syntax

EXP(x)

• x : An operator which returns a numeric value

Example

SELECT EXP(1), EXP(0);

 exp(1) exp(0)

==

 2.718281828459045e+000 1.000000000000000e+000

SELECT EXP(-1), EXP(2.00);

 exp(-1) exp(2.00)

CUBRID SQL Guide

181

==

 3.678794411714423e-001 7.389056098930650e+000

FLOOR Function

Description

The FLOOR function returns the largest integer that is not greater than its argument. The data type of the return value is

the same as that of the argument.

Syntax

FLOOR(number_operand)

• number_operand : An operator which returns a numeric value

Example

--it returns the largest integer less than or equal to the arguments

SELECT FLOOR(34567.34567), FLOOR(-34567.34567);

==

 34567.00000 -34568.00000

SELECT FLOOR(34567), FLOOR(-34567);

=============================

 34567 -34567

FORMAT Function

Description

The FORMAT function displays the number x by using commas as thousands delimiters, so that its format becomes

‘#,###,###.#####’ and performs rounding after the decimal point to express as many as dec digits after it. The return

value is a string type.

Syntax

FORMAT (x , dec)

• x , dec : An expression that returns a numeric value.

Example

SELECT FORMAT(12000.123456,3), FORMAT(12000.123456,0);

 format(12000.123456, 3) format(12000.123456, 0)

==

 '12,000.123' '12,000'

GREATEST Function

Description

The GREATEST function compares more than one expression specified as parameters and returns the greatest value. If

only one expression has been specified, the expression is returned because there is no expression to be compared with.

Therefore, more than one expression that are specified as parameters must be of the type that can be compared with each

other. If the types of the specified parameters are identical, so are the types of the return values; if they are different, the

type of the return value becomes a convertible common data type.

That is, the GREATEST function compares the values of column 1, column 2 and column 3 in the same row and

returns the greatest value while the MAX function compares the values of column in all result rows and returns the

greatest value.

CUBRID 2008 R4.0 Help

182

Syntax

GREATEST(expression [, expression]*)

• expression : Specifies more than one expression. Their types must be comparable each other. One of the arguments

is NULL, NULL is returned.

Example

The following is an example that returns the number of every medals and the highest number that Korea won. (demodb)

SELECT gold, silver , bronze, GREATEST (gold, silver, bronze) FROM participant

WHERE nation_code = 'KOR';

gold silver bronze greatest(gold, silver, bronze)

===

 9 12 9 12

 8 10 10 10

 7 15 5 15

 12 5 12 12

 12 10 11 12

LEAST Function

Description

The LEAST function compares more than one expression specified as parameters and returns the smallest value. If only

one expression has been specified, the expression is returned because there is no expression to be compared with.

Therefore, more than one expression that are specified as parameters must be of the type that can be compared with each

other. If the types of the specified parameters are identical, so are the types of the return values; if they are different, the

type of the return value becomes a convertible common data type.

That is, the LEAST function compares the values of column 1, column 2 and column 3 in the same row and returns the

smallest value while the MIN function compares the values of column in all result rows and returns the smallest value.

Syntax

LEAST(expression [, expression]*)

• expression : Specifies more than one expression. Their types must be comparable each other. One of the arguments

is NULL, NULL is returned.

Example

The following is an example that returns the number of every medals and the lowest number that Korea won. (demodb)

SELECT gold, silver , bronze, LEAST(gold, silver, bronze) FROM participant

WHERE nation_code = 'KOR';

 gold silver bronze least(gold, silver, bronze)

==

 9 12 9 9

 8 10 10 8

 7 15 5 5

 12 5 12 5

 12 10 11 10

LN Function

Description

The LN function returns the natural log value (base = e) of an antilogarithm x. The return value is a DOUBLE type. If

the antilogarithm is 0 or a negative number, an error is returned.

Syntax

LN (x)

• x : An expression that returns a positive value.

CUBRID SQL Guide

183

Example

SELECT ln(1), ln(2.72);

 ln(1) ln(2.72)

===

 0.000000000000000e+00 1.000631880307906e+00

LOG2 Function

Description

The LOG2 function returns a log value whose antilogarithm is x and base is 2. The return value is a DOUBLE type. If

the antilogarithm is 0 or a negative number, an error is returned.

Syntax

LOG2 (x)

• x : An expression that returns a positive number.

• fails.

Example

 SELECT log2(1), log2(8);

 log2(1) log2(8)

==

 0.000000000000000e+00 3.000000000000000e+00

LOG10 Function

Description

The LOG10 function returns the common log value of an antilogarithm x. The return value is a DOUBLE type. If the

antilogarithm is 0 or a negative number, an error is returned.

Syntax

LOG10 (x)

• x : An expression that returns a positive number.

Example

SELECT log10(1), log10(1000);

 log10(1) log10(1000)

==

 0.000000000000000e+00 3.000000000000000e+00

MOD Function

Description

The MOD function returns the remainder of the first parameter m divided by the second parameter n. If n is 0, m is

returned without the division operation being performed.

Note that if the dividend, the parameter m of the MOD function, is a negative number, the function operates differently

from a typical operation (classical modulus) method.

Result of MOD

m n MOD(m, n) Classical Modulus

m-n*FLOOR(m/n)

11 4 3 3

11 -4 3 -1

CUBRID 2008 R4.0 Help

184

-11 4 -3 1

-11 -4 -3 -3

11 0 11 Divided by 0 error

Syntax

MOD(m, n)

• m : Represents the dividend. It is an expression that returns a numeric value.

• n : Represents the divisor. It is an expression that returns a numeric value.

Example

--it returns the reminder of m divided by n

SELECT MOD(11, 4), MOD(11, -4), MOD(-11, 4), MOD(-11, -4), MOD(11,0);

 mod(11, 4) mod(11, -4) mod(-11, 4) mod(-11, -4) mod(11, 0)

===

 3 3 -3 -3 11

SELECT MOD(11.0, 4), MOD(11.000, 4), MOD(11, 4.0), MOD(11, 4.000);

 mod(11.0, 4) mod(11.000, 4) mod(11, 4.0) mod(11, 4.000)

===

 3.0 3.000 3.0 3.000

PI Function

Description

The PI function returns the π value, and is expressed in double-precision.

Syntax

PI()

Example

SELECT PI(), PI()/2;

 pi() pi()/2

==

 3.141592653589793e+00 1.570796326794897e+00

POW, POWER Function

Description

The POW function returns x to the power of y. POW and POWER are used interchangeably. The return value is a

DOUBLE type.

Syntax

POW(x, y)

POWER(x, y)

• x : It represents the base. It is an expression that returns a numeric value. An expression that returns a numeric value.

• y : It represents the exponent. An expression that returns a numeric value. If the base is a negative number, an

integer must specified as the exponent.

Example

SELECT POWER(2, 5), POWER(-2, 5), POWER(0, 0), POWER(1,0);

 power(2, 5) power(-2, 5) power(0, 0) power(1, 0)

==

 3.200000000000000e+01 -

3.200000000000000e+01 1.000000000000000e+00 1.000000000000000e+00

CUBRID SQL Guide

185

--it returns an error when the negative base is powered by a non-int exponent

SELECT POWER(-2, -5.1), POWER(-2, -5.1);

ERROR

RADIANS Function

Description

The RADIANS function returns the argument x specified in degrees converted to a radian value. The return value is a

DOUBLE type.

Syntax

RADIANS (x)

• x : An expression that returns a numeric value.

Example

SELECT RADIANS(90), RADIANS(180), RADIANS(360);

 radians(90) radians(180) radians(360)

==

 1.570796326794897e+00 3.141592653589793e+00 6.283185307179586e+00

RANDOM/RAND Function

Description

The RANDOM/RAND function returns any integer value between 0^231 and a seed argument that is INTEGER type

can be specified. It rounds up real numbers and an error is returned when it exceeds the range of INTEGER.

The RAND function performs the operation only once to produce only one random number regardless of the number of

rows where the operation is output, but the RANDOM function performs the operation every time the statement is

repeated to produce a different random value for each row. Therefore, to output rows in a random order, you must use

the RANDOM function.

To obtain a random real number, use the DRANDOM/DRAND Function.

Syntax

RANDOM([seed])

RAND([seed])

Example

SELECT RAND(), RAND(1), RAND(1.4);

 rand() rand(1) random(1.4)

==

 1526981144 89400484 89400484

--creating a new table

SELECT * FROM rand_tbl;

 id name

===================================

 1 'a'

 2 'b'

 3 'c'

 4 'd'

 5 'e'

 6 'f'

 7 'g'

 8 'h'

 9 'i'

 10 'j'

--random() returns random values on every row

SELECT RAND(),RANDOM() FROM rand_tbl;

CUBRID 2008 R4.0 Help

186

 rand() random()

============================

 2078876566 1753698891

 2078876566 1508854032

 2078876566 625052132

 2078876566 279624236

 2078876566 1449981446

 2078876566 1360529082

 2078876566 1563510619

 2078876566 1598680194

 2078876566 1160177096

 2078876566 2075234419

--selecting rows in random order

SELECT * FROM rand_tbl ORDER BY RANDOM();

 id name

===================================

 6 'f'

 1 'a'

 5 'e'

 4 'd'

 2 'b'

 7 'g'

 10 'j'

 9 'i'

 3 'c'

 8 'h'

ROUND Function

Description

The ROUND function returns the specified argument, number_operand, rounded to the number of places after the

decimal point specified by the integer. If the integer argument is a negative number, it rounds to a place before the

decimal point, that is, at the integer part.

Syntax

ROUND(number_operand, integer)

• number_operand : An expression that returns a numeric value

• integer : Specifies the place to round to. If a positive integer n is specified, the number is represented to the nth

place after the decimal point; if a negative integer n is specified, the number is rounded to the nth place before the

decimal point.

• The return value has the same type as the number_operand.

Example

--it rounds a number to one decimal point when the second argument is omitted

SELECT ROUND(34567.34567), ROUND(-34567.34567);

 round(34567.34567, 0) round(-34567.34567, 0)

==

 34567.00000 -34567.00000

--it rounds a number to three decimal point

SELECT ROUND(34567.34567, 3), ROUND(-34567.34567, 3) FROM db_root;

 round(34567.34567, 3) round(-34567.34567, 3)

==

 34567.34600 -34567.34600

--it rounds a number three digit to the left of the decimal point

SELECT ROUND(34567.34567, -3), ROUND(-34567.34567, -3);

 round(34567.34567, -3) round(-34567.34567, -3)

==

 35000.00000 -35000.00000

CUBRID SQL Guide

187

SIGN Function

Description

The SIGN function returns the sign of a given number. It returns 1 for a positive value, -1 for a negative value, and 0 for

zero.

Syntax

SIGN(number_operand)

• number_operand : An operator which returns a numeric value

Example

--it returns the sign of the argument

SELECT SIGN(12.3), SIGN(-12.3), SIGN(0);

 sign(12.3) sign(-12.3) sign(0)

==

 1 -1 0

SIN Function

Description

The SIN function returns a sine value of the parameter. The argument x must be a radian value. The return value is a

DOUBLE type.

Syntax

SIN (x)

• x : An expression that returns a numeric value.

Example

SELECT SIN(pi()/6), SIN(pi()/3), SIN(pi());

 sin(pi()/6) sin(pi()/3) sin(pi())

==

 4.999999999999999e-01 8.660254037844386e-01 1.224646799147353e-16

SQRT Function

Description

The SQRT function returns the square root of x as a DOUBLE type.

Syntax

SORT (x)

• x : An expression that returns a numeric value. An error is returned if this value is a negative number.

Example

SELECT SQRT(4), SQRT(16.0);

 sqrt(4) sqrt(16.0)

==

 2.000000000000000e+00 4.000000000000000e+00

CUBRID 2008 R4.0 Help

188

TAN Function

Description

The TAN function returns a tangent value of the argument. The argument x must be a radian value. The return value is a

DOUBLE type.

Syntax

TAN (x)

• x : An expression that returns a numeric value.

Example

SELECT TAN(pi()/6), TAN(pi()/3), TAN(pi()/4);

tan(pi()/6) tan(pi()/3) tan(pi()/4)

==

 5.773502691896257e-01 1.732050807568877e+00 9.999999999999999e-01

TRUNC, TRUNCATE Function

Description

The TRUNC and TRUNCATE function truncates the numbers of the specified argument x to the right of the dec

position. If the dec argument is a negative number, it displays 0s to the dec-th position left to the decimal point. Note

that the dec argument of the TRUNC function can be omitted, but that of the TRUNCATE function cannot be omitted.

If the dec argument is a negative number, it displays 0s to the dec-th position left to the decimal point. The number of

digits of the return value to be represented follows the argument x.

Syntax

TRUNC(x[, dec])

TRUNCATE(x, dec)

• x : An expression that returns a numeric value.

• dec : The place to be truncated is specified. If a positive integer n is specified, the number is represented to the n-th

place after the decimal point; if a negative integer n is specified, the number is truncated to the n-th place before the

decimal point. It truncates to the first place after the decimal point if the dec argument is 0 or omitted. Note that the

dec argument cannot be omitted in the TRUNCATE function.

Example

--it returns a number truncated to 0 places

SELECT TRUNC(34567.34567), TRUNCATE(34567.34567, 0);

 trunc(34567.34567, 0) trunc(34567.34567, 0)

==

 34567.00000 34567.00000

--it returns a number truncated to three decimal places

SELECT TRUNC(34567.34567, 3), TRUNC(-34567.34567, 3);

 trunc(34567.34567, 3) trunc(-34567.34567, 3)

==

 34567.34500 -34567.34500

--it returns a number truncated to three digits left of the decimal point

SELECT TRUNC(34567.34567, -3), TRUNC(-34567.34567, -3);

 trunc(34567.34567, -3) trunc(-34567.34567, -3)

==

 34000.00000 -34000.00000

CUBRID SQL Guide

189

Date/Time Functions and Operators

ADDDATE, DATE_ADD Function

Description

The ADDDATE function performs an addition or subtraction operation on a specific DATE value; ADDDATE and

DATE_ADD are used interchangeably. They return the DATETIME type in the following cases: 1) The first argument

is DATETIME or TIMESTAMP type, 2) The first argument is DATE type, or 3) Less than DAY unit is specified for

the value of INTERVAL.

Therefore, to return value of DATETIME type, you should convert the value of first argument by using the CAST

function. Even though the date resulting from the operation exceeds the last day of the month, the function returns a

valid DATE value considering the last date of the month.

Syntax

ADDDATE(date, INTERVAL expr unit)

DATE_ADD(date, INTERVAL expr unit)

ADDDATE(date, days)

• date : It is a DATE, TIMETIME, or TIMESTAMP expression that represents the start date. If an invalid DATE

value such as '2006-07-00' is specified, an error is returned.

• expr : It represents the interval value to be added to the start date. If a negative number is specified next to the

INTERVAL keyword, the interval value is subtracted from the start date.

• unit : It represents the unit of the interval value specified in the expr expression. See the following table to specify

the format for the interpretation of the interval value. If the value of expr is less than the number requested in the

unit, it is specified from the smallest unit. For example, if it is HOUR_SECOND, three values such as

'HOURS:MINUTES:SECONDS' are required. In the case, if only two values such as "1:1" are given, it is regarded

as 'MINUTES:SECONDS'.

expr value for unix

Unit Value expr Value

MILLISECOND MILLISECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MILLISECOND 'SECONDS.MILLISECONDS'

MINUTE_MILLISECOND 'MINUTES:SECONDS.MILLISECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MILLISECOND 'HOURS:MINUTES:SECONDS.MILLISECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MILLISECOND 'DAYS HOURS:MINUTES:SECONDS.MILLISECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

CUBRID 2008 R4.0 Help

190

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

Example

SELECT SYSDATE, ADDDATE(SYSDATE,INTERVAL 24 HOUR), ADDDATE(SYSDATE, 1);

 SYS_DATE date_add(SYS_DATE , INTERVAL 24 HOUR) adddate(SYS_DATE , 1)

==

 03/30/2010 12:00:00.000 AM 03/31/2010 03/31/2010

--it substracts days when argument < 0

SELECT SYSDATE, ADDDATE(SYSDATE,INTERVAL -24 HOUR), ADDDATE(SYSDATE, -1);

 SYS_DATE date_add(SYS_DATE , INTERVAL -24 HOUR) adddate(SYS_DATE , -1)

==

 03/30/2010 12:00:00.000 AM 03/29/2010 03/29/2010

--when expr is not fully specified for unit

select sys_datetime, adddate(sys_datetime, interval '1:20' HOUR_SECOND);

 SYS_DATETIME date_add(SYS_DATETIME , INTERVAL '1:20' HOUR_SECOND)

===

 06:18:24.149 PM 06/28/2010 06:19:44.149 PM 06/28/2010

ADD_MONTH Function

The ADD_MONTHS function adds a month value to the expression date_parameter of DATE type, and it returns a

DATE type value. If the day (dd) of the value specified as the parameter exists within the month of the result value of

the operation, it returns the given day (dd); otherwise returns the last day of the given month (dd). If the result value of

the operation exceeds the expression range of the DATE type, it returns an error.

Syntax

ADD_MONTHS (date_argument , month)

date_argument :

• date

• NULL

month :

• integer

• NULL

• date_argument : Specifies an expression of DATE type. To specify a TIMESTAMP or DATETIME value, an

explicit casting to DATE type is required. If the value is NULL, NULL is returned.

• month : Specifies the number of the months to be added to the date_argument. Both positive and negative values

can be specified. If the given value is not an integer type, conversion to an integer type by an implicit casting

(rounding to the first place after the decimal point) is performed. If the value is NULL, NULL is returned.

Example

--it returns DATE type value by adding month to the first argument

SELECT ADD_MONTHS(DATE '2008-12-25', 5), ADD_MONTHS(DATE '2008-12-25', -5);

 add_months(date '2008-12-25', 5) add_months(date '2008-12-25', -5)

===

 05/25/2009 07/25/2008

SELECT ADD_MONTHS(DATE '2008-12-31', 5.5), ADD_MONTHS(DATE '2008-12-31', -5.5);

 add_months(date '2008-12-31', 5.5) add_months(date '2008-12-31', -5.5)

===

 06/30/2009 06/30/2008

SELECT ADD_MONTHS(CAST (SYS_DATETIME AS DATE), 5), ADD_MONTHS(CAST (SYS_TIMESTAMP AS DATE),

5);

CUBRID SQL Guide

191

 add_months(cast(SYS_DATETIME as date), 5) add_months(cast(SYS_TIMESTAMP as date),

5)

==

 07/03/2010 07/03/2010

CURDATE, CURRENT_DATE, CURRENT_DATE(), SYS_DATE, SYSDATE

Description

CURDATE(), CURRENT_DATE, CURRENT_DATE, SYS_DATE, and SYSDATE are used interchangeably, and

they return the current date as the DATE type (MM/DD/YYYY or YYYY-MM-DD). The unit is day.

Syntax

CURDATE()

CURRENT_DATE()

CURRENT_DATE

SYS_DATE

SYSDATE

Example

--it returns the current date in DATE type

SELECT CURDATE(), CURRENT_DATE(), CURRENT_DATE, SYS_DATE, SYSDATE;

 SYS_DATE SYS_DATE SYS_DATE SYS_DATE SYS_DATE

==

 04/01/2010 04/01/2010 04/01/2010 04/01/2010 04/01/2010

--it returns the date 60 days added to the current date

SELECT CURDATE()+60;

 SYS_DATE +60

===============

 05/31/2010

CURRENT_DATETIME, CURRENT_DATETIME(), NOW(), SYS_DATETIME, SYSDATETIME

Description

CURRENT_DATETIME, CURRENT_DATETIME(), NOW() SYS_DATETIME, and SYSDATETIME are used

interchangeably, and they return the current date and time in DATETIME type. The unit is millisecond.

Syntax

CURRENT_DATETIME

CURRENT_DATETIME()

NOW()

SYS_DATETIME

SYSDATETIME

Example

--it returns the current date and time in DATETIME type

SELECT NOW(), SYS_DATETIME;

 SYS_DATETIME SYS_DATETIME

==

 04:08:09.829 PM 02/04/2010 04:08:09.829 PM 02/04/2010

--it returns the timestamp value 1 hour added to the current sys_datetime value

SELECT TO_CHAR(SYSDATETIME+3600*1000, 'YYYY-MM-DD HH:MI');

 to_char(SYS_DATETIME +3600*1000, 'YYYY-MM-DD HH:MI', 'en_US')

======================

 '2010-02-04 04:08'

CUBRID 2008 R4.0 Help

192

CURTIME(), CURRENT_TIME, CURRENT_TIME(), SYS_TIME, SYSTIME

Description

CURTIME(), CURRENT_TIME, CURRENT_TIME(), SYS_TIME, and SYSTIME are used interchangeably, and

they return the current time as the TIME type (HH:MI:SS). The unit is second.

Syntax

CURTIME()

CURRENT_TIME

CURRENT_TIME()

SYS_TIME

SYSTIME

Example

--it returns the current time in TIME type

SELECT CURTIME(), CURRENT_TIME(), CURRENT_TIME, SYS_TIME, SYSTIME;

 SYS_TIME SYS_TIME SYS_TIME SYS_TIME SYS_TIME

===

 04:37:34 PM 04:37:34 PM 04:37:34 PM 04:37:34 PM 04:37:34 PM

--it returns the time value 1 hour added to the current sys_time

SELECT CURTIME()+3600;

 SYS_TIME +3600

=================

 05:37:34 PM

CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(), SYS_TIMESTAMP, SYSTIMESTAMP,
LOCALTIME, LOCATIME(), LOCALTIMESTAMP, LOCALTIMESTAMP()

Description

CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(), SYS_TIMESTAMP, SYSTIMESTAMP,

LOCALTIME, LOCALTIME(), LOCALTIMESTAMP, and LOCALTIMESTAMP() are used interchangeably,

and they return the current date and time as the TIMESTAMP type. The unit is second.

If you define DEFAULT value for column initial value and specify the initial value to SYS_DATETIME, the default

value is specified to the timestamp at the time of creating a table, not inserting a table. Note that the default value is not

specified in case of INSERT. Therefore, you must specify SYS_DATETIME in the VALUES of INSERT statement

upon inserting data.

Syntax

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP()

SYS_TIMESTAMP

SYSTIMESTAMP

LOCALTIME

LOCALTIME()

LOCALTIMESTAMP

LOCALTIMESTAMP()

Example

--it returns the current date and time in TIMESTAMP type

SELECT LOCALTIME, SYS_TIMESTAMP;

 SYS_TIMESTAMP SYS_TIMESTAMP

==

 07:00:48 PM 04/01/2010 07:00:48 PM 04/01/2010

--it returns the timestamp value 1 hour added to the current sys_timestamp value

SELECT CURRENT_TIMESTAMP()+3600;

 SYS_TIMESTAMP +3600

===========================

 08:02:42 PM 04/01/2010

CUBRID SQL Guide

193

DATE Function

Description

The DATE function extracts the date part from the specified argument, and returns it as MM/DD/YYYY' format string.

Arguments that can be specified are DATE, TIMESTAMP and DATETIME types. The return value is a VARCHAR

type.

Syntax

DATE(date)

• date : The DATE, TIMESTAMP or DATETIME can be specified.

Example

SELECT DATE('2010-02-27 15:10:23');

 date('2010-02-27 15:10:23')

======================

 '02/27/2010'

SELECT DATE(NOW());

 date(SYS_DATETIME)

======================

 '04/01/2010'

DATEDIFF Function

Description

The DATEDIFF function returns the difference between two arguments as an integer representing the number of days.

Arguments that can be specified are DATE, TIMESTAMP and DATETIME types and it return value is only

INTEGER type.

Syntax

DATEDIFF (date1,date2)

• date1, date2 : The DATE, TIMESTAMP or DATETIME type or date/time format string can be specified. If

invalid string is specified, an error is returned.

Example

SELECT DATEDIFF('2010-2-28 23:59:59','2010-03-02');

 datediff('2010-2-28 23:59:59', '2010-03-02')

===

 -2

SELECT DATEDIFF('2010/12/31', SYSDATETIME);

ERROR: Conversion error in date format.

DATE_SUB(), SUBDATE()

Description

DATE_SUB and SUBDATE() are used interchangeably, and they perform an addition or subtraction operation on a

specific DATE value. The return value is a DATE or DATETIME type. If the date resulting from the operation

exceeds the last day of the month, the function returns a valid DATE value considering the last date of the month.

Syntax

DATE_SUB (date, INTERVAL expr unit)

SUBDATE(date, INTERVAL expr unit)

SUBDATE(date, days)

CUBRID 2008 R4.0 Help

194

• date : It is a DATE or TIMESTAMP expression that represents the start date. If an invalid DATE value such as

'2006-07-00' is specified, NULL is returned.

• expr : It represents the interval value to be subtracted from the start date. If a negative number is specified next to

the INTERVAL keyword, the interval value is added to the start date.

• unit : It represents the unit of the interval value specified in the exp expression. To check the expr argument for the

unit value, see the table of ADDDATE, DATE_ADD Function.

Example

SELECT SYSDATE, SUBDATE(SYSDATE,INTERVAL 24 HOUR), SUBDATE(SYSDATE, 1);

 SYS_DATE date_sub(SYS_DATE , INTERVAL 24 HOUR) subdate(SYS_DATE , 1)

==

 03/30/2010 12:00:00.000 AM 03/29/2010 03/29/2010

--it adds days when argument < 0

SELECT SYSDATE, SUBDATE(SYSDATE,INTERVAL -24 HOUR), SUBDATE(SYSDATE, -1);

 SYS_DATE date_sub(SYS_DATE , INTERVAL -24 HOUR) subdate(SYS_DATE , -1)

==

 03/30/2010 12:00:00.000 AM 03/31/2010 03/31/2010

DAY/DAYOFMONTH Function

Description

The DAY function and the DAYOFMONTH function return a day in the ragne of 1 to 31 from the specified parameter.

You can specify the DATE, TIMESTAMP, and DATETIME types as parameters and an INTEGER will be returned.

Syntax

DAY(date)

DAYOFMONTH(date)

• date : Date

Example

SELECT DAYOFMONTH('2010-09-09');

 dayofmonth('2010-09-09')

===========================

 9

SELECT DAY('2010-09-09 19:49:29');

 day('2010-09-09 19:49:29')

=============================

 9

SELECT DAYOFMONTH('01:02:03');

ERROR: Conversion error in date format.

DAYOFWEEK Function

Description

The DAYOFWEEK function returns a day in the range of 1 to 7 (1: Sunday, 2: Monday, ..., 7: Saturday) from the

specified parameters. The day index is same as the ODBC standards. You can specify the DATE, TIMESTAMP, and

DATETIME types as parameters and an INTEGER will be returned.

Syntax

DAYOFWEEK(date)

• date : Date

Example

SELECT DAYOFWEEK('2010-09-09');

 dayofweek('2010-09-09')

CUBRID SQL Guide

195

==========================

 5

SELECT DAYOFWEEK('2010-09-09 19:49:29');

 dayofweek('2010-09-09 19:49:29')

=================================

 5

SELECT DAYOFWEEK('10:28:00');

ERROR: Conversion error in date format.

DAYOFYEAR Function

Description

The DAYOFYEAR function returns the day of a year in the range of 1 to 366. You can specify the DATE,

TIMESTAMP, and DATETIME types as parameters and an INTEGER will be returned.

Syntax

DAYOFYEAR(date)

• date : Date

Example

SELECT DAYOFYEAR('2010-09-09');

 dayofyear('2010-09-09')

==========================

 252

SELECT DAYOFYEAR('2010-09-09 19:49:29');

dayofyear('2010-09-09 19:49:29')

=================================

 252

SELECT DAYOFYEAR('10:28:00');

ERROR: Conversion error in date format.

EXTRACT Operator

Description

The EXTRACT operator extracts the values from date-time_argument and then converts the value type into

INTEGER.

Syntax

EXTRACT (field FROM date-time_argument)

field :

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

• MILLISECOND

• field : Specifies a value to be extracted from date-time expression.

• date-time argument : An expression that returns a value of date-time. This expression must be one of TIME,

DATE, TIMESTAMP, or DATETIME types. If the value is NULL, NULL is returned.

Example

SELECT EXTRACT(MONTH FROM DATETIME '2008-12-25 10:30:20.123');

 extract(month from datetime '2008-12-25 10:30:20.123')

CUBRID 2008 R4.0 Help

196

===

 12

SELECT EXTRACT(HOUR FROM DATETIME '2008-12-25 10:30:20.123');

 extract(hour from datetime '2008-12-25 10:30:20.123')

===

 10

SELECT EXTRACT(MILLISECOND FROM DATETIME '2008-12-25 10:30:20.123');

 extract(millisecond from datetime '2008-12-25 10:30:20.123')

===

 123

FROM_DAYS Function

Description

The FROM_DAYS function returns a date from the specified parameter. You can specify an INTEGER type in the

range of 366 to 3652424 as a parameter and a DATE type will be returned.

It is not recommended to use the FROM_DAYS function for dates prior to the year 1582, as the function does not take

dates prior to the introduction of the Gregorian Calendar into account.

Syntax

FROM_DAYS(N)

• N : Integer in the range of 366 to 3,652,424. The maximum value of 3,652,424 means the last day of the year 9999.

Example

SELECT FROM_DAYS(719528);

 from_days(719528)

====================

 01/01/1970

SELECT FROM_DAYS('366');

 from_days('366')

=================

 01/03/1

SELECT FROM_DAYS(3652424);

 from_days(3652424)

=====================

 12/31/9999

SELECT FROM_DAYS(3652425);

ERROR: Conversion error in date format.

SELECT FROM_DAYS(-1);

ERROR: Conversion error in date format.

FROM_UNIXTIME Function

Description

The FROM_UNIXTIME function returns the date and time in the format of 'YYYY-MM-DD HH:MM:SS.' You can

enter an INTEGER type that corresponds to the UNIX timestamp and a VARCHAR type will be returned. The return

value will be displayed in the current time zone.

Displays the the result according to the format that you specified, and the time format format follows the date/time

format 2 of DATE_FORMAT Function.

The relationship is not one of one-to-one correspondence between the TIMESTAMP and the UNIX timestamp so if

you use the UNIX_TIMESTAMP function or the FROM_UNIXTIME function, partial value could be lost. For more

information, see UNIX_TIMESTAMP Function.

CUBRID SQL Guide

197

Syntax

FROM_UNIXTIME(unix_timestamp[, format])

• unix_timestamp : Positive integer

• format : Time format. Follows the date/time format of the DATE_FORMAT Function.

Example

SELECT FROM_UNIXTIME(1234567890);

 from_unixtime(1234567890)

============================

 01:31:30 AM 02/14/2009

SELECT FROM_UNIXTIME('1000000000');

 from_unixtime('1000000000')

==============================

 04:46:40 AM 09/09/2001

SELECT FROM_UNIXTIME(1234567890,'%M %Y %W');

 from_unixtime(1234567890, '%M %Y %W')

======================

 'February 2009 Saturday'

SELECT FROM_UNIXTIME('1234567890','%M %Y %W');

 from_unixtime('1234567890', '%M %Y %W')

======================

 'February 2009 Saturday'

SELECT FROM_UNIXTIME(-1);

ERROR: Conversion error in timestamp format.

Download in other formats:

LAST_DAY Function

Description

The LAST_DAY function returns the last day of the given month as a DATE type.

Syntax

LAST_DAY (date_argument)

date_argument :

• date

• NULL

• date_argument : Specifies an expression of DATE type. To specify a TIMESTAMPor DATETIME value,

explicit casting to DATE is required. If the value is NULL, NULL is returned.

Example

--it returns last day of the momth in DATE type

SELECT LAST_DAY(DATE '1980-02-01'), LAST_DAY(DATE '2010-02-01');

 last_day(date '1980-02-01') last_day(date '2010-02-01')

==

 02/28/1980 02/28/2010

--it returns last day of the momth when explicitly casted to DATE type

SELECT LAST_DAY(CAST (SYS_TIMESTAMP AS DATE)), LAST_DAY(CAST (SYS_DATETIME AS DATE));

 last_day(cast(SYS_TIMESTAMP as date)) last_day(cast(SYS_DATETIME as date))

==

 02/28/2010 02/28/2010

CUBRID 2008 R4.0 Help

198

MAKEDATE Function

Description

The MAKEDATE function returns a date from the specified parameter. You can specify an INTEGER type

corresponding to the day of the year in the the range of 1 to 9999 as a parameter, and the DATE type will be returned in

the range of 1/1/1 to 12/31/9999. If the day of the year has passed the corresponding year, it will become the next year.

For example, MAKEDATE(1999, 366) will return 2000-01-01.

However, if you input a value in the range of 0 to 69 as the year, it will be processed as the year 2000-2069, if it is a

value in the range of 70 to 99, it will be processed as the year 1970-1999.

Syntax

MAKEDATE(year, dayofyear)

• year : Year in the range of 1 to 9999

• dayofyear : If you input a value in the range of 0 to 99 as the year, only the year after 100 years will be used.

Therefore, the maximum value of dayofyear is 3,615,902 and MAKEDATE(100, 3615902) returns 9999/12/31.

Example

SELECT MAKEDATE(2010,277);

 makedate(2010, 277)

======================

 10/04/2010

SELECT MAKEDATE(10,277);

 makedate(10, 277)

====================

 10/04/2010

SELECT MAKEDATE(70,277);

 makedate(70, 277)

====================

 10/04/1970

SELECT MAKEDATE(100,3615902);

 makedate(100, 3615902)

=========================

 12/31/9999

SELECT MAKEDATE('9999','365');

 makedate('9999', '365')

======================

 12/31/9999

SELECT MAKEDATE(9999,366);

ERROR: Conversion error in date format.

MAKETIME Function

Description

The MAKETIME function returns the hour from the specified parameter in the AM/PM format. You can specify the

INTEGER types corresponding hours, minutes and seconds as parameters and a DATETIME type will be returned.

Syntax

MAKETIME(hour, min, sec)

• hour : Integers representing the hours in the range of 0 to 23

• min : Integers representing the minutes in the range of 0 to 59

• sec : Integers representing the seconds in the range of 0 to 59

CUBRID SQL Guide

199

Example

SELECT MAKETIME(13,34,4);

 maketime(13, 34, 4)

======================

 01:34:04 PM

SELECT MAKETIME('1','34','4');

 maketime('1', '34', '4')

===========================

 01:34:04 AM

SELECT MAKETIME(24,0,0);

ERROR: Conversion error in time format.

MINUTE Function

Description

The MINUTE function returns the minutes in the range of 0 to 59 from the specified parameter. You can specify the

TIME, TIMESTAMP, DATETIME types as parameters and an INTEGER type will be returned.

Syntax

MINUTE(time)

• time : Time

Example

SELECT MINUTE('12:34:56');

 minute('12:34:56')

=====================

 34

SELECT MINUTE('2010-01-01 12:34:56');

 minute('2010-01-01 12:34:56')

================================

 34

SELECT MINUTE('2010-01-01 12:34:56.7890');

 minute('2010-01-01 12:34:56.7890')

=====================================

 34

SELECT MINUTE('2010-01-01');

 In the command from line 1,

 ERROR: Conversion error in time format.

MONTH Function

Description

The MONTH function returns the month in the range of 1 to 12 from the specified parameter. You can specify the

DATE, TIMESTAMP, and DATETIME types as parameters and an INTEGER type will be returned.

Syntax

MONTH(date)

• date : Date

Example

SELECT MONTH('2010-01-02');

 month('2010-01-02')

======================

CUBRID 2008 R4.0 Help

200

 1

SELECT MONTH('2010-01-02 12:34:56');

 month('2010-01-02 12:34:56')

===============================

 1

SELECT MONTH('2010-01-02 12:34:56.7890');

 month('2010-01-02 12:34:56.7890')

====================================

 1

SELECT MONTH ('12:34:56');

ERROR: Conversion error in date format.

MONTHS_BETWEEN Function

Description

The MONTHS_BETWEEN function returns the difference between the given DATE value. The return value is

DOUBLE type. An integer value is returned if the two dates specified as parameters are identical or are the last day of

the given month; otherwise, a value obtained by dividing the day difference by 31 is returned.

Syntax

MONTHS_BETWEEN(date_argument, date_argument)

date_argument :

• date

• NULL

• date_argument : Specifies an expression of DATE type. To specify a TIMESTAMPor DATETIME value,

explicit casting to DATE is required. If the value is NULL, NULL is returned.

Example

--it returns the negative months when the first argument is the previous date

SELECT MONTHS_BETWEEN(DATE '2008-12-31', DATE '2010-6-30');

 months_between(date '2008-12-31', date '2010-6-30')

==

 -1.800000000000000e+001

--it returns integer values when each date is the last dat of the month

SELECT MONTHS_BETWEEN(DATE '2010-6-30', DATE '2008-12-31');

 months_between(date '2010-6-30', date '2008-12-31')

==

 1.800000000000000e+001

--it returns months between two arguments when explicitly casted to DATE type

SELECT MONTHS_BETWEEN(CAST (SYS_TIMESTAMP AS DATE), DATE '2008-12-25');

 months_between(cast(SYS_TIMESTAMP as date), date '2008-12-25')

==

 1.332258064516129e+001

--it returns months between two arguments when explicitly casted to DATE type

SELECT MONTHS_BETWEEN(CAST (SYS_DATETIME AS DATE), DATE '2008-12-25');

 months_between(cast(SYS_DATETIME as date), date '2008-12-25')

===

 1.332258064516129e+001

QUARTER Function

Description

The QUARTER function returns the quarter in the range of 1 to 4 from the specified parameter. You can specify the

DATE, TIMESTAMP, and DATETIME types as parameters and an INTEGER type will be returned.

CUBRID SQL Guide

201

Syntax

QUARTER(date)

• date : Date

Example

SELECT QUARTER('2010-05-05');

 quarter('2010-05-05')

========================

 2

SELECT QUARTER('2010-05-05 12:34:56');

 quarter('2010-05-05 12:34:56')

===============================

 2

SELECT QUARTER('2010-05-05 12:34:56.7890');

 quarter('2010-05-05 12:34:56.7890')

==================================

 2

SELECT QUARTER('12:34:56');

ERROR: Conversion error in date format.

SEC_TO_TIME Function

Description

The SEC_TO_TIME function returns the time including hours, minutes and seconds from the specified parameters.

You can specify the INTEGER type in the range of 0 to 86,399 as a parameter and the TIME type will be returned.

Syntax

SEC_TO_TIME(second)

• second : Seconds in the range of 0 to 86,399

Example

SELECT SEC_TO_TIME(82800);

 sec_to_time(82800)

=====================

 11:00:00 PM

SELECT SEC_TO_TIME('82800.3');

 sec_to_time('82800.3')

=========================

 11:00:00 PM

SELECT SEC_TO_TIME(86399)

 sec_to_time(86399)

=====================

 11:59:59 PM

SELECT SEC_TO_TIME(86400);

ERROR: Conversion error in time format.

SECOND Function

Description

The SECOND function returns the seconds in the range of 0 to 59 from the specified parameter. You can specify the

TIME, TIMESTAMP, and DATETIME types as parameters, and an INTEGER type will be returned.

CUBRID 2008 R4.0 Help

202

If the function fails, NULL is returned when the database server configuration parameter

return_null_on_function_errors is set to yes. When the parameter is set to no, the function outputs error message. The

default value of return_null_on_function_errors is no.

Syntax

SECOND(time)

• time : Time

Example

SELECT SECOND('12:34:56');

 second('12:34:56')

=====================

 56

SELECT SECOND('2010-01-01 12:34:56');

 second('2010-01-01 12:34:56')

================================

 56

SELECT SECOND('2010-01-01 12:34:56.7890');

 second('2010-01-01 12:34:56.7890')

=====================================

 56

SELECT SECOND ('2010-01-01');

ERROR: Conversion error in time format.

STR_TO_DATE Function

Description

The STR_TO_DATE function converts the given character string to a date/time value by interpreting it according to

the specified format and operates in the opposite way to the DATE_FORMAT Function. The return value is determined

depending on the date/time part included in the character string and it is one of the DATETIME, DATE, TIME types.

If the string includes an invalid date/time value. or the character string can nott be interpreted by applying the format

specifier specified in the format, an error will be returned.

Syntax

STR_TO_DATE(string, format)

• string : All character string types can be specified.

• format : Specifies the format to interpret the character string. You should use character strings including % for the

format specifiers. See the table, date/time format 2 of DATE_FORMAT Function.

Example

SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');

 str_to_date('01,5,2013', '%d,%m,%Y')

=======================================

 05/01/2013

SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');

 str_to_date('May 1, 2013', '%M %d,%Y')

===

 05/01/2013

SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');

 str_to_date('a09:30:17', 'a%h:%i:%s')

==

 09:30:17 AM

SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');

 str_to_date('09:30:17a', '%h:%i:%s')

CUBRID SQL Guide

203

=======================================

 09:30:17 AM

CURTIME(), CURRENT_TIME, CURRENT_TIME(), SYS_TIME, SYSTIME

Description

CURTIME(), CURRENT_TIME, CURRENT_TIME(), SYS_TIME, and SYSTIME are used interchangeably, and

they return the current time as the TIME type (HH:MI:SS). The unit is second.

Syntax

CURTIME()

CURRENT_TIME

CURRENT_TIME()

SYS_TIME

SYSTIME

Example

--it returns the current time in TIME type

SELECT CURTIME(), CURRENT_TIME(), CURRENT_TIME, SYS_TIME, SYSTIME;

 SYS_TIME SYS_TIME SYS_TIME SYS_TIME SYS_TIME

===

 04:37:34 PM 04:37:34 PM 04:37:34 PM 04:37:34 PM 04:37:34 PM

--it returns the time value 1 hour added to the current sys_time

SELECT CURTIME()+3600;

 SYS_TIME +3600

=================

 05:37:34 PM

TIME_TO_SEC Function

Description

The TIME_TO_SEC function returns the seconds in the range of 0 to 86,399 from the specified parameters. You can

specify the TIME, TIMESTAMP, and DATETIME types as parameters, and an INTEGER type will be returned.

Syntax

TIME_TO_SEC(time)

• time : Time

Example

SELECT TIME_TO_SEC('23:00:00');

 time_to_sec('23:00:00')

==========================

 82800

SELECT TIME_TO_SEC('2010-10-04 23:00:00');

 time_to_sec('2010-10-04 23:00:00')

=====================================

 82800

 SELECT TIME_TO_SEC('2010-10-04 23:00:00.1234');

 time_to_sec('2010-10-04 23:00:00.1234')

==

 82800

SELECT TIME_TO_SEC('2010-01-01');

ERROR: Conversion error in time format.

CUBRID 2008 R4.0 Help

204

TIMEDIFF Function

Description

The TIMEDIFF function returns the time difference between the two specified time parameters.

You can enter a date/time type, the TIME, DATE, TIMESTAMP, DATETIME types as parameters and the data

types of the two parameters must be identical. The TIME will be returned and the time difference between the two

parameters must be in the range of 00:00:00 -23:59:59. If it exceeds the range, an error will be returned.

Syntax

TIMEDIFF(expr1, expr2)

• expr1, expr2 : Time. The data types of the two parameters must be identical.

Example

SELECT TIMEDIFF(time '17:18:19', time '12:05:52');

 timediff(time '17:18:19', time '12:05:52')

===

 05:12:27 AM

SELECT TIMEDIFF('17:18:19','12:05:52');

 timediff('17:18:19', '12:05:52')

===================================

 05:12:27 AM

SELECT TIMEDIFF('2010-01-01 06:53:45', '2010-01-01 03:04:05');

 timediff('2010-01-01 06:53:45', '2010-01-01 03:04:05')

===

 03:49:40 AM

SELECT TIMEDIFF('2010-01-02 06:53:45', '2010-01-01 03:04:05');

ERROR: ERROR: Conversion error in time format.

TIMESTAMP Function

Description

The TIMESTAMP function converts a DATE or TIMESTAMP type expression to a DATETIME type.

If the DATA format string ('YYYY-MM-DD' or 'MM/DD/YYYY) or TIMESTAMP format string ('YYYY-MM-DD

HH:MI:SS' or 'HH:MI:SS MM/DD/ YYYY') is specified as the first argument, the function returns it as DATETIME.

If the TIME format string ('HH:MI:SS') is specified as the second, the function adds it to the first argument and returns

the result as a DATETIME type. If the second argument is not specified, 12:00:00.000 AM is specified by default.

Syntax

TIMESTAMP(date [,time])

• date : The DATE or TIMESTAMP type string can be specified.

• time : The TIME type (HH:MI:SS) can be specified.

Example

SELECT TIMESTAMP('2009-12-31'), TIMESTAMP('2009-12-31','12:00:00');

===

 12:00:00.000 AM 12/31/2009 12:00:00.000 PM 12/31/2009

SELECT TIMESTAMP('2010-12-31 12:00:00','12:00:00');

===

 12:00:00.000 AM 01/01/2011

SELECT TIMESTAMP('13:10:30 12/25/2008');

===================================

 01:10:30.000 PM 12/25/2008

CUBRID SQL Guide

205

TO_DAYS Function

Description

The TO_DAYS function returns the number of days after year 0 in the rage of 366 to 3652424 from the specified

parameters. You can specify DATE type as a parameter and an INTEGER type will be returned.

It is not recommended to use the TO_DAYS function for dates prior to the year 1582, as the function does not take

dates prior to the introduction of the Gregorian Calendar into account.

Syntax

TO_DAYS(date)

• date : Date

Example

SELECT TO_DAYS('2010-10-04');

 to_days('2010-10-04')

========================

 734414

SELECT TO_DAYS('2010-10-04 12:34:56');

 to_days('2010-10-04 12:34:56')

================================

 734414

SELECT TO_DAYS('2010-10-04 12:34:56.7890');

 to_days('2010-10-04 12:34:56.7890')

======================================

 734414

SELECT TO_DAYS('1-1-1');

 to_days('1-1-1')

===================

 366

SELECT TO_DAYS('9999-12-31');

 to_days('9999-12-31')

========================

 3652424

SELECT TO_DAYS ('12:34:56');

ERROR: Conversion error in date format.

UNIX_TIMESTAMP Function

Description

The arguments of the UNIX_TIMESTAMP function can be omitted. If they are omitted, the function returns the

interval between '1970-01-01 00:00:00' UTC and the current system date/time in seconds as a INTEGER value. If the

date argument is specified, the function returns the interval between '1970-01-01 00:00:00' UTC and the specified

date/time in seconds.

Syntax

UNIX_TIMESTAMP([date])

• date : DATE or TIMESTAMP type strings, or strings in the ‘YYYYMMDD’ format, can be specified.

Example

SELECT UNIX_TIMESTAMP('1970-01-02'), UNIX_TIMESTAMP();

 unix_timestamp('1970-01-02') unix_timestamp()

==

CUBRID 2008 R4.0 Help

206

 540000 1270196737

UTC_DATE Function

Description

The UTC_DATE function returns the UTC date in 'YYYY-MM-DD' format.

Syntax

UTC_DATE()

Example

SELECT UTC_DATE();

 utc_date()

==============

 01/12/2011

UTC_TIME Function

Description

The UTC_TIME function returns the UTC time in 'HH:MM:SS' format.

Syntax

UTC_TIME()

Example

SELECT UTC_TIME();

 utc_time()

==============

 10:35:52 AM

WEEK Function

Description

The WEEK function returns the week in the range of 0 to 53 from the specified parameter. You can specify the DATE,

TIMESTAMP, and DATETIME types as parameters, and an INTEGER type will be returned.

You can omit the second parameter, mode and must input a value in the range of 0 to 7. You can set that a week starts

from Sunday or Monday and the range of the return value is from 0 to 53 or 1 to 53 with this value. If you omit the

mode, the system parameter, default_week_format value will be used. The mode value means as follows:

mode Start Day of the Week Range The First Week of the Year

0 Sunday 0~53 The first week that Sunday is included in the year

1 Monday 0~53 The first week that more than three days are included in the year

2 Sunday 1~53 The first week in the year that includes a Sunday

3 Monday 1~53 The first week in the year that includes more than three days

4 Sunday 0~53 The first week in the year that includes more than three days

5 Monday 0~53 The first week in the year that includes a Sunday

6 Sunday 1~53 The first week in the year that includes more than three days

7 Monday 1~53 The first week in the year that includes a Sunday

CUBRID SQL Guide

207

If the mode value is one of 0, 1, 4 or 5, and the date corresponds to the last week of the previous year, the WEEK

function will return 0. The purpose is to see what nth of the year the week is so it returns 0 for the 52nd week of the year

1999.

SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);

 year('2000-01-01') week('2000-01-01', 0)

===

 2000 0

To see what nth the week is based on the year including the start day of the week, use 0, 2, 5 or 7 as the mode value.

SELECT WEEK('2000-01-01',2);

 week('2000-01-01', 2)

========================

 52

Syntax

WEEK(date[, mode])

• date : Date

• mode : Value in the range of 0 to 7

Example

SELECT WEEK('2010-04-05');

 week('2010-04-05', 0)

========================

 14

SELECT WEEK('2010-04-05 12:34:56',2);

 week('2010-04-05 12:34:56',2)

===============================

 14

SELECT WEEK('2010-04-05 12:34:56.7890',4);

 week('2010-04-05 12:34:56.7890',4)

====================================

 14

SELECT WEEK ('12:34:56');

ERROR: Conversion error in date format.

SELECT WEEK('2010-04-05',8);

ERROR: Conversion error in date format.

WEEKDAY Function

Description

The WEEKDAY function returns the day of week in the range of 0 to 6 (0: Sunday, 1: Monday, ..., 6: Saturday) from

the specified parameter. The day of week index is same as the ODBC standards. You can specify DATE,

TIMESTAMP, DATETIME types as parameters and an INTEGER type will be returned.

Syntax

WEEKDAY(date)

• date : Date

Example

SELECT WEEKDAY('2010-09-09');

 weekday('2010-09-09')

========================

 3

SELECT WEEKDAY('2010-09-09 13:16:00');

CUBRID 2008 R4.0 Help

208

 weekday('2010-09-09 13:16:00')

=================================

 3

SELECT WEEKDAY('10:28:00');

ERROR: Conversion error in date format.

YEAR Function

Description

The YEAR function returns the year in the range of 1 to 9999 from the specified parameter. You can specify DATE,

TIMESTAMP, and DATETIME types as parameters, and an INTEGER type will be returned.

Syntax

YEAR(date)

• date : Date

Example

SELECT YEAR('2010-10-04');

 year('2010-10-04')

=====================

 2010

SELECT YEAR('2010-10-04 12:34:56');

 year('2010-10-04 12:34:56')

==============================

 2010

SELECT YEAR('2010-10-04 12:34:56.7890');

 year('2010-10-04 12:34:56.7890')

===================================

 2010

SELECT YEAR('12:34:56');

ERROR: Conversion error in date format.

Data Type Conversion Functions and Operators

CAST Operator

Description

The CAST operator can be used to explicitly cast one data type to another in the SELECT statement. A query list or a

value expression in the WHERE clause can be cast to another data type.

Depending on the situation, data type can be automatically converted without suing the CAST operator. For more

information, see Implicit Type Conversion.

See Converting the String of Date/Time Data Type into Data/Time Type regarding to convert the string of date/time

type into date/time type.

The following table shows a summary of explicit type conversions (casts) using the CAST operator in CUBRID.

 EN AN VC FC VB FB BLOB CLOB D T UT DT S MS SQ

EN Yes Yes Yes Yes No No No No No No No No No No No

AN Yes Yes Yes Yes No No No No No No No No No No No

VC Yes Yes Yes[1] Yes* Yes Yes Yes Yes Yes Yes Yes Yes No No No

FC Yes Yes Yes* Yes* Yes Yes Yes Yes Yes Yes Yes Yes No No No

CUBRID SQL Guide

209

VB No No Yes Yes Yes Yes Yes Yes No No No No No No No

FB No No Yes Yes Yes Yes Yes Yes No No No No No No No

BLOB No No Yes Yes Yes Yes Yes No No No No No No No No

CLOB No No Yes Yes Yes Yes No Yes No No No No No No No

D No No Yes Yes No No No No Yes No Yes Yes No No No

T No No Yes Yes No No No No No Yes No No No No No

UT No No Yes Yes No No No No Yes Yes Yes Yes No No No

DT No No Yes Yes No No No No Yes Yes Yes Yes No No No

S No No No No No No No No No No No No Yes Yes Yes

MS No No No No No No No No No No No No Yes Yes Yes

SQ No No No No No No No No No No No No Yes Yes Yes

[1] In this case, the CAST operation is allowed only when the value expression and the data type to be cast have the

same character code set.

Data Type Key

• EN : Exact numeric data type (INTEGER, SMALLINT, BIGINT, NUMERIC, DECIMAL)

• AN : Approximate numeric data type (FLOAT/REAL, DOUBLE PRECISION, MONETARY)

• VC : Variable-length character string (VARCHAR(n), NCHAR VARYING(n))

• FC : Fixed-length character string (CHAR(n), NCHAR(n))

• VB: Variable-length bit string (BIT VARYING(n))

• FB : Fixed-length bit string (BIT(n))

• BLOB : Binary data that is stored outside DB

• CLOB : String data that is stored inside DB

• D : Date (DATE)

• T : Time (TIME)

• UT : Timestamp (TIMESTAMP)

• S : Set (SET)

• MS : Multiset (MULTISET)

• SQ : Sequence set (LIST, SEQUENCE)

Syntax

CAST (cast_operand AS cast_target)

cast_operand :

• value expression

• NULL

cast_target :

• data type

• cast_operand : Declares the value to cast to a different data type.

• cast_target : Specifies the type to cast to.

Example

The following is an example of explicitly casting and returning a VARCHAR record in kg unit to a FLOAT.

--operation after casting character as INT type returns 2

SELECT (1+CAST ('1' AS INT));

 (1+ cast('1' as integer))

===========================

 2

CUBRID 2008 R4.0 Help

210

--cannot cast the string which is out of range as SMALLINT

SELECT (1+CAST('1234567890' AS SMALLINT));

ERROR: Cannot coerce value of domain "character" to domain "smallint".

--operation after casting returns 1+1234567890

SELECT (1+CAST('1234567890' AS INT));

 (1+ cast('1234567890' as integer))

====================================

 1234567891

--'1234.567890' is casted to 1235 after rounding up

SELECT (1+CAST('1234.567890' AS INT));

 (1+ cast('1234.567890' as integer))

======================

 1236

--'1234.567890' is casted to string containing only first 5 letters.

SELECT (CAST('1234.567890' AS CHAR(5)));

 (cast('1234.567890' as char(5)))

======================

 '1234.'

--numeric type can be casted to CHAR type only when enough length is specified

SELECT (CAST(1234.567890 AS CHAR(5)));

ERROR: Cannot coerce value of domain "numeric" to domain "character".

--numeric type can be casted to CHAR type only when enough length is specified

SELECT (CAST(1234.567890 AS CHAR(11)));

 (cast(1234.567890 as char(11)))

======================

 '1234.567890'

--numeric type can be casted to CHAR type only when enough length is specified

SELECT (CAST(1234.567890 AS VARCHAR));

 (cast(1234.567890 as varchar))

======================

 '1234.567890'

--string can be casted to time/date types only when its literal is correctly specified

SELECT (CAST('2008-12-25 10:30:20' AS TIMESTAMP));

 (cast('2008-12-25 10:30:20' as timestamp))

===

 10:30:20 AM 12/25/2008

SELECT (CAST('10:30:20' AS TIME));

 (cast('10:30:20' as time))

==

 10:30:20 AM

--string can be casted to TIME type when its literal is same as TIME‟s.

SELECT (CAST('2008-12-25 10:30:20' AS TIME));

 (cast('2008-12-25 10:30:20' as time))

==

 10:30:20 AM

--string can be casted to TIME type after specifying its type of the string

SELECT (CAST(TIMESTAMP'2008-12-25 10:30:20' AS TIME));

 (cast(timestamp '2008-12-25 10:30:20' as time))

==

 10:30:20 AM

SELECT CAST('abcde' AS BLOB);

 cast('abcde' as blob)

======================

file:/home1/user1/db/tdb/lob/ces_743/ces_temp.00001283232024309172_1342

Remark

• CAST is allowed only between data types having the same character set.

• If you cast an approximate data type to integer type, the number is rounded to zero decimal places.

• If you cast a numeric data type to string character type, it should be longer than the length of significant digits +

decimal point. An error occurs otherwise.

CUBRID SQL Guide

211

• If you cast a character string type A to a character string type B, B should be longer than the A. The end of

character string is truncated otherwise.

• If you cast a character string type A to a date-time date type B, it is converted only when literal of A and B type

match one another. An error occurs otherwise.

• You must explicitly do type casting for numeric data stored in a character string so that an arithmetic operation can

be performed.

DATE_FORMAT Function

Description

The DATE_FORMAT function converts the value of strings with DATE format ('YYYY-MM-DD' or 'MM/DD/YYYY')

or that of date/time data type (DATE, TIMESTAMP, DATETIME) to specified date/time format and then return the

value with the VARCHAR data type.

Syntax

DATE_FORMAT(date, format)

• date : A value of strings with the DATE format ('YYYY-MM-DD' or 'MM/DD/YYYY') or that of date/time data type

(DATE, TIMESTAMP, DATETIME) can be specified .

• format : Specifies the output format. Use a string that contains ‘%’ as a specifier. See the following table to specify

the format. Date/Time formats described in the following Date/Time Format 2 table are used in DATE_FORMAT

function, and TIME_FORMAT Function, and STR_TO_DATE Function.

Default Date/Time Format

Date/Time Type Default Output Format

DATE 'MM/DD/YYYY'

TIME 'HH:MI:SS AM'

TIMESTAMP 'HH:MI:SS AM MM/DD/YYYY'

DATETIME 'HH:MI:SS.FF AM MM/DD/YYYY

Date/Time Format 2

format Value Meaning

%a Weekday, English abbreviation (Sun, …, Sat)

%b Month, English abbreviation (Jan, …, Dec)

%c Month (1, …, 12)

%D Day of the month, English ordinal number (1st, 2nd, 3rd, ...)

%d Day of the month, two-digit number (01, …, 31)

%e Day of the month (1, …, 31)

%f Microseconds, three-digit number (000, …, 999)

%H Hour, 24-hour based, number with at least two--digit (00, …, 23, …, 100, …)

%h Hour, 12-hour based two-digit number (01, …, 12)

%I Hour, 12-hour based two-digit number (01, …, 12)

%i Minutes, two-digit number (00, …, 59)

%j Day of year, three-digit number (001, …, 366)

%k Hour, 24-hour based, number with at least one-digit (0, …, 23, …, 100, …)

%l Hour, 12-hour based (1, …, 12)

%M Month, English string (January, …, December)

%m Month, two-digit number (01, …, 12)

CUBRID 2008 R4.0 Help

212

%p AM or PM

%r Time, 12-hour based, hour:minute:second (hh:mm:ss AM or hh:mm:ss PM)

%S Seconds, two-digit number (00, …, 59)

%s Seconds, two-digit number (00, …, 59)

%T Time, 24-hour based, hour:minute:second (hh:mm:ss)

%U Week, two-digit number, week number of the year with Sunday being the first day Week

(00, …, 53)

%u Week, two-digit number, week number of the year with Monday being the first day (00,

…, 53)

%V Week, two-digit number, week number of the year with Sunday being the first day Week

(00, …, 53)

(Available to use in combination with %X)

%v Week, two-digit number, week number of the year with Monday being the first day (00,

…, 53)

(Available to use in combination with %X)

%W Weekday, English string (Sunday, …, Saturday)

%w Day of the week, number index (0=Sunday, …, 6=Saturday)

%X Year, four-digit number calculated as the week number with Sunday being the first day of

the week (0000, …, 9999)

(Available to use in combination with %V)

%x Year, four-digit number calculated as the week number with Monday being the first day

of the week (0000, …, 9999)

(Available to use in combination with %V)

%Y Year, four-digit number (0001, …, 9999)

%y Year, two-digit number (00, 01, …, 99)

%% Output the special character "%" as a string

%x Output an arbitrary character x as a string out of English letters that are not used as

format specifiers.

Example

SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');

 date_format('2009-10-04 22:23:00', '%W %M %Y')

======================

 'Sunday October 2009'

SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');

 date_format('2007-10-04 22:23:00', '%H:%i:%s')

======================

 '22:23:00'

SELECT DATE_FORMAT('1900-10-04 22:23:00', '%D %y %a %d %m %b %j');

 date_format('1900-10-04 22:23:00', '%D %y %a %d %m %b %j')

======================

 '4th 00 Thu 04 10 Oct 277'

SELECT DATE_FORMAT('1999-01-01', '%X %V');

 date_format('1999-01-01', '%X %V')

======================

 '1998 52'

CUBRID SQL Guide

213

TIME_FORMAT Function

Description

The TIME_FORMAT function converts the value of strings with TIME format ('HH-MI-SS) or that of date/time data

type (DATE, TIMESTAMP, DATETIME) to specified date/time format and then return the value with the

VARCHAR data type.

Syntax

TIME_FORMAT(time, format)

• time : A value of string with TIME (HH:MI:SS) or that of date/time data type ((DATE, TIMESTAMP,

DATETIME) an be specified.

• format : Specifies the output format. Use a string that contains ‘%’ as a specifier. See the table of the Date/Time

Format 2 table. If un-related format specifier is used, the English letters themselves are displayed.

Example

SELECT TIME_FORMAT('22:23:00', '%H %i %s');

 time_format('22:23:00', '%H %i %s')

======================

 '22 23 00'

SELECT TIME_FORMAT('23:59:00', '%H %h %i %s %f');

 time_format('23:59:00', '%H %h %i %s %f')

======================

 '23 11 59 00 000'

SELECT SYSTIME, TIME_FORMAT(SYSTIME, '%T');

 SYS_TIME time_format(SYS_TIME , '%T')

===================================

 08:46:53 PM '20:46:53'

TO_CHAR Function (date_time)

Description

The TO_CHAR function converts the value of strings with TIME format (HH:MI:SS) or that of date/time type (TIME,

TIMESTAMP, DATETIME) by Date/Time Format 1 and then return the value with the VARCHAR data type. If a

format argument is not specified, it converts the value based by default format. If a format which is not corresponding to

the given value, an error is returned.

Syntax

TO_CHAR(date_time [, format [, date_lang_string_literal]])

date_time :

• date

• time

• timestamp

• datetime

• NULL

format :

• character strings (see Date/Time Format 1)

• NULL

date_lang_string_literal : (see date_lang_string_literal)

• 'en_US'

• 'ko_KR'

• date_time : Specifies an expression that returns date-time type string. If the value is NULL, NULL is returned.

• format : Specifies a format of return value. If a format is not specified, the default format is used. If the value is

NULL, NULL is returned.

CUBRID 2008 R4.0 Help

214

• date_lang_string_literal : Specifies a language applied to a return value (refer to date_lang_string_literal). The

default value is 'en_US'. You can modify the value by specifying the CUBRID_DATE_LANG environment

variable.

Default Date/Time Format

Date/Time Type Default Output Format

DATE 'MM/DD/YYYY'

TIME 'HH:MI:SS AM'

TIMESTAMP 'HH:MI:SS AM MM/DD/YYYY'

DATETIME 'HH:MI:SS.FF AM MM/DD/YYYY'

Date/Time Format 1

Format Element Description

CC Century

YYYY, YY Year with 4 numbers, Year with 2 numbers

Q Quarter (1, 2, 3, 4; January - March = 1)

MM Month (01-12; January = 01)

Note : MI represents the minute of hour.

MONTH Month in characters

MON Abbreviated month name

DD Day (1 - 31)

DAY Day of the week in characters

DY Abbreviated day of the week

D or d Day of the week in numbers (1 - 7)

AM or PM AM/PM

A.M. or P.M. AM/PM with periods

HH or HH12 Hour (1 -12)

HH24 Hour (0 - 23)

MI Minute (0 - 59)

SS Second (0 - 59)

FF Millsecond (0-999)

- / , . ; : "text" Punctuation and quotation marks are represented as they are in the result

Example of date_lang_string_literal

Format Element Date_lang_string_literal

'en_US' 'ko_KR'

MONTH JANUARY 1 월

MON JAN 1

DAY MONDAY 월요일

DY MON 월

Month January 1 월

Mon Jan 1

CUBRID SQL Guide

215

Day Monday 월요일

Dy Mon 월

month january 1 월

mon jan 1

day monday 월요일

Dy mon 월

AM AM 오전

Am Am 오전

am am 오전

A.M. A.M. 오전

A.m. A.m. 오전

a.m. a.m. 오전

PM AM 오전

Pm Am 오전

pm am 오전

P.M. A.M. 오전

P.m. A.m. 오전

p.m. a.m 오전

The Number of Digits Format

Format Element Number of Digits

MONTH(Month, month) 9 (ko_KR : 4)

MON(Mon, mon) 3 (ko_KR : 2)

DAY(Day, day) 9 (ko_KR : 6)

DY(Dy, dy) 3 (ko_KR : 2)

HH12, HH24 2

"text" The length of the text

Other formats Same as the length of the format

Example

--creating a table having date/time type columns

CREATE TABLE datetime_tbl(a TIME, b DATE, c TIMESTAMP, d DATETIME);

INSERT INTO datetime_tbl VALUES(SYSTIME, SYSDATE, SYSTIMESTAMP, SYSDATETIME);

--selecting a VARCHAR type string from the data in the specified format

SELECT TO_CHAR(b, 'DD, DY , MON, YYYY') FROM datetime_tbl;

 to_char(b, 'DD, DY , MON, YYYY', 'en_US')

======================

 '04, THU , FEB, 2010'

CUBRID 2008 R4.0 Help

216

SELECT TO_CHAR(c, 'HH24:MI, DD, MONTH, YYYY') FROM datetime_tbl;

 to_char(c, 'HH24:MI, DD, MONTH, YYYY', 'en_US')

======================

 '16:50, 04, FEBRUARY , 2010'

SELECT TO_CHAR(c, 'HH24:MI:FF, DD, MONTH, YYYY') FROM datetime_tbl;

ERROR: Invalid format.

SELECT TO_CHAR(d, 'HH12:MI:SS:FF pm, YYYY-MM-DD-DAY') FROM datetime_tbl;

 to_char(d, 'HH12:MI:SS:FF pm, YYYY-MM-DD-DAY', 'en_US')

======================

 '04:50:11:624 pm, 2010-02-04-THURSDAY '

SELECT TO_CHAR(TIMESTAMP'2009-10-04 22:23:00', 'Day Month yyyy');

 to_char(timestamp '2009-10-04 22:23:00', 'Day Month yyyy', 'en_US')

======================

 'Sunday October 2009'

TO_CHAR Function (number)

Description

The TO_CHAR function converts a Number Format or numeric data type to a character string according to the number

format and returns it. The type of the return value is VARCHAR. If the number format has not been specified as an

argument, all significant digits are converted to a character string according to the default format.

Syntax

TO_CHAR(number_argument[, format_argument])

number_argument :

• numeric(decimal)

• integer

• smallint

• bigint

• float(real)

• double

• NULL

format_argument :

• character strings (see Number Format)

• NULL

• number_argument : Specifies an expression that returns numeric data type string. If the input value is NULL,

NULL is returned. If the input value is character type, the character itself is returned.

• format_argument : Specifies a format of return value. If format is not specified, all significant digits are returned as

character string by default. If the value is NULL, NULL is returned.

Number Format

Format Element Example Description

9 9999 The number of 9's represents the number of significant digits to be

returned.

If the number of significant digits specified in the format is not

sufficient, only the decimal part is rounded. If it is less than the

number of digits in an integer, # is outputted.

If the number of significant digits specified in the format is sufficient,

the part preceding the integer part is filled with space characters and

the decimal part is filled with 0.

0 0999 If the number of significant digits specified in the format is sufficient,

the part preceding the integer part is filled with 0, not space characers

before the value is returned.

S S9999 Outputs the negative/positive sign in the specified position. These

signs can be used only at the beginning of character string.

CUBRID SQL Guide

217

C C9999 Returns the ISO currency code at the specified position.

,(comma) 9,999 Returns a comma (",") at the specified position. Multiple commas are

allowed in the format.

.(percimal point) 9.999 Outputs the decimal point (".") that distinguishes the integer and the

decimal part at a specified position. Only one decimal point is allowed

in the format.

EEEE 9.99EEEE Returns a scientific notation number.

Example

--selecting a string casted from a number in the specified format

SELECT TO_CHAR(12345,'S999999'), TO_CHAR(12345,'S099999');

==

 ' +12345' '+012345'

SELECT TO_CHAR(1234567,'C9,999,999,999');

======================

 ' $1,234,567'

SELECT TO_CHAR(123.4567,'99'), TO_CHAR(123.4567,'999.99999'),

TO_CHAR(123.4567,'99999.999');

 to_char(123.4567, '99', 'en_US') to_char(123.4567, '999.99999',

'en_US') to_char(123.4567, '99999.999', 'en_US')

==

 '##' '123.45670' ' 123.457'

SELECT TO_CHAR(1.234567,'99.999EEEE'), TO_CHAR(1.234567E-4);

 to_char(1.234567, '99.999EEEE', 'en_US') to_char(1.234567E-4)

==

 '1.235E+00' '0.0001234567'

TO_DATE Function

Description

The TO_DATE function interprets a character string based on the date format given as an argument, converts it to a

DATE type value, and returns it. For the format, see TO_CHAR Function (date_time). If a format is not specified, the

"MM/DD/YYYY" format is applied by default.

Syntax

TO_DATE(string_argument[,format_argument[,date_lang_string_literal]])

string_argument :

• character strings

• NULL

format_argument :

• character strings (see Date/Time Format 1)

• NULL

date_lang_string_literal : (see date_lang_string_literal)

• 'en_US'

• 'ko_KR'

• string_argument : Specifies an expression that returns character string. If the value is NULL, NULL is returned.

• format_argument : Specifies a format of return value to be converted as DATE type. See the "Default Date-Time

Format" table of TO_CHAR Function (date_time). If the value is NULL, NULL is returned.

• date_lang_string_literal : Specifies the language for the input value to be applied. You can modify the value by

using the CUBRID_DATE_LANG environment.

CUBRID 2008 R4.0 Help

218

Example

--selecting a date type value casted from a string in the specified format

SELECT TO_DATE('12/25/2008');

 to_date('12/25/2008')

===

 12/25/2008

SELECT TO_DATE('25/12/2008', 'DD/MM/YYYY');

 to_date('25/12/2008', 'DD/MM/YYYY', 'en_US')

===

 12/25/2008

SELECT TO_DATE('081225', 'YYMMDD');

 to_date('081225', 'YYMMDD', 'en_US')

===

 12/25/2008

SELECT TO_DATE('2008-12-25', 'YYYY-MM-DD');

 to_date('2008-12-25', 'YYYY-MM-DD', 'en_US')

===

 12/25/2008

TO_DATETIME Function

Description

The TO_DATETIME function interprets a character string based on the date-time format given as an argument,

converts it to a DATETIME type value, and returns it. For the format, see TO_CHAR Function (date_time). If format

is not specified, the "HH:MI:SS.FF [am|pm] MM/DD/YYYY" format is applied by default.

Syntax

TO_DATETIME(string_argument[,format_argument[,date_lang_string_literal]])

string_argument :

• character strings

• NULL

format_argument :

• character strings (see the table Date/Time Format 1)

• NULL

date_lang_string_literal : (see the table Example of date_lang_string_literal)

• 'en_US'

• 'ko_KR'

• string_argument : Specifies an expression that returns character string. If the value is NULL, NULL is returned.

• format_argument : Specifies a format of return value to be converted as DATETIME type. See the "Default Date-

Time Format" table of TO_CHAR Function (date_time). If the value is NULL, NULL is returned.

• date_lang_string_literal : Specifies the language for the input value to be applied. You can modify the value by

using the CUBRID_DATE_LANG environment.

Example

--selecting a datetime type value casted from a string in the specified format

SELECT TO_DATETIME('13:10:30 12/25/2008');

 to_datetime('13:10:30 12/25/2008')

=====================================

 01:10:30.000 PM 12/25/2008

SELECT TO_DATETIME('08-Dec-25 13:10:30.999', 'YY-Mon-DD HH24:MI:SS.FF');

 to_datetime('08-Dec-25 13:10:30.999', 'YY-Mon-DD HH24:MI:SS.FF', 'en_US')

=====================================

 01:10:30.999 PM 12/25/2008

SELECT TO_DATETIME('DATE: 12-25-2008 TIME: 13:10:30.999', '"DATE:" MM-DD-YYYY "TIME:"

HH24:MI:SS.FF');

CUBRID SQL Guide

219

 to_datetime('DATE: 12-25-2008 TIME: 13:10:30.999', '"DATE:" MM-DD-YYYY "TIME:"

HH24:MI:SS.FF', 'en_US')

=====================================

 01:10:30.999 PM 12/25/2008

TO_NUMBER Function

Description

The TO_NUMBER function interprets a character string based on the number format given as an argument, converts it

to a NUMERIC type value, and returns it. If the number format is not specified, returns all significant digits that are

included in the character string as NUMERIC type numbers by default.

Syntax

TO_NUMBER(string_argument[, format_argument])

string_argument :

• character strings

• NULL

format_argument :

• character strings

• NULL

• string_argument : Specifies an expression that returns character string. If the value is NULL, NULL is returned.

• format_argument : Specifies a format of return value to be converted as NUMBER type. See the "Number Format"

table of TO_CHAR Function (number). If the value is NULL, an error is returned.

Example

--selecting a number casted from a string in the specified format

SELECT TO_NUMBER('-1234');

 to_number('-1234')

==

 -1234

SELECT TO_NUMBER('12345','999999');

 to_number('12345', '999999')

==

 12345

SELECT TO_NUMBER('$12,345.67','C99,999.999');

 to_number('$12,345.67', 'C99,999.999')

======================

 12345.670

SELECT TO_NUMBER('12345.67','99999.999');

 to_number('12345.67', '99999.999')

==

 12345.670

TO_TIME Function

Description

The TO_TIME function interprets a character string based on the time format given as an argument, converts it to a

TIME type value, and returns it. For the format, see TO_CHAR Function (date_time). If a format is not specified, the

"HH:MI:SS" format is applied by default.

Syntax

TO_TIME(string_argument[,format_argument [,date_lang_string_literal]]):

string_argument :

CUBRID 2008 R4.0 Help

220

• character strings

• NULL

format_argument :

• character strings (refer to Date/Time Format 1)

• NULL

date_lang_string_literal : (refer to date_lang_string_literal)

• 'en_US'

• 'ko_KR'

• string_argument : Specifies an expression that returns character string. If the value is NULL, NULL is returned.

• format_argument : Specifies a format of return value to be converted as TIME type. See the "Default Date-Time

Format" table of TO_CHAR Function (date_time). If the value is NULL, NULL is returned.

• date_lang_string_literal : Specifies the language for the input value to be applied. You can modify the value by

using the CUBRID_DATE_LANG environment.

Example

--selecting a time type value casted from a string in the specified format

SELECT TO_TIME ('13:10:30');

 to_time('13:10:30')===

 01:10:30 PM

SELECT TO_TIME('HOUR: 13 MINUTE: 10 SECOND: 30', '"HOUR:" HH24 "MINUTE:" MI "SECOND:" SS');

 to_time('HOUR: 13 MINUTE: 10 SECOND: 30', '"HOUR:" HH24 "MINUTE:" MI "SECOND:" SS',

'en_US')===

 01:10:30 PM

SELECT TO_TIME ('13:10:30', 'HH24:MI:SS');

 to_time('13:10:30', 'HH24:MI:SS', 'en_US')

===

 01:10:30 PM

SELECT TO_TIME ('13:10:30', 'HH12:MI:SS');

ERROR: Conversion error in date format.

TO_TIMESTAMP Function

Description

The TO_TIMESTAMP function interprets a character string based on the time format given as an argument, converts

it to a TIMESTAMP type value, and returns it. For the format, see TO_CHAR Function (date_time). If a format is not

specified, the "HH:MI[:SS] [am|pm] MM/DD/YYYY" format is applied by default.

Syntax

TO_TIMESTAMP(string_argument[, format_argument[,date_lang_string_literal]])

string_argument :

• character strings

• NULL

format_argument :

• character strings (refer to Date/Time Format 1 table)

• NULL

date_lang_string_literal : (refer to date_lang_string_literal table)

• 'en_US'

• 'ko_KR'

• string_argument : Specifies an expression that returns character string. If the value is NULL, NULL is returned.

• format_argument : Specifies a format of return value to be converted as TIMESTAMP type. See the "Default

Date-Time Format" table of TO_CHAR Function (date_time). If the value is NULL, NULL is returned.

• date_lang_string_literal : Specifies the language for the input value to be applied. You can modify the value by

using the CUBRID_DATE_LANG environment.

CUBRID SQL Guide

221

Example

--selecting a timestamp type value casted from a string in the specified format

SELECT TO_TIMESTAMP('13:10:30 12/25/2008');

 to_timestamp('13:10:30 12/25/2008')

======================================

 01:10:30 PM 12/25/2008

SELECT TO_TIMESTAMP('08-Dec-25 13:10:30', 'YY-Mon-DD HH24:MI:SS');

 to_timestamp('08-Dec-25 13:10:30', 'YY-Mon-DD HH24:MI:SS', 'en_US')

======================================

 01:10:30 PM 12/25/2008

SELECT TO_TIMESTAMP('YEAR: 2008 DATE: 12-25 TIME: 13:10:30', '"YEAR:" YYYY "DATE:" MM-DD

"TIME:" HH24:MI:SS');

 to_timestamp('YEAR: 2008 DATE: 12-25 TIME: 13:10:30', '"YEAR:" YYYY "DATE:" MM-DD "TIME:"

HH24:MI:SS', 'en_US')

======================================

 01:10:30 PM 12/25/2008

Aggregate Functions

AVG Function

Description

The AVG function calculates the arithmetic average of the value of an expression representing all rows. Only one

expression is specified as a parameter. You can get the average without duplicates by using the DISTINCT or

UNIQUE keyword in front of the expression or the average of all values by omitting the keyword or by using ALL.

Syntax

AVG ([{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

• expression : Specifies an expression that returns a numeric value. A collection expression cannot be specified.

• ALL : Calculates an average value for all data (default).

• DISTINCT or UNIQUE : Calculates an average value without duplicates.

Example

The following is an example that returns the average number of gold medals Korea won in Olympics. (demodb)

SELECT AVG(gold)

FROM participant

WHERE nation_code = 'KOR';

Result value : 9

COUNT Function

Description

The COUNT function returns the number of of rows returned by a query. If an asterisk (*) is specified, the number of

all rows satisfying the condition (including the rows with the NULL value) is returned. If the DISTINCT or UNIQUE

keyword is specified in front of the expression, only the number of rows that have a unique value (excluding the rows

with the NULL value) is returned after duplicates have been removed. Therefore, the value returned is always an integer

and NULL is never returned.

A column that has collection type and object domain (user-defined class or multimedia class) can also be specified in

the expression.

Syntax

COUNT (* | [{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

CUBRID 2008 R4.0 Help

222

• expression : Specifies an expression.

• ALL : Gets the number of rows given in the expression (default).

• DISTINCT or UNIQUE : Gets the number of rows without duplicates.

Example

The following is an example that returns the number of Olympic Games that had a mascot. (demodb)

SELECT COUNT(*)

FROM olympic

WHERE mascot IS NOT NULL;

Result value : 9

GROUP_CONCAT Function

Description

The GROUP_CONCAT function connects the values that are not NULL in the group and returns the character string

in the VARCHAR type. If there are no rows of query result or there are only NULL values, NULL will be returned.

The maximum size of the return value follows the configuration of the system parameter, group_concat_max_len. The

default is 1024 bytes, the minimum value is 4 bytes and the maximum value is 33,554,432 bytes. If it exceeds the

maximum value, NULL will be returned.

To remove the duplicate values, use the DISTINCT clause. The default separator for the group result values is comma

(,). To represent the separator explicitly, add the character string to use as a separator in the SEPARATOR clause and

after that. If you want to remove separators, enter empty strings after the SEPARATOR clause.

If the non-character string type is passed to the result character string, an error will be returned.

To use the GROUP_CONCAT function, you must meet the following conditions.

• Only one expression (or a column) is allowed for an input parameter.

• Sorting with ORDER BY is available only in the the expression used as a parameter.

• The character string used as a separator allows not only character string type but also allows other types.

Syntax

GROUP_CONCAT([DISTINCT] {col | expression}

 [ORDER BY {col | unsigned_int} [ASC | DESC]]

 [SEPARATOR str_val])

• expression : Operation returning numerical values or character strings

• str_val : Character string to use as a separator

• DISTINCT : Removes duplicate values from the result.

• ORDER BY : Specifies the order of result values.

• SEPARATOR : Specifies the separator to divide the result values. If you omit it, the default character, comma (,)

will be used as a separator.

Example

SELECT GROUP_CONCAT(s_name) FROM code;

 group_concat(s_name)

======================

 'X,W,M,B,S,G'

SELECT GROUP_CONCAT(s_name ORDER BY s_name SEPARATOR ':') from code;

 group_concat(s_name order by s_name separator ':')

======================

 'B:G:M:S:W:X'

CREATE TABLE t(i int);

INSERT INTO t VALUES (4),(2),(3),(6),(1),(5);

SELECT GROUP_CONCAT(i*2+1 ORDER BY 1 SEPARATOR '') FROM t;

CUBRID SQL Guide

223

 group_concat(i*2+1 order by 1 separator '')

======================

 '35791113'

MAX Function

Description

The MAX function gets the greatest value of expressions of all rows. Only one expression is specified.

For expressions that return character strings, the string that appears later in alphabetical order becomes the maximum

value; for those that return numbers, the greatest value becomes the maximum value.

Syntax

MAX ([{ { DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

• expression : Specifies an expression that returns a numeric or string value. A collection expression cannot be

specified.

• ALL : Gets the maximum value for all data (default).

• DISTINCT or UNIQUE : Gets the maximum value without duplicates.

Example

The following is an example that returns the maximum number of gold medals Korea won in the Olympics. (demodb)

SELECT MAX(gold) FROM participant WHERE nation_code = 'KOR';

 max(gold)

=============

 12

MIN Function

Description

The MIN function gets the smallest value of expressions of all rows. Only one expression is specified.

For expressions that return character strings, the string that appears earlier in alphabetical order becomes the minimum

value; for those that return numbers, the smallest value becomes the minimum value.

Syntax

MIN ([{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

• expression : Specifies an expression that returns a numeric or string value. A collection expression cannot be

specified.

• ALL : Gets the minimum value for all data (default).

• DISTINCT or UNIQUE : Gets the maximum value without duplicates.

Example

The following is an example that returns the minimum number of gold medals Korea won in the Olympics. (demodb)

SELECT MIN(gold) FROM participant WHERE nation_code = 'KOR';

 min(gold)

=============

 7

STDDEV, STDDEV_POP Function

Description

The STDDEV function returns a standard deviation of the expression values of all rows. Only one expression is

specified as a parameter. You can get the standard deviation without duplicates by inserting the DISTINCT or

CUBRID 2008 R4.0 Help

224

UNIQUE keyword in front of the expression, or get the standard deviation of all values by omitting the keyword or by

using ALL.

The return value may be different from the actual evaluation value because it follows the type of the expression

specified as a parameter.

Syntaxs

STDDEV([{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

• expression : Specifies an expression that returns a numeric value.

• ALL : Calculates the standard deviation for all data (default).

• DISTINCT or UNIQUE : Calculates the standard deviation without duplicates.

Example

The following is an example that returns the standard deviation of gold medals Korea won in the Olympics. (demodb)

SELECT host_year, gold FROM participant WHERE nation_code = 'KOR';

=== <Result of SELECT Command in Line 1> ===

 host_year gold

==========================

 2004 9

 2000 8

 1996 7

 1992 12

 1988 12

SELECT STDDEV(gold), STDDEV(CAST (gold AS FLOAT)) FROM participant

WHERE nation_code = 'KOR';

=== <Result of SELECT Command in Line 1> ===

 stddev(gold) stddev(cast(gold as float))

==

 2 2.302172e+000

STDDEV_SAMP Function

Description

The STDDEV_SAMP function calculates the sample standard deviation. Only one expression is specified as a

parameter. If the DISTINCT or UNIQUE keyword is included, it calculates the sample standard deviation after

deleting the duplicates; if the keyword is omitted or is ALL, it calculates the sample standard deviation for all values.

The return value is the same as the square root of the VAR_SAMP Function return value and it is a DOUBLE type. If

there are no rows that can be used for calculating a result, NULL will be returned.

The following are the formulas applied to the function.

STDDEV_SAMP = [{ 1 / (N-1) } * SUM({ xI - mean(x) }2)]1/2

• SUM : Sum

• mean : Mean

Syntax

STDDEV_SAMP([{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

• expression : Specifies one operation that returns a numerical value.

• ALL : Is used to calculate the standard deviation for all values. It is the default value.

• DISTINCT or UNIQUE : Is used to calculate the standard deviation for the unique values without duplicates.

CUBRID SQL Guide

225

Example

CREATE TABLE test_table (d DOUBLE);

INSERT INTO test_table VALUES(78), (63.65), (230.54), (32), (17.2), (195.7689), (57.57);

SELECT STDDEV_SAMP(d) FROM test_table;

 stddev_samp(d)

==========================

 8.287199825135663e+01

SELECT STDDEV_SAMP(POWER(d,2)+d*2+1) FROM test_table;

 stddev_samp(power(d, 2)+d*2+1)

=================================

 2.155888498702931e+04

TRUNCATE TABLE test_table;

SELECT STDDEV_SAMP(d) FROM test_table;

 stddev_samp(d)

==========================

 NULL

SUM Function

Description

The SUM function returns the sum of expressions of all rows. Only one expression is specified as a parameter. You can

get the sum without duplicates by inserting the DISTINCT or UNIQUE keyword in front of the expression, or get the

sum of all values by omitting the keyword or by using ALL.

Syntax

SUM ([{ DISTINCT | DISTINCTROW } | UNIQUE | ALL] expression)

You can specify a single-value expression as a input for SUM function.

• expression : Specifies an expression that returns a numeric value.

• ALL : Gets the sum for all data (default).

• DISTINCT or UNIQUE : Gets the sum of unique values without duplicates

Example

The following is an example that outputs the top 10 countries and the total number of gold medals based on the sum of

gold medals won in the Olympics. (demodb)

SELECT nation_code, SUM(gold) FROM participant GROUP BY nation_code

ORDER BY SUM(gold) DESC

FOR ORDERBY_NUM() BETWEEN 1 AND 10 ;

=== <Result of SELECT Command in Line 1> ===

 nation_code sum(gold)

===================================

 'USA' 190

 'CHN' 97

 'RUS' 85

 'GER' 79

 'URS' 55

 'FRA' 53

 'AUS' 52

 'ITA' 48

 'KOR' 48

 'EUN' 45

10 rows selected.

CUBRID 2008 R4.0 Help

226

VARIANCE Function

Description

The VARIANCE function returns a variance of expression values of all rows. Only one expression is specified as a

parameter. You can get the variance without duplicates by using the DISTINCT or UNIQUE keyword in front of the

expression or the variance of all values by omitting the keyword or by using ALL.

The return value may be different from the actual evaluation value because it follows the type of the expression

specified as a parameter.

The following is a formula that is applied to the function.

Syntax

VARIANCE([DISTINCT | UNIQUE | ALL] expression)

• expression : Specifies an expression that returns a numeric value.

• ALL : Gets the variance for all values (default).

• DISTINCT or UNIQUE : Gets the variance of unique values without duplicates.

Example

The following is an example that returns the variance of the number of gold medals Korea has won from 1988 to 2004

in the Olympic Games. (demodb)

SELECT VARIANCE(gold), VARIANCE(CAST (gold AS FLOAT)) FROM participant

WHERE nation_code = 'KOR';

=== <Result of SELECT Command in Line 1> ===

 variance(gold) variance(cast(gold as float))

==

 5 5.299995e+000

VAR_SAMP Function

Description

The VAR_SAMP function returns the sample variance. The denominator is the number of all rows - 1. Only one

expression is specified as a parameter. If the DISTINCT or UNIQUE keyword is included, it calculates the sample

variance after deleting the duplicates, and if the keyword is omitted or is ALL, it calculates the sample variance for all

values.

The return value is a DOUBLE type. If there are no rows that can be used for calculating a result, NULL will be

returned.

The following are the formulas applied to the function.

VAR_POP = { 1 / (N-1) } * SUM({ xI - AVG(x) }2)

• SUM : Sum

• AVG : Average

VAR_SAMP([DISTINCT | UNIQUE | ALL] expression)

• expression : Specifies one expression to return the numeric.

• ALL : Is used to calculate the sample variance of unique values without duplicates. It is the default value.

• DISTINCT or UNIQUE : Is used to calculate the sample variance for the unique values without duplicates.

CUBRID SQL Guide

227

Example

CREATE TABLE test_table (d double);

INSERT INTO test_table VALUES(78), (63.65), (230.54), (32), (17.2), (195.7689), (57.57);

SELECT VAR_SAMP(d) FROM test_table;

 var_samp(d)

==========================

 6.867768094172856e+03

SELECT VAR_SAMP(POWER(d,2)+d*2+1) FROM test_table;

 var_samp(power(d, 2)+d*2+1)

==============================

 4.647855218839577e+08

TRUNCATE TABLE test_table;

SELECT VAR_SAMP(d) FROM test_table;

 var_samp(d)

==========================

 NULL

Click Counter Functions

INCR, DECR Function

Description

The INCR function increments the column's value given as a parameter for a SELECT statement by 1. The DECR

function decrements the value of the column by 1.

Syntax

SELECT [qualifier] select_expression

[{ TO | INTO } variable [{, variable }...;]]

...;

select_expression :

 *

 table_name. *

 [expression | counter_expression] [{, expression |

counter_expression}...]

counter_expression :

INCR(path_expression)

The INCR and DECR functions are called "click counters" and can be effectively used to increase the number of post

views for a Bulletin Board System (BBS) type of web service. In a scenario where you want to SELECT a post and

immediately increase the number of views by 1 using an UPDATE statement, you can view the post and increment the

number at the same time by using the INCR function in a single SELECT statement.

The INCR function increments the column value specified as an argument. Only integer type numbers can be used as

arguments. If the value is NULL, the INCR function returns the NULL. That is, a value must be valid in order to be

incremented by the INCR function. The DECR function decrements the column value specified as a parameter.

If an INCR function is specified in the SELECT statement, the COUNTER value is incremented by 1 and the query

result is displayed with the values before the increment. Furthermore, the INCR function does not increment the value

of the tuple affected by the query process but rather the one affected by the final result.

Remark

• The INCR/DECR function executes independent of user-defined transactions and is applied automatically to the

database by the top operation internally used in the system, apart from the transaction's COMMIT/ROLLBACK.

• When multiple INCR/DECR functions are specified in a single SELECT statement, the failure of any of the

INCR/DECR functions leads to the failure of all of them.

• The INCR/DECR functions apply only to top-level SELECT statements. SUB SELECT statements such as

INSERT ... SELECT ... statement and UPDATE table SET col = SELECT ... statement are not supported. The

following is an example where the INCR function is not allowed.

CUBRID 2008 R4.0 Help

228

SELECT b.content, INCR(b.read_count) FROM (SELECT * FROM board WHERE id = 1) AS b

• If the SELECT statement with INCR/DECR function(s) returns more than one row as a result, it is treated as an

error. The final result must have only one row to be considered valid.

• The INCR/DECR function can be used only in numerical domains. Applicable domains are limited to integer data

types such as SMALLINT and INTEGER. They cannot be used in other domains.

• When the INCR function is called, the value to be returned will be the current value, while the value to be stored

will be the current value + 1. Execute the following statement to select the value to be stored as the result :

SELECT content, INCR(read_count) + 1 FROM board WHERE id = 1;

• If the defined maximum value of the domain is exceeded, the INCR function initializes the column value to 0.

Likewise, the column value is also initialized to 0 when the DECR function applies to the minimum value.

• Data inconsistency can occur because the INCR/DECR functions are executed regardless of UPDATE trigger. The

example below shows the database inconsistency in that situation.

CREATE TRIGGER event_tr BEFORE UPDATE ON event EXECUTE REJECT;

SELECT INCR(players) FROM event WHERE gender='M';

Example

Suppose that the following three rows of data were inserted into the 'board' table.

CREATE TABLE board (

id INT, title VARCHAR(100), content VARCHAR(4000), read_count INT);

INSERT INTO board VALUES (1, 'aaa', 'text...', 0);

INSERT INTO board VALUES (2, 'bbb', 'text...', 0);

INSERT INTO board VALUES (3, 'ccc', 'text...', 0);

The following is an example of incrementing the value of the 'read_count' column in a data whose 'id' value is 1 using

the INCR function.

SELECT content, INCR(read_count) FROM board WHERE id = 1;

 content read_count

===================================

 'text...' 0

In the example, the column value becomes read_count + 1 as a result of the INCR function in the SELECT statement.

You can check the result using the following SELECT statement.

SELECT content, read_count FROM board WHERE id = 1;

 content read_count

===================================

 'text...' 1

ROWNUM Functions

ROWNUM/INST_NUM() Function

Description

The ROWNUM function returns the number representing the order of the records that will be generated by the query

result. The first result record is assigned 1, and the second result record is assigned 2.

ROWNUM and INST_NUM() can be used in the SELECT statement, and GROUPBY_NUM() can be used in the

SELECT statement with GROUP BY clauses. The ROWNUM function can be used to limit the number of result

records of the query in several ways. For example, it can be used to search only the first 10 records or to return even or

odd number records.

The ROWNUM function has a result value as an integer, and can be used wherever an expression is valid such as the

SELECT or WHERE clause. However, it is not allowed to compare the result of the ROWNUM function with the

attribute or the correlated subquery.

Syntax

INST_NUM()

ROWNUM

CUBRID SQL Guide

229

Remark

• The ROWNUM function specified in the WHERE clause works the same as the INST_NUM() function. Whereas

INST_NUM() is a scalar function, GROUPBY_NUM() is a kind of an aggregate function. In a SELECT

statement with a GROUP BY clause, GROUPBY_NUM() must be used instead of INST_NUM().

• The ROWNUM function belongs to each SELECT statement. That is, if a ROWNUM function is used in a

subquery, it returns the sequence of the subquery result while it is being executed. Internally, the result of the

ROWNUM function is generated right before the searched record is written to the query result set. At this moment,

the counter value that generates the serial number of the result set records increases.

• If an ORDER BY clause is included in the SELECT statement, the value of the ROWNUM function specified in

the WHERE clause is generated before sorting for the ORDER BY clause. If a GROUP BY clause is included in

the SELECT statement, the value of the GROUPBY_NUM() function specified in the HAVING clause is

calculated after the query results are grouped. After the sorting process is completed using the ORDER BY clause,

you need to use the ORDERBY_NUM() function in the ORDER BY clause in order to get a sequence of the result

records.

• The ROWNUM function can also be used in SQL statements such as INSERT, DELETE and UPDATE in

addition to the SELECT statement. For example, as in the query INSERT INTO table_name SELECT ...

FROM ... WHERE ..., you can search for part of the row from one table and then insert it into another by using the

ROWNUM function in the WHERE clause.

Example

The following is an example (demodb) that returns country names ranked first to fourth based on the number of gold

medals in the 1988 Olympics.

--Limiting 4 rows using ROWNUM in the WHERE condition

SELECT * FROM

(SELECT nation_code FROM participant WHERE host_year = 1988

 ORDER BY gold DESC) AS T

WHERE ROWNUM <5;

 nation_code

======================

 'URS'

 'GDR'

 'USA'

 'KOR'

--Limiting 4 rows using FOR ORDERBY_NUM()

SELECT ROWNUM, nation_code FROM participant WHERE host_year = 1988

ORDER BY gold DESC

FOR ORDERBY_NUM() < 5;

 rownum nation_code

===================================

 156 'URS'

 155 'GDR'

 154 'USA'

 153 'KOR'

--Unexpected results : ROWNUM operated before ORDER BY

SELECT ROWNUM, nation_code FROM participant

WHERE host_year = 1988 AND ROWNUM < 5

ORDER BY gold DESC;

 rownum nation_code

===================================

 1 'ZIM'

 2 'ZAM'

 3 'ZAI'

 4 'YMD'

GROUPBY_NUM() Function

Description

The GROUPBY_NUM() function is used with the ROWNUM() or INST_NUM() function to limit the number of

result rows. The difference is that the GROUPBY_NUM() function is combined after the GROUP BY … HAVING

clause to give order to a result that has been already sorted. In addition, while the INST_NUM() function is a scalar

function, the GROUPBY_NUM() function is kind of an aggregate function.

CUBRID 2008 R4.0 Help

230

That is, when retrieving only some of the result rows by using ROWNUM in a condition clause of the SELECT

statement that includes the GROUP BY clause, ROWNUM is applied first and then group sorting by GROUP BY is

performed. On the other hand, when retrieving only some of the result rows by using the GROUPBY_NUM() function,

ROWNUM is applied to the result of group sorting by GROUP BY.

Syntax

GROUPBY_NUM()

Example

The following is an example that searches for the fastest record in the previous five Olympic Games from the history

table. (demodb)

--Group-ordering first and then limiting rows using GROUPBY_NUM()

SELECT host_year, MIN(score) FROM history

GROUP BY host_year HAVING GROUPBY_NUM() BETWEEN 1 AND 5;

 host_year min(score)

===================================

 1968 '8.9'

 1980 '01:53.0'

 1984 '13:06.0'

 1988 '01:58.0'

 1992 '02:07.0'

--Limiting rows first and then Group-ordering using ROWNUM

SELECT host_year, MIN(score) FROM history

WHERE ROWNUM BETWEEN 1 AND 5 GROUP BY host_year;

 host_year min(score)

===================================

 2000 '03:41.0'

 2004 '01:45.0'

ORDERBY_NUM() Function

Description

The ORDERBY_NUM() function is used with the ROWNUM() or INST_NUM() function to limit the number of

result rows. The difference is that the ORDERBY_NUM() function is combined after the ORDER BY clause to give

order to a result that has been already sorted.

That is, when retrieving only some of the result rows by using ROWNUM in a condition clause of the SELECT

statement that includes the ORDER BY clause, ROWNUM is applied first and then group sorting by ORDER BY is

performed. On the other hand, when retrieving only some of the result rows by using the ORDER_NUM() function,

ROWNUM is applied to the result of sorting by ORDER BY.

Syntax

FOR ORDERBY_NUM()

Example

The following is an example of searching athlete names ranked 3rd to 5th and their records in the history table. (demodb)

--Ordering first and then limiting rows using FOR ORDERBY_NUM()

SELECT athlete, score FROM history

ORDER BY score FOR ORDERBY_NUM() BETWEEN 3 AND 5;

 athlete score

==

 'Luo Xuejuan' '01:07.0'

 'Rodal Vebjorn' '01:43.0'

 'Thorpe Ian' '01:45.0'

--Limiting rows first and then Ordering using ROWNUM

SELECT athlete, score FROM history

WHERE ROWNUM BETWEEN 3 AND 5 ORDER BY score;

 athlete score

CUBRID SQL Guide

231

==

 'Thorpe Ian' '01:45.0'

 'Thorpe Ian' '03:41.0'

 'Hackett Grant' '14:43.0'

Information Functions

CURRENT_USER, USER

Description

CURRENT_USER and USER are used interchangeably. They return the user name that is currently logged in to the

database as a string.

USER() and SYSTEM_USER() are used interchangeably. They return the user name with a host name.

Syntax

CURRENT_USER

USER

USER()

SYSTEM_USER()

Example

--selecting the current user on the session

SELECT USER;

 CURRENT_USER

======================

 'PUBLIC'

SELECT USER(), CURRENT_USER;

 user() CURRENT_USER

==

 'PUBLIC@cdbs006.cub' 'PUBLIC'

--selecting all users of the current database from the system table

SELECT name, id, password FROM db_user;

 name id password

===

 'DBA' NULL NULL

 'PUBLIC' NULL NULL

 'SELECT_ONLY_USER' NULL db_password

 'ALMOST_DBA_USER' NULL db_password

 'SELECT_ONLY_USER2' NULL NULL

DATABASE(), SCHEMA()

Description

DATEBASE() returns the name of the currently-connected database as a VARCHAR type string. DATABASE and

SCHEMA are used interchangeably.

Syntax

DATABASE()

SCHEMA()

Example

SELECT DATABASE(), SCHEMA();

;xr

 database() schema()

==

 'demodb' 'demodb'

CUBRID 2008 R4.0 Help

232

DEFAULT Function

Description

The DEFAULT function returns a default value defined for a column. If a default value has not been specified for the

given column, NULL or an error is returned. If any of constraints is not defined or the UNIQUE constraint is defined

for the column where a default value is not defined, NULL is returned. If NOT NULL or PRIMARY KEY constraint

is defined, an error is returned.

Syntax

DEFAULT(column_name)

Example

CREATE TABLE info_tbl(id INT DEFAULT 0, name VARCHAR)

INSERT INTO info_tbl VALUES (1,'a'),(2,'b'),(NULL,'c');

3 rows affected.

SELECT id, DEFAULT(id) FROM info_tbl;

 id default(id)

=============================

 1 0

 2 0

 NULL 0

INDEX_CARDINALITY Function

Description

The INDEX_CARDINALITY function returns the index cardinality in a table. The index cardinality is the number of

unique values defining the index. The index cardinality can be applied even to the partial key of the multiple column

index and displays the number of the unique value for the partial key by specifying the column location with the third

parameter.

The return value is 0 or a positive integer and if any of the input parameters is NULL, NULL will be returned. If tables

or indexes that are input parameters are not found, or key_pos is out of range, NULL will be returned.

For the table and the index names which are the first and the second input parameters, they cannot be passed as

NCHAR or VARNCHAR types.

Syntax

INDEX_CARDINALITY(table, index, key_pos)

• table : Table name

• index : Index name that exists in the table

• key_pos : Partial key location key_pos starts from 0 and has a range that is smaller than the number of columns that

composes the key. That is, the key_pos of the first column is 0. For the single column index, it is 0. It can be one of

the following types.

• Character string that can be converted to a numeric type. NCHAR and VARNCHAR are not supported.

• Numeric type that can be converted to an integer type. The FLOAT or the DOUBLE types will be the value

converted by the ROUND function.

Example

CREATE TABLE t1(i1 INTEGER ,

i2 INTEGER not null,

i3 INTEGER unique,

s1 VARCHAR(10),

s2 VARCHAR(10),

s3 VARCHAR(10) UNIQUE);

CREATE INDEX i_t1_i1 ON t1(i1 DESC);

CUBRID SQL Guide

233

CREATE INDEX i_t1_s1 ON t1(s1(7));

CREATE INDEX i_t1_i1_s1 on t1(i1,s1);

CREATE UNIQUE INDEX i_t1_i2_s2 ON t1(i2,s2);

INSERT INTO t1 VALUES (1,1,1,'abc','abc','abc');

INSERT INTO t1 VALUES (2,2,2,'zabc','zabc','zabc');

INSERT INTO t1 VALUES (2,3,3,'+abc','+abc','+abc');

SELECT INDEX_CARDINALITY('t1','i_t1_i1_s1',0);

 index_cardinality('t1', 'i_t1_i1_s1', 0)

===

 2

SELECT INDEX_CARDINALITY('t1','i_t1_i1_s1',1);

 index_cardinality('t1', 'i_t1_i1_s1', 1)

===

 3

SELECT INDEX_CARDINALITY('t1','i_t1_i1_s1',2);

 index_cardinality('t1', 'i_t1_i1_s1', 2)

===

 NULL

SELECT INDEX_CARDINALITY('t123','i_t1_i1_s1',1);

 index_cardinality('t123', 'i_t1_i1_s1', 1)

===

 NULL

LAST_INSERT_ID Function

Description

The LAST_INSERT_ID function returns the value created at the end of the AUTO_INCREMENT column of all

tables.

If no values are INSERTed successfully, the last successful value will be maintained, and the SQL statement on

execution does not affect the LAST_INSERT_ID() value. If you enter multiple rows with one INSERT statement, the

LAST_INSERT_ID() will return the input row value entered at the end. If the execution result of the previous SQL

statement returns an error, the LAST_INSERT_ID() value is not defined, and the rollback can not recover the

LAST_INSERT_ID() value as the previous transaction value.

You can not check the LAST_INSERT_ID() value used in the trigger, outside trigger.

The created ID is maintained independently for the connection of each client.

Syntax

LAST_INSERT_ID()

Example

CREATE TABLE ss (id INT AUTO_INCREMENT NOT NULL PRIMARY KEY, text VARCHAR(32));

INSERT into ss VALUES(NULL,‟cubrid‟);

SELECT LAST_INSERT_ID();

 last_insert_id()

=======================

 1

INSERT INTO ss VALUES(NULL,‟database‟),(NULL,‟manager‟);

SELECT LAST_INSERT_ID();

 last_insert_id()

=======================

 3

CUBRID 2008 R4.0 Help

234

LIST_DBS Function

Description

The LIST_DBS function outputs the list of all databases in the CUBRID database server, separated by blanks.

Syntax

LIST_DBS()

Example

SELECT LIST_DBS();

 dbs

======================

 'testdb demodb'

ROW_COUNT Function

Description

The ROW_COUNT function returns the number of rows updated (UPDATE, INSERT, DELETE) by the previous

statement. Note that the ROW_COUNT function execution area at the SQL level is limited to the client session in

which the SQL was created. If this function is called after executing SQL with the ;run or ;xrun command, it returns -1.

Syntax

ROW_COUNT()

Example

SELECT * FROM info_tbl;

=== <Result of SELECT Command in Line 1> ===

 id name

===================================

 1 'a'

 2 'b'

 NULL 'c'

INSERT INTO info_tbl VALUES (4,'d'),(5, 'e');

SELECT ROW_COUNT();

;xr

=== <Result of SELECT Command in Line 2> ===

 row_count()

===============

 2

DELETE FROM info_tbl WHERE id IN (4,5);

SELECT ROW_COUNT();

;xr

=== <Result of SELECT Command in Line 2> ===

 row_count()

===============

 2

SELECT ROW_COUNT();

=== <Result of SELECT Command in Line 1> ===

 row_count()

===============

 -1

CUBRID SQL Guide

235

CURRENT_USER, USER

Description

CURRENT_USER and USER are used interchangeably. They return the user name that is currently logged in to the

database as a string.

USER() and SYSTEM_USER() are used interchangeably. They return the user name with a host name.

Syntax

CURRENT_USER

USER

USER()

SYSTEM_USER()

Example

--selecting the current user on the session

SELECT USER;

 CURRENT_USER

======================

 'PUBLIC'

SELECT USER(), CURRENT_USER;

 user() CURRENT_USER

==

 'PUBLIC@cdbs006.cub' 'PUBLIC'

--selecting all users of the current database from the system table

SELECT name, id, password FROM db_user;

 name id password

===

 'DBA' NULL NULL

 'PUBLIC' NULL NULL

 'SELECT_ONLY_USER' NULL db_password

 'ALMOST_DBA_USER' NULL db_password

 'SELECT_ONLY_USER2' NULL NULL

VERSION Function

Description

Returns the version character string representing the CUBRID server version.

Syntax

VERSION()

Example

SELECT VERSION();

 version()

=====================

 '8.3.1.2015'

Encryption Function

MD5 Function

Description

Returns the MD5 128-bit checksum for the input character string. The result value is displayed as a character string that

is expressed in 32 hexadecimals, which you can use to create hash keys, for example.

The return value is a VARCHAR(32) type and if an input parameter is NULL, NULL will be returned.

CUBRID 2008 R4.0 Help

236

Syntax

MD5(string)

• string : Input character string. If a value that is not a VARCHAR type is entered, it will be converted to

VARCHAR.

Example

SELECT MD5('cubrid');

 md5('cubrid')

======================

 '685c62385ce717a04f909047d0a55a16'

SELECT MD5(255);

 md5(255)

======================

 'fe131d7f5a6b38b23cc967316c13dae2'

SELECT MD5('01/01/2010');

 md5('01/01/2010')

======================

 '4a2f373c30426a1b8e9cf002ef0d4a58'

SELECT MD5(CAST('2010-01-01' as DATE));

 md5(cast('2010-01-01' as date))

======================

 '4a2f373c30426a1b8e9cf002ef0d4a58'

Conditional Operators and Functions

CASE

Description

The CASE expression uses the SQL statement to perform an IF ... THEN statement. When a result of comparison

expression specified in a WHEN clause is true, a value specified in THEN value is returned. A value specified in an

ELSE clause is returned otherwise. If no ELSE clause exists, NULL is returned.

Syntax

CASE control_expression simple_when_list

[else_clause]

END

CASE searched_when_list

[else_clause]

END

simple_when :

WHEN expression THEN result

searched_when :

WHEN search_condition THEN result

else_clause :

ELSE result

result :

expression | NULL

The CASE expression must end with the END keyword. A control_expression argument and an expression argument in

simple_when expression should be comparable data types. The data types of result specified in the THEN ... ELSE

statement should all same, or they can be convertible to common data type.

The data type for a value returned by the CASE expression is determined based on the following rules.

• If data types for result specified in the THEN statement are all same, a value with the data type is returned.

CUBRID SQL Guide

237

• If data types can be convertible to common data type even though they are not all same, a value with the data type

is returned.

• If any of values for result is a variable length string, a value data type is a variable length string. If values for result

are all a fixed length string, the longest character string or bit string is returned.

• If any of values for result is an approximate numeric data type, a value with a numeric data type is returned. The

number of digits after the decimal point is determined to display all significant digits.

Example

--creating a table

CREATE TABLE case_tbl(a INT);

INSERT INTO case_tbl VALUES (1);

INSERT INTO case_tbl VALUES (2);

INSERT INTO case_tbl VALUES (3);

INSERT INTO case_tbl VALUES (NULL);

--case operation with a search when clause

SELECT a,

 CASE WHEN a=1 THEN 'one'

 WHEN a=2 THEN 'two'

 ELSE 'other'

 END

FROM case_tbl;

 a case when a=1 then 'one' when a=2 then 'two' else 'other' end

===================================

 1 'one'

 2 'two'

 3 'other'

 NULL 'other'

--case operation with a simple when clause

SELECT a,

 CASE a WHEN 1 THEN 'one'

 WHEN 2 THEN 'two'

 ELSE 'other'

 END

FROM case_tbl;

 a case a when 1 then 'one' when 2 then 'two' else 'other' end

===================================

 1 'one'

 2 'two'

 3 'other'

 NULL 'other'

--result types are converted to a single type containing all of significant figures

SELECT a,

 CASE WHEN a=1 THEN 1

 WHEN a=2 THEN 1.2345

 ELSE 1.234567890

 END

FROM case_tbl;

 a case when a=1 then 1 when a=2 then 1.2345 else 1.234567890 end

===================================

 1 1.000000000

 2 1.234500000

 3 1.234567890

 NULL 1.234567890

--an error occurs when result types are not convertible

SELECT a,

 CASE WHEN a=1 THEN 'one'

 WHEN a=2 THEN 'two'

 ELSE 1.2345

 END

FROM case_tbl;

ERROR: Cannot coerce 'one' to type double.

CUBRID 2008 R4.0 Help

238

COALESCE Function

Description

The COALESCE function has more than one expression as an argument. If a first argument is non-NULL, it is

returned if it is NULL, a second argument is returned. If all expressions which have an argument are NULL, NULL is

returned. Therefore, this function is generally used to replace NULL with other default value. All expressions with an

argument must be identical or each data type must be convertible to one another.

Syntax

COALESCE(expression [, ...])

result :

expression | NULL

COALESCE(a, b) works the same as the CASE statement as follows:

CASE WHEN a IS NOT NULL

THEN a

ELSE b

END

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--substituting a default value 10.0000 for NULL valuse

SELECT a, COALESCE(a, 10.0000) FROM case_tbl;

 a coalesce(a, 10.0000)

===================================

 1 1.0000

 2 2.0000

 3 3.0000

 NULL 10.0000

DECODE Function

Description

As well as a CASE expression, the DECODE function performs the same functionality as the IF ... THEN ... ELSE

statement. It compares the expression argument with search argument, and returns the result corresponding to search

that has the same value. It returns default if there is no search with the same value, and returns NULL if default is

omitted. An expression argument and a search argument to be comparable should be same or convertible each other.

The number of digits after the decimal point is determined to display all significant digits including valid number of all

result.

Syntax

DECODE(expression, search, result [, search, result]* [, default])

result :

result | default | NULL

DECODE(a, b, c, d, e) works the same as the CASE statement as follows:

CASE WHEN a = b THEN c

WHEN a= c THEN d

ELSE e

END

CUBRID SQL Guide

239

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--Using DECODE function to compare expression and search values one by one

SELECT a, DECODE(a, 1, 'one', 2, 'two', 'other') FROM case_tbl;

 a decode(a, 1, 'one', 2, 'two', 'other')

===================================

 1 'one'

 2 'two'

 3 'other'

 NULL 'other'

--result types are converted to a single type containing all of significant figures

SELECT a, DECODE(a, 1, 1, 2, 1.2345, 1.234567890) FROM case_tbl;

 a decode(a, 1, 1, 2, 1.2345, 1.234567890)

===================================

 1 1.000000000

 2 1.234500000

 3 1.234567890

 NULL 1.234567890

--an error occurs when result types are not convertible

SELECT a, DECODE(a, 1, 'one', 2, 'two', 1.2345) FROM case_tbl;

ERROR: Cannot coerce 'one' to type double.

IF Function

Description

The IF function returns expression2 if the value of the arithmetic expression specified as the first parameter is TRUE,

or expression3 if the value is FALSE or NULL. expression2 and expression3 which are returned as the result must be

the same or of a convertible common type. If one is explicitly NULL, the result of the function follows the type of the

non-NULL parameter.

Syntax

IF(expression1, expression2, expression3)

result :

exrpession2 | expression3

IF(a, b, c) works the same as the CASE statement as follows:

CASE WHEN a IS TRUE THEN b

ELSE c

END

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--IF function returns the second expression when the fist is TRUE

SELECT a, IF(a=1, 'one', 'other') FROM case_tbl;

 a if(a=1, 'one', 'other')

===================================

 1 'one'

 2 'other'

CUBRID 2008 R4.0 Help

240

 3 'other'

 NULL 'other'

--If function in WHERE clause

SELECT * FROM case_tbl WHERE IF(a=1, 1, 2) = 1;

 a

=============

 1

IFNULL, NVL Function

Description

The IFNULL function is working like the NVL function; however, only the NVL function supports set data type as

well. The IFNULL function (which has two arguments) returns expr1 if the value of the first expression is not NULL

or returns expr2, otherwise. The data type of the result is determined as the type which can be converted from both

expr1 and expr2 types; see the table below.

expr1 Type expr2 Type Type of NVL Return Value Type of IFNULL Return Value

? ? Error VARCHAR

? X X type VARCHAR

CHAR

CHAR

VARCHAR

VARCHAR

NCHAR

NCHAR

VARCHAR

Error

VARCHAR

VARCHAR

VARCHAR

VARCHAR

String type

String type

Number type

Number type

Date/Time type

Date/Time type

Error

Error

Error

VARCHAR

VARCHAR

VARCHAR

Date/Time type

Number type

Date/Time type

Number type

Common convertible type

Common convertible type

VARCHAR

Common convertible type

Collection type

Collection type

Collection type

Others

Common convertible type

Error

Error

Error

Syntax

IFNULL(expr1, expr2)

result :

expr1 | expr2

IFNULL(a, b, c) works the same as the CASE statement as follows:

CASE WHEN a IS NULL THEN b

ELSE a

END

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--returning a specific value when a is NULL

SELECT a, NVL(a, 10.0000) FROM case_tbl;

 a nvl(a, 10.0000)

===================================

 1 1.0000

 2 2.0000

 3 3.0000

 NULL 10.0000

CUBRID SQL Guide

241

--IFNULL can be used instead of NVL and return values are converted to the string type

SELECT a, IFNULL(a, 'UNKNOWN') FROM case_tbl;

 a ifnull(a, 'UNKNOWN')

===================================

 1 '1'

 2 '2'

 3 '3'

 NULL 'UNKNOWN'

NULLIF Function

Description

The NULLIF function returns NULL if the two expressions specified as the parameters are identical, and returns the

first parameter value otherwise.

Syntax

NULLIF(expr1, expr2)

result :

expr1 | NULL

NULLIF(a, b) is the same of the CASE statement.

CASE

WHEN a = b THEN NULL

ELSE a

END

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--returning NULL value when a is 1

SELECT a, NULLIF(a, 1) FROM case_tbl;

 a nullif(a, 1)

===========================

 1 NULL

 2 2

 3 3

 NULL NULL

--returning NULL value when arguments are same

SELECT NULLIF (1, 1.000) FROM db_root;

 nullif(1, 1.000)

======================

 NULL

--returning the first value when arguments are not same

SELECT NULLIF ('A', 'a') FROM db_root;

 nullif('A', 'a')

======================

 'A'

NVL2 Function

Description

Three parameters are specified for the NVL function. The function returns the second expression (expr2) if the first

expression (expr1) is not NULL, and the third expression (expr2) if it is NULL.

CUBRID 2008 R4.0 Help

242

Syntax

NVL2(expr1, expr2, expr3)

result :

expr2 | expr3

Example

SELECT * FROM case_tbl;

 a

=============

 1

 2

 3

 NULL

--returning a specific value of INT type

SELECT a, NVL2(a, a+1, 10.5678) FROM case_tbl;

 a nvl2(a, a+1, 10.5678)

====================================

 1 2

 2 3

 3 4

 NULL 11

Conditional Expressions

Basic Conditional Expressions

A conditional expression is an expression that is included in the WHERE clause of the SELECT, UPDATE and

DELETE statements, and in the HAVING clause of the SELECT statement. There are simple comparison,

ANY/SOME/ALL, BETWEEN, EXISTS, IN/NOT IN, LIKE and IS NULL conditional expressions, depending on

the kinds of the operators combined.

A simple comparison conditional expression compares two comparable data values. Expressions or subqueries are

specified as operands, and the conditional expression always returns NULL if one of the operands is NULL. The

following table shows operators that can be used in the simple comparison conditional expressions. For details, see

Comparison Operator.

Operators for Conditional Expressions

Comparison Operator Description Conditional Expression Return Value

= A value of left operand is the same as

that of right operand.

1=2 0

<>, != A value of left operand is not the same

as that of right operand.

1<>2 1

> A value of left operand is greater than

that of right operand.

1>2 0

< A value of left operand is less than

that of right operand.

1<2 1

>= A value of left operand is equal to or

greater than that of right operand.

1>=2 0

<= A value of left operand is equal to or

less than that of right operand.

1<=2 1

CUBRID SQL Guide

243

ANY/SOME/aLL Conditional Expressions

Description

Group conditional expressions that include quantifiers such as ANY/SOME/aLL perform comparison operation on one

data value and on some or all values included in the list. A conditional expression that includes ANY or SOME returns

TRUE if the value of the data on the left satisfies simple comparison with at least one of the values in the list specified

as an operand on the right. A group conditional expression that includes ALL returns TRUE if the value of the data on

the left satisfies simple comparison with all values in the list on the right.

When a comparison operation is performed on NULL in a group conditional expression that includes ANY or SOME,

UNKNOWN or TRUE is returned as the result; when a comparison operation is performed on NULL in a group

conditional expression that includes ALL, UNKNOWN or FALSE is returned.

Syntax

expression comp_op SOME expression

expression comp_op ANY expression

expression comp_op ALL expression

• comp_op : A comparison operator >, = or <= can be used.

• expression (left) : A single-value column, path expression, constant value or arithmetic function that produces a

single value can be used.

• expression (right) : A column name, path expression, list (set) of constant values or subquery can be used. A list is a

set represented within braces ({}). If a subquery is used, expression (left) and comparison operation on all results of

the subquery execution is performed.

Example

--creating a table

CREATE TABLE condition_tbl (id int primary key, name char(10), dept_name VARCHAR, salary

INT);

INSERT INTO condition_tbl VALUES(1, 'Kim', 'devel', 4000000);

INSERT INTO condition_tbl VALUES(2, 'Moy', 'sales', 3000000);

INSERT INTO condition_tbl VALUES(3, 'Jones', 'sales', 5400000);

INSERT INTO condition_tbl VALUES(4, 'Smith', 'devel', 5500000);

INSERT INTO condition_tbl VALUES(5, 'Kim', 'account', 3800000);

INSERT INTO condition_tbl VALUES(6, 'Smith', 'devel', 2400000);

INSERT INTO condition_tbl VALUES(7, 'Brown', 'account', NULL);

--selecting rows where department is sales or devel

SELECT * FROM condition_tbl WHERE dept_name = ANY{'devel','sales'};

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 2 'Moy ' 'sales' 3000000

 3 'Jones ' 'sales' 5400000

 4 'Smith ' 'devel' 5500000

 6 'Smith ' 'devel' 2400000

--selecting rows comparing NULL value in the ALL group conditions

SELECT * FROM condition_tbl WHERE salary > ALL{3000000, 4000000, NULL};

There are no results.

--selecting rows comparing NULL value in the ANY group conditions

SELECT * FROM condition_tbl WHERE salary > ANY{3000000, 4000000, NULL};

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 3 'Jones ' 'sales' 5400000

 4 'Smith ' 'devel' 5500000

 5 'Kim ' 'account' 3800000

--selecting rows where salary*0.9 is less than those salary in devel department

SELECT * FROM condition_tbl WHERE (

(0.9 * salary) < ALL (SELECT salary FROM condition_tbl

WHERE dept_name = 'devel')

CUBRID 2008 R4.0 Help

244

);

 id name dept_name salary

==

 6 'Smith ' 'devel' 2400000

BETWEEN Conditional Expression

Description

The BETWEEN conditional expression makes a comparison to determine whether the data value on the left exists

between two data values specified on the right. It returns TRUE even when the data value on the left is the same as a

boundary value of the comparison target range. If NOT comes before the BETWEEN keyword, the result of a NOT

operation on the result of the BETWEEN operation is returned.

i BETWEEN g AND m and the compound condition i >= g AND i <= m have the same effect.

Syntax

expression [NOT] BETWEEN expression AND expression

• expression : A column name, path expression, constant value, arithmetic expression or aggregate function can be

used. For a character string expression, the conditions are evaluated in alphabetical order. If NULL is specified for

at least one of the expressions, the BETWEEN predicate returns UNKNOWN as the result.

Example

--selecting rows where 3000000 <= salary <= 4000000

SELECT * FROM condition_tbl WHERE salary BETWEEN 3000000 AND 4000000;

SELECT * FROM condition_tbl WHERE (salary >= 3000000) AND (salary <= 4000000);

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 2 'Moy ' 'sales' 3000000

 5 'Kim ' 'account' 3800000

--selecting rows where salary < 3000000 or salary > 4000000

SELECT * FROM condition_tbl WHERE salary NOT BETWEEN 3000000 AND 4000000;

 id name dept_name salary

==

 3 'Jones ' 'sales' 5400000

 4 'Smith ' 'devel' 5500000

 6 'Smith ' 'devel' 2400000

--selecting rows where name starts from A to E

SELECT * FROM condition_tbl WHERE name BETWEEN 'A' AND 'E';

 id name dept_name salary

==

 7 'Brown ' 'account' NULL

EXISTS Conditional Expression

Description

The EXISTS conditional expression returns TRUE if one or more results of the execution of the subquery specified on

the right exist, and returns FALSE if the result of the operation is an empty set.

Syntax

EXISTS expression

• expression : Specifies a subquery and compares to determine whether the result of the subquery execution exists. If

the subquery does not produce any result, the result of the conditional expression is FALSE.

Example

--selecting rows using EXISTS and subquery

SELECT 'raise' FROM db_root WHERE EXISTS(

CUBRID SQL Guide

245

SELECT * FROM condition_tbl WHERE salary < 2500000);

 'raise'

======================

 'raise'

--selecting rows using NOT EXISTS and subquery

SELECT 'raise' FROM db_root WHERE NOT EXISTS(

SELECT * FROM condition_tbl WHERE salary < 2500000);

There are no results.

IN Conditional Expression

Description

The IN conditional expression compares to determine whether the single data value on the left is included in the list

specified on the right. That is, the predicate returns TRUE if the single data value on the left is an element of the

expression specified on the right. If NOT comes before the IN keyword, the result of a NOT operation on the result of

the IN operation is returned.

Syntax

expression [NOT] IN expression

• expression (left) : A single-value column, path expression, constant value or arithmetic function that produces a

single value can be used.

• expression (right) : A column name, path expression, list (set) of constant values or subquery can be used. A list is a

set represented within parentheses (()) or braces ({}). If a subquery is used, comparison with expression(left) is

performed for all results of the subquery execution.

Example

--selecting rows where department is sales or devel

SELECT * FROM condition_tbl WHERE dept_name IN {'devel','sales'};

SELECT * FROM condition_tbl WHERE dept_name = ANY{'devel','sales'};

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 2 'Moy ' 'sales' 3000000

 3 'Jones ' 'sales' 5400000

 4 'Smith ' 'devel' 5500000

 6 'Smith ' 'devel' 2400000

--selecting rows where department is neither sales nor devel

SELECT * FROM condition_tbl WHERE dept_name NOT IN {'devel','sales'};

 id name dept_name salary

==

 5 'Kim ' 'account' 3800000

 7 'Brown ' 'account' NULL

IS NULL Conditional Expression

Description

The IS NULL conditional expression compares to determine whether the expression specified on the left is NULL, and

if it is NULL, returns TRUE and it can be used in the conditional expression. If NOT comes before the NULL

keyword, the result of a NOT operation on the result of the IS NULL operation is returned.

Syntax

expression IS [NOT] NULL

• expression : A single-value column, path expression, constant value or arithmetic function that produces a single

value can be used.

CUBRID 2008 R4.0 Help

246

Example

SELECT * FROM condition_tbl WHERE salary IS NULL;

 id name dept_name salary

==

 7 'Brown ' 'account' NULL

--selecting rows where salary is NOT NULL

SELECT * FROM condition_tbl WHERE salary IS NOT NULL;

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 2 'Moy ' 'sales' 3000000

 3 'Jones ' 'sales' 5400000

 4 'Smith ' 'devel' 5500000

 5 'Kim ' 'account' 3800000

 6 'Smith ' 'devel' 2400000

--simple conparison operation returns NULL when operand is NULL

SELECT * FROM condition_tbl WHERE salary = NULL;

There are no results.

ISNULL Function

Description

The ISNULL function performs a comparison to determine if the result of the expression specified as an argument is

NULL. The function returns 1 if it is NULL or 0 otherwise. You can check if a certain value is NULL. This function is

working like the ISNULL expression.

Syntax

ISNULL(expression)

• expression : An arithmetic function that has a single-value column, path expression, constant value is specified.

Example

--Using ISNULL function to select rows with NULL value

SELECT * FROM condition_tbl WHERE ISNULL(salary);

 id name dept_name salary

==

 7 'Brown ' 'account' NULL

LIKE Conditional Expression

Description

The LIKE conditional expression compares patterns between character string data, and returns TRUE if a character

string whose pattern matches the search word is found. Pattern comparison target domains are CHAR, VARCHAR and

STRING. The LIKE search cannot be performed on an NCHAR or BIT type. If NOT comes before the LIKE

keyword, the result of a NOT operation on the result of the LIKE operation is returned.

A wild card string corresponding to any character or character string can be included in the search word on the right of

the LIKE operator. % (percent) and _ (underscore) can be used. .% corresponds to any character string whose length is

0 or greater, and _ corresponds to one character. An escape character is a character that is used to search for a wild card

character itself, and can be specified by the user as another character (NULL, alphabet, or number_ whose length is 1.

See below for an example of using a character string that includes wild card or escape characters.

Syntax

expression [NOT] LIKE expression [ESCAPE char]

• expression (left) : Specify the data type column of the character string. Pattern comparison, which is case-sensitive,

starts from the first character of the column.

CUBRID SQL Guide

247

• expression (right) : Enter the search word. A character string with a length of 0 or greater is required. Wild card

characters (% or _) can be included as the pattern of the search word. The length of the character string is 0 or

greater.

• ESCAPE char : NULL, alphabet, or number is allowed for char. If the string pattern of the search word includes

"_" or "%" itself, an ESCAPE character must be specified. For example, if you want to search for the character

string "10%" after specifying backslash (\) as the ESCAPE character, you must specify "10\%" for the expression

(right). If you want to search for the character string "C:\", you can specify "C:\\" for the expression (right).

Remark

LIKE search may not work properly for data entered in multi-byte character set environment such as utf-8. This is

because byte units for string comparison operation differ depending on the character sets. You can get normal results by

adding a parameter(single_byte_compare=yes) to the cubrid.conf file that enables string comparison in a single-byte

units, and restarting the DB.

For details about character sets supported in CUBRID, see Definition and Characteristics. For details about the

single_byte_compare parameter, see Other Parameters.

Whether to detect the escape characters of the LIKE conditional expression is determined depending on the

configuration of no_backslash_escapes and require_like_escape_character in the cubrid.conf file. For more

information, see Statement/Type-Related Parameters.

Example

--selection rows where name contains lower case 's', not upper case

SELECT * FROM condition_tbl WHERE name LIKE '%s%';

 id name dept_name salary

==

 3 'Jones ' 'sales' 5400000

--selection rows where second letter is 'O' or 'o'

SELECT * FROM condition_tbl WHERE UPPER(name) LIKE '_O%';

 id name dept_name salary

==

 2 'Moy ' 'sales' 3000000

 3 'Jones ' 'sales' 5400000

--selection rows where name is 3 characters

SELECT * FROM condition_tbl WHERE name LIKE '___';

 id name dept_name salary

==

 1 'Kim ' 'devel' 4000000

 2 'Moy ' 'sales' 3000000

 5 'Kim ' 'account' 3800000

CUBRID 2008 R4.0 Help

248

Data Manipluation

SELECT

Overview

Description

The SELECT statement specifies columns that you want to retrieve from a table.

Syntax

SELECT [<qualifier>] <select_expressions>

 [{ TO | INTO } <variable_comma_list>]

 [FROM <extended_table_specification_comma_list>]

 [WHERE <search_condition>]

 [GROUP BY {col_name | expr} [ASC | DESC],...[WITH ROLLUP]]

 [HAVING <search_condition>]

 [ORDER BY {col_name | expr} [ASC | DESC],... [FOR <orderby_for_condition>]]

 [LIMIT [offset,] row_count]

 [USING INDEX { index name [,index_name,...] | NONE }]

<qualifier> ::= ALL | DISTINCT | DISTINCTROW | UNIQUE

<select_expressions> ::= * | <expression_comma_list> | *, <expression_comma_list>

<extended_table_specification_comma_list> ::=

<table specification> [{, <table specification> | <join table specification> }...]

<table_specification> ::=

 <single_table_spec> [<correlation>] [WITH (lock_hint)]|

 <metaclass_specification> [<correlation>] |

 <subquery> <correlation> |

 TABLE (<expression>) <correlation>

<correlation> ::= [AS] <identifier> [(<identifier_comma_list>)]

<single_table_spec> ::= [ONLY] <table_name> |

 ALL <table_name> [EXCEPT <table_name>]

<metaclass_specification> ::= CLASS <class_name>

<join_table_specification> ::=

[INNER | [LEFT | RIGHT [OUTER]] JOIN <table specification> ON <search condition>

lock_hint :

READ UNCOMMITTED

<orderby_for_condition> ::=

ORDERBY_NUM() { BETWEEN int AND int } |

 { { = | =< | < | > | >= } int } |

 IN (int, ...)

• qualifier : A qualifier. It can be omitted. When omitted, it is set to ALL.

• ALL : Retrieves all records of the table.

• DISTINCT : Retrieves only records with unique values without allowing duplicates. DISTINCT and

DISTINCTROW are used interchangeably.

• UNIQUE : Like DISTINCT, retrieves only records with unique values without allowing duplicates.

• select_expression :

• * : By using SELECT * statement, you can retrieve all the columns from the table specified in the FROM clause.

• expression_comma_list : expression can be a path expression, variable or table name. All general expressions

including arithmetic operations can also be used. Use a comma (,) to separate each expression in the list.

You can specify aliases by using the AS keyword for columns or expressions to be queried. Specified aliases are

used as column names in GROUP BY, HAVING, ORDER BY and FOR clauses. The position index of a column

CUBRID SQL Guide

249

is assigned based on the order in which the column was specified. The starting value is 1.

As AVG, COUNT, MAX, MIN, or SUM, an aggregate function that manipulates the retrieved data can also be

used in the expression. As the aggregate function returns only one result, you cannot specify a general column

which has not been grouped by an aggregate function in the SELECT column list.

• table_name. * : Specifying the table name and using * has the same effect as specifying all columns for the given

table.

• variable : The data retrieved by the select_expression can be saved in more than one variables.

• [:]identifier : By using the :identifier after TO (or INTO), you can save the data to be retrieved in the ':identifier'

variable.

Example 1

The following is an example of retrieving host countries of the Olympic Games without any duplicates. This example is

performed on the olympic table of demodb.

The DISTINCT or UNIQUE keyword allows only unique values in the query result set. For example, when there are

multiple olympic records whose host_nation values are 'Greece', you can use such keywords to display only one value

in the query result.

SELECT DISTINCT host_nation FROM olympic;

 host_nation

======================

 'Australia'

 'Belgium'

 'Canada'

 'Finland'

 'France'

...

Example 2

The following is an example that defines an alias to a column to be queried, and sorts the result record by using the

column alias in the ORDER BY clause. At this time, the number of the result records is limited to 5 by using the

LIMIT clause and FOR ORDERBY_NUM().

SELECT host_year as col1, host_nation as col2 FROM olympic ORDER BY col2 LIMIT 5;

 col1 col2

===================================

 2000 'Australia'

 1956 'Australia'

 1920 'Belgium'

 1976 'Canada'

 1948 'England'

SELECT CONCAT(host_nation, ', ', host_city) AS host_place FROM olympic

ORDER BY host_place FOR ORDERBY_NUM() BETWEEN 1 AND 5;

 host_place

======================

 'Australia, Melbourne'

 'Australia, Sydney'

 'Belgium, Antwerp'

 'Canada, Montreal'

 'England, London'

FROM Clause

General

Description

The FROM clause specifies the table in which data is to be retrieved in the query. If no table is referenced, the FROM

clause can be omitted. Retrieval paths are as follows:

• Single table

• Subquery

CUBRID 2008 R4.0 Help

250

• Derived table

Syntax

SELECT [<qualifier>] <select_expressions>

 [FROM <table_specification> [{, <table specification>

| <join table specification> }...]]

<select_expressions> ::= * | <expression_comma_list> | *, <expression_comma_list>

<table_specification> ::=

 <single_table_spec> [<correlation>] [WITH (lock_hint)] |

 <metaclass_specification> [<correlation>] |

 <subquery> <correlation> |

 TABLE (<expression>) <correlation>

<correlation> ::= [AS] <identifier> [(<identifier_comma_list>)]

<single_table_spec> ::= [ONLY] <table_name> |

 ALL <table_name> [EXCEPT <table_name>]

<metaclass_specification> ::= CLASS <class_name>

lock_hint ::=

READ UNCOMMITTED

• select_expressions : One or more columns or expressions to query is specified. Use * to query all columns in the

table. You can also specify an alias for a column or an expression to be queried by using the AS keyword. This

keyword can be used in GROUP BY, HAVING, ORDER BY and FOR clauses. The position index of the column

is given according to the order in which the column was specified. The starting value is 1.

• table_specification : At least one table name is specified after the FROM clause. Subqueries and derived tables can

also be used in the FROM clause. For more information on subquery derived tables, see Subquery Derived Table.

• lock_hint : You can set READ UNCOMMITTED for the table isolation level. READ UNCOMMITTED is a

level where dirty reads are allowed; see Transaction Isolation Level for more information on the CUBRID

transaction isolation level.

Example

--FROM clause can be omitted in the statement

SELECT 1+1 AS sum_value;

 sum_value

=============

 2

--db_root can be used as a dummy table

SELECT 1+1 AS sum_value FROM db_root;

 sum_value

=============

 2

SELECT CONCAT('CUBRID', '2008' , 'R3.0') AS db_version;

 db_version

======================

 'CUBRID2008R3.0'

Derived Table

In the query statement, subqueries can be used in the table specification of the FROM clause. Such subqueries create

derived tables where subquery results are treated as tables. A correlation specification must be used when a subquery

that creates a derived table is used.

Derived tables are also used to access the individual element of an attribute that has a set value. In this case, an element

of the set value is created as an instance in the derived table.

CUBRID SQL Guide

251

Subquery Derived Table

Description

Each instance in the derived table is created from the result of the subquery in the FROM clause. A derived table

created form a subquery can have any number of columns and records.

Syntax

FROM (subquery) [AS] derived_table_name [(column_name [{, column_name }_])]

• The number of column_name and the number of columns created by the subquery must be identical.

Example 1

The following is an example of retrieving the sum of the number of gold medals won by Korea and that of silver medals

won by Japan. This example shows a way of getting an intermediate result of the subquery and processing it as a single

result, by using a derived table. The query returns the sum of the gold values whose nation_code is 'KOR' and the

silver values whose nation_code column is 'JPN'.

SELECT SUM(n) FROM (SELECT gold FROM participant WHERE nation_code='KOR'

UNION ALL SELECT silver FROM participant WHERE nation_code='JPN') AS t(n);

 sum(n)

========

 82

Example 2

Subquery derived tables can be useful when combined with outer queries. For example, a derived table can be used in

the FROM clause of the subquery used in the WHERE clause.

The following is a query example that shows nation_code, host_year and gold fields of the instances whose number of

gold medals is greater than average sum of the number of silver and bronze medals when one or more sliver or bronze

medals were won. In this example, the query (the outer SELECT clause) and the subquery (the inner SELECT clause)

share the nation_code attribute.

SELECT nation_code, host_year, gold

FROM participant p

WHERE gold > (SELECT AVG(s)

 FROM (SELECT silver + bronze

 FROM participant

 WHERE nation_code = p.nation_code

 AND silver > 0

 AND bronze > 0

) AS t(s));

 nation_code host_year gold

===

 'JPN' 2004 16

 'CHN' 2004 32

 'DEN' 1996 4

 'ESP' 1992 13

WHERE Clause

Description

In a query, a column can be processed based on conditions. The WHERE clause specifies a search condition for data.

Syntax

WHERE search_condition

search_condition :

• comparison_predicate

• between_predicate

• exists_predicate

• in_predicate

CUBRID 2008 R4.0 Help

252

• null_predicate

• like_predicate

• quantified predicate

• set_predicate

The WHERE clause specifies a condition that determines the data to be retrieved by search_condition or a query. Only

data for which the condition is true is retrieved for the query results. (NULL value is not retrieved for the query results

because it is evaluated as unknown value.)

• search_condition : It is described in detail in the following sections.

• Basic Conditional Expression

• BETWEEN Conditional Expression

• EXISTS Conditional Expression

• IN Conditional Expression

• IS NULL Conditional Expression

• LIKE Conditional Expression

• ANY/SOME/aLL Conditional Expressions

The logical operator AND or OR can be used for multiple conditions. If AND is specified, all conditions must be true.

If OR is specified, only one needs to be true. If the keyword NOT is preceded by a condition, the meaning of the

condition is reserved. The following table shows the order in which logical operators are evaluated.

Priority Operator Function

1 () Logical expressions in parentheses are evaluated first.

2 NOT Negates the result of the logical expression.

3 AND All conditions in the logical expression must be true.

4 OR One of the conditions in the logical expression must be

true.

GROUP BY ... HAVING Clause

Description

The GROUP BY clause is used to group the result retrieved by the SELECT statement based on a specific column.

This clause is used to sort by group or to get the aggregation by group using the aggregation function. Herein, a group

consists of records that have the same value for the column specified in the GROUP BY clause.

You can also set a condition for group selection by including the HAVING clause after the GROUP BY clause. That is,

only groups satisfying the condition specified by the HAVING clause are queried out of all groups that are grouped by

the GROUP BY clause.

By SQL standard, you cannot specify a column (hidden column) not defined in the GROUP BY clause to the SELECT

column list. However, by using extended CUBRID grammars, you can specify the hidden column to the SELECT

column list. If you do not use the extended CUBRID grammars, the only_full_group_by parameter should be set to yes.

For more information, see Statement/Type-Related Parameters.

Syntax

SELECT ...

GROUP BY { col_name | expr | position } [ASC | DESC],... [WITH ROLLUP][ORDER BY NULL]

 [HAVING < search_condition>]

• col_name | expr | position : Specify one or more column names, expressions, aliases or column location. Items are

separated by commas. Columns are sorted on this basis.

• [ASC| DESC] : Specify the ASC or DESC sorting option after the columns specified in the GROUP BY clause.

If the sorting option is not specified, the default value is ASC.

• search_condition : Specify the search condition in the HAVING clause. In the HAVING clause you can refer to

the hidden columns not specified in the GROUP BY clause as well as to columns and aliases specified in the

GROUP BY clause and columns used in aggregate functions.

CUBRID SQL Guide

253

• WITH ROLLUP : If you specify the WITH ROLLUP modifier in the GROUP BY clause, the aggregate

information of the result value of each GROUPed BY column is displayed for each group, and the total of all result

rows is displayed at the last row.

• ORDER BY NULL : You can avoid the sorting overhead caused by GROUP BY by specifying the ORDER BY

NULL modifier in the GROUP BY clause.

Example

--creating a new table

CREATE TABLE sales_tbl

(dept_no int, name VARCHAR(20) PRIMARY KEY, sales_month int, sales_amount int DEFAULT 100);

INSERT INTO sales_tbl VALUES

(201, 'George' , 1, 450),

(201, 'Laura' , 2, 500),

(301, 'Max' , 4, 300),

(501, 'Stephan', 4, DEFAULT),

(501, 'Chang' , 5, 150),

(501, 'Sue' , 6, 150),

(NULL, 'Yoka' ,4, NULL);

--selecting rows grouped by dept_no with ORDER BY NULL modifier

SELECT dept_no, avg(sales_amount) FROM sales_tbl

GROUP BY dept_no ORDER BY NULL;

 dept_no avg(sales_amount)

================================

 NULL NULL

 201 475

 301 300

 501 133

--conditions in WHERE clause operate first before GROUP BY

SELECT dept_no, avg(sales_amount) FROM sales_tbl

WHERE sales_amount > 100 GROUP BY dept_no;

 dept_no avg(sales_amount)

================================

 201 475

 301 300

 501 150

--conditions in HAVING clause operate last after GROUP BY

SELECT dept_no, avg(sales_amount) FROM sales_tbl

WHERE sales_amount > 100 GROUP BY dept_no HAVING avg(sales_amount) > 200;

 dept_no avg(sales_amount)

================================

 201 475

 301 300

--selecting and sorting rows with using column alias

SELECT dept_no AS a1, avg(sales_amount) AS a2 FROM sales_tbl

WHERE sales_amount > 200 GROUP BY a1 HAVING a2 > 200 ORDER BY a2;

 a1 a2

==========================

 301 300

 201 475

--selecting rows grouped by dept_no with WITH ROLLUP modifier

SELECT dept_no AS a1, name AS a2, avg(sales_amount) AS a3 FROM sales_tbl

WHERE sales_amount > 100 GROUP BY a1,a2 WITH ROLLUP;

 a1 a2 a3

==

 201 'George' 450

 201 'Laura' 500

 201 NULL 475

 301 'Max' 300

 301 NULL 300

 501 'Chang' 150

 501 'Sue' 150

 501 NULL 150

 NULL NULL 310

CUBRID 2008 R4.0 Help

254

ORDER BY Clause

Description

The ORDER BY clause sorts the query result set in ascending or descending order. If you do not specify a sorting

option such as ASC or DESC, the result set in ascending order by default. If you do not specify the ORDER BY clause,

the order of records to be queried may vary depending on query.

Syntax

SELECT ...

ORDER BY {col_name | expr | position} [ASC | DESC],...]

 [FOR <orderby_for_condition>]]

<orderby_for_condition> ::=

ORDERBY_NUM() { BETWEEN int AND int } |

 { { = | =< | < | > | >= } int } |

 IN (int, ...)

• col_name | expr | position : Specify an column name, expression, alias, or column location. One or more column

names, expressions or aliases can be specified. Items are separated by commas. A column that is not specified in

the list of SELECT columns can be specified.

• [ASC| DESC] : ASC means sorting in ascending order, and DESC is sorting in descending order. If the sorting

option is not specified, the default value is ASC.

Example

--selecting rows sorted by ORDER BY clause

SELECT * FROM sales_tbl ORDER BY dept_no DESC, name ASC;

 dept_no name sales_month sales_amount

==

 501 'Chang' 5 150

 501 'Stephan' 4 100

 501 'Sue' 6 150

 301 'Max' 4 300

 201 'George' 1 450

 201 'Laura' 2 500

 NULL 'Yoka' 4 NULL

--sorting reversely and limiting result rows by LIMIT clause

SELECT dept_no AS a1, avg(sales_amount) AS a2 FROM sales_tbl

GROUP BY a1 ORDER BY a2 DESC LIMIT 0,3;

 a1 a2

==========================

 201 475

 301 300

 501 133

--sorting reversely and limiting result rows by FOR clause

SELECT dept_no AS a1, avg(sales_amount) AS a2 FROM sales_tbl

GROUP BY a1 ORDER BY a2 DESC FOR ORDERBY_NUM() BETWEEN 1 AND 3;

 a1 a2

==========================

 201 475

 301 300

 501 133

LIMIT Clause

Description

The LIMIT clause can be used to limit the number of records displayed. It takes one or two arguments. You can specify

a very big integer for row_count to output to the last row, starting from a specific row.

The LIMIT clause can be used as a prepared statement. In this case, the bind parameter (?) can be used instead of an

argument.

CUBRID SQL Guide

255

INST_NUM() and ROWNUM cannot be included in the WHERE clause in a query that contains the LIMIT clause.

Also, LIMIT cannot be used together with FOR ORDERBY_NUM() or HAVING GROUPBY_NUM().

Syntax

LIMIT [offset,] row_count

• offset : Specify the offset value of the starting row to be output. The offset value of the starting row of the result set

is 0; it can be omitted and the default value is 0.

• row_count : Specify the number of records to be output. You can specify an integer greater than 0.

Example

--LIMIT clause can be used in prepared statement

PREPARE STMT FROM 'SELECT * FROM sales tbl LIMIT ?, ?';

EXECUTE STMT USING 0, 10;

--selecting rows with LIMIT clause

SELECT * FROM sales_tbl WHERE sales_amount > 100 LIMIT 5;

 dept_no name sales_month sales_amount

==

 201 'George' 1 450

 201 'Laura' 2 500

 301 'Max' 4 300

 501 'Chang' 5 150

 501 'Sue' 6 150

--LIMIT clause can be used in subquery

SELECT t1.* FROM

(SELECT * FROM sales_tbl AS t2 WHERE sales_amount > 100 LIMIT 5) AS t1 LIMIT 1,3;

 dept_no name sales_month sales_amount

==

 201 'Laura' 2 500

 301 'Max' 4 300

 501 'Chang' 5 150

Outer Join

Description

A join is a query that combines the rows of two or more tables or virtual tables (views). In a join query, a condition that

compares the columns that are common in two or more tables is called a join condition. Rows are retrieved from each

joined table, and are combined only when they satisfy the specified join condition.

A join query using an equality operator (=) is called an equi-join, and one without any join condition is called a

cartesian product. Meanwhile, joining a single table is called a self join. In a self join, table ALIAS is used to

distinguish columns, because the same table is used twice in the FROM clause.

A join that outputs only rows that satisfy the join condition from a joined table is called an inner or a simple join,

whereas a join that outputs both rows that satisfy and do not satisfy the join condition from a joined table is called an

outer join. An outer join is divided into a left outer join which outputs all rowss of the left table as the result, a right

outer join which outputs all rowss of the right table as the result and a full outer join which outputs all rows of both

tables. If there is no column value that corresponds to a table on one side in the result of an outer join query, all rowss

are returned as NULL.

Syntax

FROM table_specification [{, table_specification | join_table_specification}...]

table_specification :

table_specification [correlation]

CLASS table_name [correlation]

subquery correlation

TABLE (expression) correlation

join_table_specification :

CUBRID 2008 R4.0 Help

256

[INNER | {LEFT | RIGHT} [OUTER]] JOIN table_specification

join_condition

join_condition :

ON search_condition

• oin_table_specification

• { LEFT | RIGHT } [OUTER] JOIN : LEFT is used for a left outer join query, and RIGHT is for a right outer

join query.

CUBRID does not support full outer joins. Path expressions that include subqueries and sub-columns cannot be used in

the join conditions of an outer join.

Join conditions of an outer join are specified in a different way from those of an inner join. In an inner join, join

conditions are expressed in the WHERE clause; in an outer join, they appear after the ON keyword in the FROM

clause. Other retrieval conditions can be used in the WHERE or ON clause, but the retrieval result can differ depending

on whether the condition is used in the WHERE or ON clause.

The table execution order is fixed according to the order specified in the FROM clause. Therefore, when using an outer

join, you should create a query statement in consideration of the table order. It is recommended to use standard

statements using { LEFT | RIGHT } [OUTER] JOIN, because using an Oracle-style join query statements by

specifying an outer join operator (+) in the WHERE clause, even if possible, might lead the execution result or plan in

an unwanted direction.

Example 1

The following is an example of retrieving the years and host countries of the Olympic Games since 1950 where a world

record has been set. The following query retrieves instances whose values of the host_year column in the history table

are greater than 1950.

SELECT DISTINCT h.host_year, o.host_nation FROM history h, olympic o

WHERE h.host_year=o.host_year AND o.host_year>1950;

 host_year host_nation

===================================

 1968 'Mexico'

 1980 'U.S.S.R.'

 1984 'United States of America'

 1988 'Korea'

 1992 'Spain'

 1996 'United States of America'

 2000 'Australia'

 2004 'Greece'

Example 2

The following is an example of retrieving the years and host countries of the Olympic Games since 1950 where a world

record has been set, but including the Olympic Games where any world records haven't been set in the result. This

example can be expressed in the following right outer join query. In this example, all instances whose values of the

host_year column in the history table are not greater than 1950 are also retrieved. All instances of host_nation are

included because this is a right outer join. host_year that does not have a value is represented as NULL.

SELECT DISTINCT h.host_year, o.host_nation

FROM history h RIGHT OUTER JOIN olympic o ON h.host_year=o.host_year WHERE

o.host_year>1950;

 host_year host_nation

===================================

 NULL 'Australia'

 NULL 'Canada'

 NULL 'Finland'

 NULL 'Germany'

 NULL 'Italy'

 NULL 'Japan'

 1968 'Mexico'

 1980 'U.S.S.R.'

 1984 'United States of America'

 1988 'Korea'

 1992 'Spain'

CUBRID SQL Guide

257

 1996 'United States of America'

 2000 'Australia'

 2004 'Greece'

Example 3

A right outer join query can be converted to a left outer join query by switching the position of two tables in the FROM

clause. The right outer join query in the previous example can be expressed as a left outer join query as follows:

SELECT DISTINCT h.host_year, o.host_nation

FROM olympic o LEFT OUTER JOIN history h ON h.host_year=o.host_year WHERE o.host_year>1950;

 host_year host_nation

===================================

 NULL 'Australia'

 NULL 'Canada'

 NULL 'Finland'

 NULL 'Germany'

 NULL 'Italy'

 NULL 'Japan'

 1968 'Mexico'

 1980 'U.S.S.R.'

 1984 'United States of America'

 1988 'Korea'

 1992 'Spain'

 1996 'United States of America'

 2000 'Australia'

 2004 'Greece'

14 rows selected.

In this example, h.host_year=o.host_year is an outer join condition, and o.host_year > 1950 is a search condition. If

the search condition is used not in the WHERE clause but in the ON clause, the meaning and the result will be different.

The following query also includes instances whose values of o.host_year are not greater than 1950.

SELECT DISTINCT h.host_year, o.host_nation

FROM olympic o LEFT OUTER JOIN history h ON h.host_year=o.host_year AND

o.host_year>1950;

=== <Result of SELECT Command in Line 3> ===

 host_year host_nation

===================================

 NULL 'Australia'

 NULL 'Belgium'

 NULL 'Canada'

...

 1996 'United States of America'

 2000 'Australia'

 2004 'Greece'

Example 4

Outer joins can also be represented by using (+) in the WHERE clause. The above example is a query that has the same

meaning as the example using the LEFT OUTER JOIN. The (+) syntax is not ISO/aNSI standard, so it can lead to

ambiguous situations. It is recommended to use the standard syntax LEFT OUTER JOIN (or RIGHT OUTER JOIN)

if possible.

SELECT DISTINCT h.host_year, o.host_nation FROM history h, olympic o

WHERE o.host_year=h.host_year(+) AND o.host_year>1950;

 host_year host_nation

===================================

 NULL 'Australia'

 NULL 'Canada'

 NULL 'Finland'

 NULL 'Germany'

 NULL 'Italy'

 NULL 'Japan'

 1968 'Mexico'

 1980 'U.S.S.R.'

 1984 'United States of America'

 1988 'Korea'

 1992 'Spain'

 1996 'United States of America'

CUBRID 2008 R4.0 Help

258

 2000 'Australia'

 2004 'Greece'

Subquery

A subquery can be used wherever expressions such as SELECT or WHERE clause can be used. If the subquery is

represented as an expression, it must return a single column; otherwise it can return multiple rows. Subqueries can be

divided into single-row subquery and multiple-row subquery depending on how they are used.

Single-Row Subquery

Description

A single-row subquery outputs an row that has a single column. If no row is returned by the subquery, the subquery

expression has a NULL value. If the subquery is supposed to return more than one rows, an error occurs.

Example

The following is an example of retrieving the history table as well as the host country where a new world record has

been set. This example shows a single-row subquery used as an expression. In this example, the subquery returns

host_nation values for the rows whose values of the host_year column in the olympic table are the same as those of

the host_year column in the history table. If there are no values that meet the condition, the result of the subquery is

NULL.

SELECT h.host_year, (SELECT host_nation FROM olympic o WHERE o.host_year=h.host_year),

h.event_code, h.score, h.unit from history h;

 host_year (SELECT host_nation FROM olympic o WHERE

o.host_year=h.host_year) event_code score unit

==

====================

 2004 'Greece' 20283

'07:53.0' 'time'

 2004 'Greece' 20283

'07:53.0' 'time'

 2004 'Greece' 20281

'03:57.0' 'time'

 2004 'Greece' 20281

'03:57.0' 'time'

 2004 'Greece' 20281

'03:57.0' 'time'

 2004 'Greece' 20281

'03:57.0' 'time'

 2004 'Greece' 20326

'210' 'kg'

 2000 'Australia' 20328

'225' 'kg'

 2004 'Greece' 20331

'237.5' 'kg'

...

Multiple-Row Subquery

Description

The multiple-row subquery returns one or more rows that contain the specified column. The result of the mutiple-row

subquery can be used to create a set, a multiset or a list/sequence set using an appropriate keyword (SET, MULTISET,

LIST or SEQUENCE).

Example

The following is an example of retrieving countries and their capital cities from the nation table, and returning lists of

host countries and host cities of the Olympic Games. In this example, the subquery result is used to create a list from the

values of the host_city column in the olympic table. This query returns name and capital value for nation table, as

CUBRID SQL Guide

259

well as a set that contains host_city values of the olympic table with host_nation value. If the name value is an empty

set in the query result, it is excluded. If there is no olympic table that has the same value as the name, an empty set is

returned.

SELECT name, capital, list(SELECT host_city FROM olympic WHERE host_nation = name) FROM

nation;

 name capital sequence((SELECT host_city FROM olympic

WHERE host_nation=name))

==

 'Somalia' 'Mogadishu' {}

 'Sri Lanka' 'Sri Jayewardenepura Kotte' {}

 'Sao Tome & Principe' 'Sao Tome' {}

...

 'U.S.S.R.' 'Moscow' {'Moscow'}

 'Uruguay' 'Montevideo' {}

 'United States of America' 'Washington.D.C' {'Atlanta ', 'St. Louis', 'Los

Angeles', 'Los Angeles'}

 'Uzbekistan' 'Tashkent' {}

 'Vanuatu' 'Port Vila' {}

Such multiple-row subquery expressions can be used anywhere a set value expression is allowed. However, they cannot

be used where a set constant value is required as in the DEFAULT specification in the class attribute definition.

If the ORDER BY clause is not used explicitly in the subquery, the order of the multiple-row query result is not set.

Therefore, the order of the multiple-row subquery result that creates a sequence set must be specified by using the

ORDER BY clause.

Hierarchical Query

START WITH ... CONNECT BY Clause

Description

This clause is used to obtain a set of data organized in a hierarchy. The START WITH ... CONNECT BY clause is

used in combination with the SELECT clause in the following form.

Syntax

SELECT column_list

 FROM table_joins | tables

 [WHERE join_conditions and/or filtering_conditions]

 [START WITH condition]

 CONNECT BY [NOCYCLE] condition

START WITH Clause

The START WITH clause will filter the rows from which the hierarchy will start. The rows that satisfy the START

WITH condition will be the root nodes of the hierarchy. If START WITH is omitted, then all the rows will be

considered as root nodes.

Note If START WITH clause is omitted or the rows that satisfy the START WITH condition does not exist, all of

rows in the table are considered as root nodes; which means that hierarchy relationship of sub rows which belong each

root is searched. Therefore, some of results can be duplicate.

CONNECT BY [NOCYCLE] or PRIOR Operator

• PRIOR : The CONNECT BY condition is tested for a pair of rows. If it evaluates to true, the two rows satisfy the

parent-child relationship of the hierarchy. We need to specify the columns that are used from the parent row and the

columns that are used from the child row. We can use the PRIOR operator when applied to a column, which will

refer to the value of the parent row for that column. If PRIOR is not used for a column, the value in the child row is

used.

• NOCYCLE : In some cases, the resulting rows of the table joins may contain cycles, depending on the

CONNECT BY condition. Because cycles cause an infinite loop in the result tree construction, CUBRID detects

them and either returns an error doesn't expand the branches beyond the point where a cycle is found (if the

CUBRID 2008 R4.0 Help

260

NOCYCLE keyword is specified).

This keyword may be specified after the CONNECT BY keywords. It makes CUBRID run a statement even if the

processed data contains cycles.

If a CONNECT BY statement causes a cycle at runtime and the NOCYCLE keyword is not specified, CUBRID

will return an error and the statement will be canceled. When specifying the NOCYCLE keyword, if CUBRID

detects a cycle while processing a hierarchy node, it will set the CONNECT_BY_ISCYCLE attribute for that

node to the value of 1 and it will stop further expansion of that branch.

Example

For the following samples, you will need the following structures:

Table tree

ID MgrID Name BirthYear

1 NULL KIM 1963

2 NULL Moy 1958

3 1 Jonas 1976

4 1 Simth 1974

5 2 Verma 1973

6 2 Foster 1972

7 6 Brown 1981

Target tree_cycle

ID MgrID Name

1 NULL Kim

2 11 Moy

3 1 Jonas

4 1 Smith

5 3 Verma

6 3 Foster

7 4 Brown

8 4 Lin

9 2 Edwin

10 9 Audrey

11 10 Stone

-- Creating tree table and then inserting data

CREATE TABLE tree(ID INT, MgrID INT, Name VARCHAR(32), BirthYear INT);

INSERT INTO tree VALUES (1,NULL,'Kim', 1963);

INSERT INTO tree VALUES (2,NULL,'Moy', 1958);

INSERT INTO tree VALUES (3,1,'Jonas', 1976);

INSERT INTO tree VALUES (4,1,'Smith', 1974);

INSERT INTO tree VALUES (5,2,'Verma', 1973);

INSERT INTO tree VALUES (6,2,'Foster', 1972);

INSERT INTO tree VALUES (7,6,'Brown', 1981);

-- Creating tree_cycle table and then inserting data

CREATE TABLE tree_cycle(ID INT, MgrID INT, Name VARCHAR(32));

INSERT INTO tree_cycle VALUES (1,NULL,'Kim');

INSERT INTO tree_cycle VALUES (2,11,'Moy');

INSERT INTO tree_cycle VALUES (3,1,'Jonas');

INSERT INTO tree_cycle VALUES (4,1,'Smith');

INSERT INTO tree_cycle VALUES (5,3,'Verma');

CUBRID SQL Guide

261

INSERT INTO tree_cycle VALUES (6,3,'Foster');

INSERT INTO tree_cycle VALUES (7,4,'Brown');

INSERT INTO tree_cycle VALUES (8,4,'Lin');

INSERT INTO tree_cycle VALUES (9,2,'Edwin');

INSERT INTO tree_cycle VALUES (10,9,'Audrey');

INSERT INTO tree_cycle VALUES (11,10,'Stone');

-- Executing a hierarchy query with CONNECT BY clause

SELECT id, mgrid, name

 FROM tree

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name

======================

1 null Kim

2 null Moy

3 1 Jonas

3 1 Jonas

4 1 Smith

4 1 Smith

5 2 Verma

5 2 Verma

6 2 Foster

6 2 Foster

7 6 Brown

7 6 Brown

7 6 Brown

-- Executing a hierarchy query with START WITH clause

SELECT id, mgrid, name

 FROM tree

 START WITH mgrid IS NULL

 CONNECT BY prior id=mgrid

 ORDER BY id;

id mgrid name

=============================

1 null Kim

2 null Moy

3 1 Jonas

4 1 Smith

5 2 Verma

6 2 Foster

7 6 Brown

Hierarchical Query for Table Join

Join Conditions

The table joins are evaluated first using the join conditions, if any. The conditions found in the WHERE clause are

classified as join conditions or filtering conditions. All the conditions in the FROM clause are classified as join

conditions. Only the join conditions are evaluated; the filtering conditions are kept for later evaluation. We

recommended placing all join conditions in the FROM clause only so that conditions that are intended for joins are not

mistakenly classified as filtering conditions.

Query Results

The resulting rows of the table joins are filtered according to the START WITH condition to obtain the root nodes for

the hierarchy. If no START WITH condition is specified, then all the rows resulting from the table joins will be

considered as root nodes.

After the root nodes are obtained, CUBRID will select the child rows for the root nodes. These are all nodes from the

table joins that respect the CONNECT BY condition. This step will be repeated for the child nodes to determine their

child nodes and so on until no more child nodes can be added.

In addition, CUBRID evaluates the CONNECT BY clause first and all the rows of the resulting hierarchy tress by using

the filtering condition in the WHERE clause.

CUBRID 2008 R4.0 Help

262

Example

The example illustrates how joins can be used in CONNECT BY queries. The joins are evaluated before the

CONNECT BY condition and the join result will be the starting table on which the two clauses (START WITH clause

and CONNECT BY clause).

-- Creating tree2 table and then inserting data

CREATE TABLE tree2(id int, treeid int, job varchar(32));

INSERT INTO tree2 VALUES(1,1,'Partner');

INSERT INTO tree2 VALUES(2,2,'Partner');

INSERT INTO tree2 VALUES(3,3,'Developer');

INSERT INTO tree2 VALUES(4,4,'Developer');

INSERT INTO tree2 VALUES(5,5,'Sales Exec.');

INSERT INTO tree2 VALUES(6,6,'Sales Exec.');

INSERT INTO tree2 VALUES(7,7,'Assistant');

INSERT INTO tree2 VALUES(8,null,'Secretary');

-- Executing a hierarchical query onto table joins

SELECT t.id,t.name,t2.job,level

 FROM tree t

 inner join tree2 t2 on t.id=t2.treeid

 START WITH t.mgrid is null

 CONNECT BY prior t.id=t.mgrid

 ORDER BY t.id;

id name job level

==

1 Kim Partner 1

2 Moy Partner 1

3 Jonas Developer 2

4 Smith Developer 2

5 Verma Sales Exec. 2

6 Foster Sales Exec. 2

7 Brown Assistant 3

Pseudo-Columns Available When Using the CONNECT BY Clause

LEVEL

This pseudo-column represents the level of the node in the hierarchy. Root nodes are considered to be at level 1, their

children level 2 and so on.

The LEVEL pseudo-column may be used in the SELECT list, WHERE clause, ORDER BY clause, GROUP BY ...

HAVING clauses and also in aggregate functions.

The following is an example of executing a hierarchical query with LEVEL.

-- Executing a hierarchical query with LEVEL

SELECT id, mgrid, name, LEVEL

 FROM tree

 WHERE LEVEL=2

 START WITH mgrid IS NULL

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name level

===

3 1 Jonas 2

4 1 Smith 2

5 2 Verma 2

6 2 Foster 2

CONNECT_BY_ISLEAF

This pseudo-column indicates whether a hierarchical node is a leaf node or not. If the value for a row is 1, then the

associated node is a leaf node.; otherwise, it will have the value 0 indicating that the node has children.

In this example, the CONNECT_BY_ISLEAF shows that the rows with the IDs 3, 4, 5 and 7 have no children.

-- Executing a hierarchical query with CONNECT_BY_ISLEAF

CUBRID SQL Guide

263

SELECT id, mgrid, name, CONNECT_BY_ISLEAF

 FROM tree

 START WITH mgrid IS NULL

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name connect_by_isleaf

===

1 null Kim 0

2 null Moy 0

3 1 Jonas 1

4 1 Smith 1

5 2 Verma 1

6 2 Foster 0

7 6 Brown 1

CONNECT_BY_ISCYCLE

This pseudo-column indicates that a cycle was detected while processing the node, meaning that a child was also found

to be an ancestor. A value of 1 for a row means a cycle was detected; the pseudo-column's value is 0, otherwise.

The CONNECT_BY_ISCYCLE pseudo-column may be used in the SELECT list, WHERE clause, ORDER BY

clause, GROUP BY and HAVING clauses and also in aggregate functions (when the GROUP BY class exists in the

statement).

Note This pseudo-column is available only when the NOCYCLE keyword is used in the statement.

The following is an example of executing a hierarchical query with CONNECT_BY_ISCYCE operator.

-- --Executing a hierarchical query with CONNECT_BY_ISCYCLE

SELECT id, mgrid, name, CONNECT_BY_ISCYCLE

 FROM tree_cycle

 START WITH name in ('Kim', 'Moy')

 CONNECT BY NOCYCLE PRIOR id=mgrid

 ORDER BY id;

id mgrid name connect_by_iscycle

==

1 null Kim 0

2 11 Moy 0

3 1 Jonas 0

4 1 Smith 0

5 3 Verma 0

6 3 Foster 0

7 4 Brown 0

8 4 Lin 0

9 2 Edwin 0

10 9 Audrey 0

11 10 Stone 1

Operators Available When Using the CONNECT BY Clause

CONNECT_BY_ROOT Operator

This operator can be applied to columns and it returns the parent row or root row values for that column. This operator

may be used in the SELECT list, Where clause and ORDER BY clause. When using the CONNECT BY clause some

column operators become available.

The following is an example of executing a hierarchical query with CONNECT_BY_ROOT operator.

-- Executing a hierarchical query with CONNECT_BY_ROOT operator

SELECT id, mgrid, name, CONNECT_BY_ROOT id

 FROM tree

 START WITH mgrid IS NULL

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name connect_by_root id

==

CUBRID 2008 R4.0 Help

264

1 null Kim 1

2 null Moy 2

3 1 Jonas 1

4 1 Smith 1

5 2 Verma 2

6 2 Foster 2

7 6 Brown 2

PRIOR Operator

This operator may be applied to a column; it will return the parent node value for that column. For a root node, the

operator will return the NULL value if it is applied to a column. This operator may be used in the SELECT list,

WHERE clause, ORDER BY clause and also in the CONNECT BY clause.

The following is an example of executing a hierarchical query with PRIOR operator.

-- Executing a hierarchical query with PRIOR operator

SELECT id, mgrid, name, PRIOR id as "prior_id"

 FROM tree

 START WITH mgrid IS NULL

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name prior_id

==

1 null Kim null

2 null Moy null

3 1 Jonas 1

4 1 Smith 1

5 2 Verma 2

6 2 Foster 2

7 6 Brown 6

Functions Available When Using the CONNECT BY Clause

Description

The SYS_CONNECT_BY_PATH function returns the branch of the node in the hierarchy. It returns a string that

represents the concatenation of all the values obtained by evaluating the scalar expression for all the parents of a row,

including that row, separated by the separator character, ordered ascending by level.

This function may be used in the SELECT list, WHERE clause and ORDER BY clause.

Syntax

SYS_CONNECT_BY_PATH (column_name, separator_char)

Example

The following is an example of executing a hierarchical query with SYS_CONNECT_BY_PATH function.

--Executing a hierarchical query with SYS_CONNECT_BY_PATH function

SELECT id, mgrid, name, SYS_CONNECT_BY_PATH(name,'/') as [hierarchy]

 FROM tree

 START WITH mgrid IS NULL

 CONNECT BY PRIOR id=mgrid

 ORDER BY id;

id mgrid name hierarchy

===

1 null Kim /Kim

2 null Moy /Moy

3 1 Jonas /Kim/Jonas

4 1 Smith /Kim/Smith

5 2 Verma /Moy/Verma

6 2 Foster /Moy/Foster

7 6 Brown /Moy/Foster/Brown

CUBRID SQL Guide

265

Ordering Data with the Hierarchical Query

Description

The ORDER SIBLINGS BY clause will cause the ordering of the rows while preserving the hierarchy ordering so that

the child nodes with the same parent will be stored according to the column list.

Syntax

ORDER SIBLINGS BY col_1 [ASC|DESC] [, col_2 [ASC|DESC] […[, col_n [ASC|DESC]]…]]

Example 1

The following example shows how to output information about seniors and subordinates in a company in the order of

birth year.

The result with hierarchical query shows parent and child nodes in a row according to the column list specified in

ORDER SIBLINGS BY statement by default. Sibling nodes that share the same parent node have outputted in a

specified order.

-- Outputting a parent node and its child nodes, which sibling nodes that share the same

parent are sorted in the order of birth year.

SELECT id, mgrid, name, birthyear, level

FROM tree

START WITH mgrid IS NULL

CONNECT BY PRIOR id=mgrid

ORDER SIBLINGS BY birthyear;

id mgrid name birthyear level

==

2 NULL 'Moy' 1958 1

6 2 'Foster' 1972 2

7 6 'Brown' 1981 3

5 2 'Verma' 1973 2

1 NULL 'Kim' 1963 1

4 1 'Smith' 1974 2

3 1 'Jonas' 1976 2

Example 2

The following example shows how to output information about seniors and subordinates in a company in the order of

joining. For the same level, the employee ID numbers are assigned in the order of joining. id indicates employee ID

numbers (parent and child nodes) and mgrid indicates the employee ID numbers of their seniors.

-- Outputting siblings in a row

SELECT id, mgrid, name, LEVEL

FROM tree

START WITH mgrid IS NULL

CONNECT BY PRIOR id=mgrid

ORDER SIBLINGS BY id;

id mgrid name level

===

1 null Kim 1

3 1 Jonas 2

4 1 Smith 2

2 null Moy 1

5 2 Verma 2

6 2 Foster 2

7 6 Brown 3

Scenario of Using Hierarchical Query

First of all let's start by giving a rough SQL translation of the SELECT statement with a CONNECT BY clause. For

this we can consider that we have a table that contains a recurrent reference. We can consider that table to have two

columns named ID and ParentID; ID is the primary key for the table and ParentID is a foreign-key to the same table.

Naturally, the root nodes will have a ParentID value of NULL.

CUBRID 2008 R4.0 Help

266

Now let us consider the fact that we want to get the full rows and a column with the level of the row in the hierarchy

tree. For this we can write something similar to by querying with UNION ALL.

SELECT L1.ID, L1.ParentID, ..., 1 AS [Level]

 FROM tree_table AS L1

 WHERE L1.ParentID IS NULL

UNION ALL

SELECT L2.ID, L2.ParentID, ..., 2 AS [Level]

 FROM tree_table AS L1

 INNER JOIN tree_table AS L2 ON L1.ID=L2.ParentID

 WHERE L1.ParentID IS NULL

UNION ALL

SELECT L3.ID, L3.ParentID, ..., 3 AS [Level]

 FROM tree_table AS L1

 INNER JOIN tree_table AS L2 ON L1.ID=L2.ParentID

 INNER JOIN tree_table AS L3 ON L2.ID=L3.ParentID

 WHERE L1.ParentID IS NULL

UNION ALL ...

The problem with our approach is that we do not know how many levels we have. This could be rewritten in a stored

procedure with a cycle until no new rows are retrieved, but we will have to check the tree for cycles at every step. Using

a SELECT statement with a CONNECT BY clause we can rewrite this as follows.

This query will return the full hierarchy with the level of each row in the hierarchy.

SELECT ID, ParentID, ..., Level

 FROM tree_table

 START WITH ParentID IS NULL

 CONNECT BY ParentID=PRIOR ID

If we want to avoid the potential error caused by cycles we can write it as follows:

SELECT ID, ParentID, ..., Level

 FROM tree_table

 START WITH ParentID IS NULL

 CONNECT BY NOCYCLE ParentID=PRIOR ID

Performance of Hierarchical Query

Although this form is shorter and clearer, please keep in mind that it has its limitations regarding speed. If the result of

the query contains all the rows of the table, the CONNECT BY form might be slower as it has to do additional

processing (such as cycle detection, pseudo-column bookkeeping and others). However, if the result of the query only

contains a part of the table rows, the CONNECT BY form might be faster.

For example, if we have a table with 20,000 records and we want to retrieve a sub-tree of roughly 1,000 records, a

SELECT statement with a START WITH ... CONNECT BY clause will run up to 30% faster than an equivalent

UNION ALL with SELECT statements.

INSERT

Overview

Description

You can insert a new record into a table in a database by using the INSERT statement. CUBRID supports

INSERT...VALUES, INSERT...SET and INSERT...SELECT statements.

INSERT...VALUES and INSERT...SET statements are used to insert a new record based on the value that is explicitly

specified while the INSERT...SELECT statement is used to insert query result records obtained from different tables.

Use the INSERT VALUES or INSERT...SELECT statement to insert multiple rows by using the single INSERT

statement.

Syntax

<INSERT … VALUES statement>

INSERT [INTO] table_name [(column_name, ...)]

 {VALUES | VALUE}({expr | DEFAULT}, ...)[,({expr | DEFAULT}, ...),...]

CUBRID SQL Guide

267

 [ON DUPLICATE KEY UPDATE column_name = expr, ...]

INSERT [INTO] table_name DEFAULT [VALUES]

INSERT [INTO] table_name VALUES()

<INSERT … SET statement>

INSERT [INTO] table_name

 SET column_name = {expr | DEFAULT}[, column_name = {expr | DEFAULT},...]

 [ON DUPLICATE KEY UPDATE column_name = expr, ...]

<INSERT … SELECT statement>

INSERT [INTO] table_name [(column_name, ...)]

 SELECT...

 [ON DUPLICATE KEY UPDATE column_name = expr, ...]

• table_name : Specify the name of the target table into which you want to insert a new record.

• column_name : Specify the name of the column into which you want to insert the value. If you omit to specify the

column name, it is considered that all columns defined in the table have been specified. Therefore, you must specify

the values for all columns next to the VALUES keyword. If you do not specify all the columns defined in the table,

a DEFAULT value is assigned to the non-specified columns; if the DEFAULT value is not defined, a NULL

value is assigned.

• expr | DEFAULT : Specify values that correspond to the columns next to the VALUES keyword. Expressions or

the DEFAULT keyword can be specified as a value. At this time, the order and number of the specified column list

must correspond to the column value list. The column value list for a single record is described in parentheses.

• DEFAULT : You can use the DEFAULT keyword to specify a default value as the column value. If you specify

DEFAULT in the column value list next to the VALUES keyword, a default value column is saved for the given

column: if you specify DEFAULT before the VALUES keyword, default values are saved for all columns in the

table. NULL is saved for the column whose default value has not been defined.

• ON DUPLICATE KEY UPDATE : In case constraints are violated because a duplicated value for a column

where PRIMARY KEY or UNIQUE attribute is defined is inserted, the value that makes constraints violated is

changed into a specific value by performing the action specified in the ON DUPLICATE KEY UPDATE

statement.

Example

CREATE TABLE a_tbl1(

id INT UNIQUE,

name VARCHAR,

phone VARCHAR DEFAULT '000-0000');

--insert default values with DEFAULT keyword before VALUES

INSERT INTO a_tbl1 DEFAULT VALUES;

--insert multiple rows

INSERT INTO a_tbl1 VALUES (1,'aaa', DEFAULT),(2,'bbb', DEFAULT);

--insert a single row specifying column values for all

INSERT INTO a_tbl1 VALUES (3,'ccc', '333-3333');

--insert two rows specifying column values for only

INSERT INTO a_tbl1(id) VALUES (4), (5);

--insert a single row with SET clauses

INSERT INTO a_tbl1 SET id=6, name='eee';

INSERT INTO a_tbl1 SET id=7, phone='777-7777';

SELECT * FROM a_tbl1;

 id name phone

===

 NULL NULL '000-0000'

 1 'aaa' '000-0000'

 2 'bbb' '000-0000'

 3 'ccc' '333-3333'

 4 NULL '000-0000'

 5 NULL '000-0000'

 6 'eee' '000-0000'

 7 NULL '777-7777'

CUBRID 2008 R4.0 Help

268

INSERT ... SELECT Statement

Description

If you use the SELECT query in the INSERT statement, you can insert query results obtained from at least one table.

The SELECT statement can be used in place of the VALUES keyword, or be included as a subquery in the column

value list next to VALUES. If you specify the SELECT statement in place of the VALUES keyword, you can insert

multiple query result records into the column of the table at once. However, there should be only one query result record

if the SELECT statement is specified in the column value list.

In this way, you can extract data from another table that satisfies a certain retrieval condition, and insert it into the target

table by combining the SELECT statement with the INSERT statement.

Syntax

INSERT [INTO] table_name [(column_name, ...)]

 SELECT...

 [ON DUPLICATE KEY UPDATE column_name = expr, ...]

Example

--creating an empty table which schema replicated from a_tbl1

CREATE TABLE a_tbl2 LIKE a_tbl1;

--inserting multiple rows from SELECT query results

INSERT INTO a_tbl2 SELECT * FROM a_tbl1 WHERE id IS NOT NULL;

--inserting column value with SELECT subquery specified in the value list

INSERT INTO a_tbl2 VALUES(8, SELECT name FROM a_tbl1 WHERE name <'bbb', DEFAULT);

SELECT * FROM a_tbl2;

 id name phone

===

 1 'aaa' '000-0000'

 2 'bbb' '000-0000'

 3 'ccc' '333-3333'

 4 NULL '000-0000'

 5 NULL '000-0000'

 6 'eee' '000-0000'

 7 NULL '777-7777'

 8 'aaa' '000-0000'

ON DUPLICATE KEY UPDATE Statement

Description

In a situation in which a duplicate value is inserted into a column for which the UNIQUE index or the PRIMARY

KEY constraint has been set, you can update to a new value without outputting the error by specifying the ON

DUPLICATE KEY UPDATE clause in the INSERT statement.

However, the ON DUPLICATE KEY UPDATE clause cannot be used in a table in which a trigger for INSERT or

UPDATE has been activated, or in a nested INSERT statement.

Syntax

<INSERT … VALUES statement>

<INSERT … SET statement>

<INSERT … SELECT statement>

 INSERT ...

 [ON DUPLICATE KEY UPDATE column_name = expr, ...]

• column_name = expr : Specifies the name of the column whose value you want to change next to ON

DUPLICATE KEY UPDATE and a new column value by using the equal sign.

Example

--creating a new table having the same schema as a_tbl1

CUBRID SQL Guide

269

CREATE TABLE a_tbl3 LIKE a_tbl1;

INSERT INTO a_tbl3 SELECT * FROM a_tbl1 WHERE id IS NOT NULL and name IS NOT NULL;

SELECT * FROM a_tbl3;

 id name phone

===

 1 'aaa' '000-0000'

 2 'bbb' '000-0000'

 3 'ccc' '333-3333'

 6 'eee' '000-0000'

--insert duplicated value violating UNIQUE constraint

INSERT INTO a_tbl3 VALUES(2, 'bbb', '222-2222');

ERROR: Operation would have caused one or more unique constraint violations.

--insert duplicated value with specifying ON DUPLICATED KEY UPDATE clause

INSERT INTO a_tbl3 VALUES(2, 'bbb', '222-2222')

ON DUPLICATE KEY UPDATE phone = '222-2222';

SELECT * FROM a_tbl3 WHERE id=2;

 id name phone

===

 2 'bbb' '222-2222'

UPDATE

Description

You can update the column value of a record saved in the target table to a new one by using the UPDATE statement.

Specify the name of the column to update and a new value in the SET clause, and specify the condition to be used to

extract the record to be updated in the WHERE Clause. You can also specify the number of records to be updated in the

LIMIT clause. You can use the update with the ORDER BY clause if you want to maintain the execution order or lock

order of triggers.

Syntax

UPDATE table_name SET column_name = {expr | DEFAULT} [, column_name = {expr | DEFAULT]...]

 [WHERE search_condition]

 [ORDER BY {col_name | expr}]

 [LIMIT row_count]

• table_name : Specify the name of the table to be updated.

• column_name : Specify the columns to be updated.

• expr | DEFAULT : Specify a new value for the column, and specify an expression or the DEFAULT keyword as

the value. You can also specify the SELECT query, which returns a single result record.

• search_condition : You can update the column value only for the record that satisfies the condition by specifying

one in the WHERE Clause.

• col_name | expr : Specifies a column used as a basis for the update order.

• row_count : Specify the number of records to be updated after the LIMIT Clause. An integer greater than 0 can be

specified.

Remark

One column can be updated only once in the same UPDATE statement.

Example

--creating a new table having all records copied from a_tbl1

CREATE TABLE a_tbl5 AS SELECT * FROM a_tbl1;

SELECT * FROM a_tbl5 WHERE name IS NULL;

 id name phone

===

 NULL NULL '000-0000'

 4 NULL '000-0000'

 5 NULL '000-0000'

CUBRID 2008 R4.0 Help

270

 7 NULL '777-7777'

UPDATE a_tbl5 SET name='yyy', phone='999-9999' WHERE name IS NULL LIMIT 3;

SELECT * FROM a_tbl5;

 id name phone

===

 NULL 'yyy' '999-9999'

 1 'aaa' '000-0000'

 2 'bbb' '000-0000'

 3 'ccc' '333-3333'

 4 'yyy' '999-9999'

 5 'yyy' '999-9999'

 6 'eee' '000-0000'

 7 NULL '777-7777'

-- using triggers, that the order in which the rows are updated is modified by the ORDER

BY clause.

CREATE TABLE t (i INT,d INT);

CREATE TRIGGER trigger1 BEFORE UPDATE ON t IF new.i < 10 EXECUTE PRINT 'trigger1 executed';

CREATE TRIGGER trigger2 BEFORE UPDATE ON t IF new.i > 10 EXECUTE PRINT 'trigger2 executed';

INSERT INTO t VALUES (15,1),(8,0),(11,2),(16,1), (6,0),(1311,3),(3,0);

UPDATE t SET i = i + 1 WHERE 1 = 1;

trigger2 executed

trigger1 executed

trigger2 executed

trigger2 executed

trigger1 executed

trigger2 executed

trigger1 executed

TRUNCATE TABLE t;

INSERT INTO t VALUES (15,1),(8,0),(11,2),(16,1), (6,0),(1311,3),(3,0);

UPDATE t SET i = i + 1 WHERE 1 = 1 ORDER BY i;

trigger1 executed

trigger1 executed

trigger1 executed

trigger2 executed

trigger2 executed

trigger2 executed

trigger2 executed

REPLACE

Description

The REPLACE statement is working like INSERT, but the difference is that it inserts a new record after deleting the

existing record without displaying the error when a duplicate value is inserted into a column for which PRIMARY

KEY and UNIQUE constraints have defined. You must have both INSERT and DELETE privileges to use the

REPLACE statement, because it performs insertion or insertion after deletion operations.

The REPLACE statement determines whether a new record causes the duplication of PRIMARY KEY or UNIQUE

index column values. Therefore, for performance reasons, it is recommended to use the INSERT statement for a table

for which a PRIMARY KEY or UNIQUE index has not been defined. The REPLACE statement is an extension of the

SQL standard. See the following regarding the use of this statement.

• The REPLACE statement cannot contain subqueries.

• The REPLACE statement cannot be used for tables for which an INSERT or DELETE trigger has been set.

• An assignment statement such as SET col_name = col_name + 1 is not valid. Change such a statement to SET

col_name = DEFAULT(col_name) + 1. Here, a non-NULL default value should be set for the col_name column.

Syntax

<REPLACE … VALUES statement>

REPLACE [INTO] table_name [(column_name, ...)]

 {VALUES | VALUE}({expr | DEFAULT}, ...)[,({expr | DEFAULT}, ...),...]

CUBRID SQL Guide

271

<REPLACE … SET statement>

REPLACE [INTO] table_name

 SET column_name = {expr | DEFAULT}[, column_name = {expr | DEFAULT},...]

<REPLACE … SELECT statement>

REPLACE [INTO] table_name [(column_name, ...)]

 SELECT...

• table_name : Specify the name of the target table into which you want to insert a new record.

• column_name : Specify the name of the column into which you want to insert the value. If you omit to specify the

column name, it is considered that all columns defined in the table have been specified. Therefore, you must specify

the value for the column next to VALUES. If you do not specify all the columns defined in the table, a DEFAULT

value is assigned to the non-specified columns; if the DEFAULT value is not defined, a NULL value is assigned.

• expr | DEFAULT : Specify values that correspond to the columns after VALUES. Expressions or the DEFAULT

keyword can be specified as a value. At this time, the order and number of the specified column list must

correspond to the column value list. The column value list for a single record is described in parentheses.

Example

--creating a new table having the same schema as a_tbl1

CREATE TABLE a_tbl4 LIKE a_tbl1;

INSERT INTO a_tbl4 SELECT * FROM a_tbl1 WHERE id IS NOT NULL and name IS NOT NULL;

SELECT * FROM a_tbl4;

 id name phone

===

 1 'aaa' '000-0000'

 2 'bbb' '000-0000'

 3 'ccc' '333-3333'

 6 'eee' '000-0000'

--insert duplicated value violating UNIQUE constraint

REPLACE INTO a_tbl4 VALUES(1, 'aaa', '111-1111'),(2, 'bbb', '222-2222');

REPLACE INTO a_tbl4 SET id=6, name='fff', phone=DEFAULT;

SELECT * FROM a_tbl4;

 id name phone

===

 3 'ccc' '333-3333'

 1 'aaa' '111-1111'

 2 'bbb' '222-2222'

 6 'fff' '000-0000'

DELETE

Description

You can delete records in the table by using the DELETE statement. You can specify delete conditions by combining

the statement with the WHERE Clause . If you want to limit the number of records to be deleted, you can do so by

specifying the number of records to be deleted after the LIMIT Clause. In this case, only row_count records are deleted

even when the number of records satisfying the WHERE Clause exceeds row_count.

Syntax

DELETE FROM <table_specification> [WHERE <search_condition>] [LIMIT row_count]

<table_specification> ::= <table_hierarchy> | (<table_hierarchy_comma_list)

<table_hierarchy> ::= [ONLY] <table_name> |

 ALL <table_name> [EXCEPT <table_specification>]

• table_name : Specifies the name of the table that contains the data to be deleted.

• search_condition : Delete only the data that meets the search_condition by using the WHERE Clause. If it is not

specified, all the data in the table will be deleted.

• row_count : Specify the number of records to be deleted after the LIMIT Clause. An integer greater than 0 can be

specified.

CUBRID 2008 R4.0 Help

272

Example

CREATE TABLE a_tbl(

id INT NOT NULL,

phone VARCHAR(10));

INSERT INTO a_tbl VALUES(1,'111-1111'), (2,'222-2222'), (3, '333-3333'), (4, NULL), (5,

NULL);

DELETE FROM a_tbl WHERE phone IS NULL LIMIT 1;

--delete one record only from a_tbl

SELECT * FROM a_tbl;

 id phone

===================================

 1 '111-1111'

 2 '222-2222'

 3 '333-3333'

 5 NULL

--delete all records from a_tbl

DELETE FROM a_tbl;

TRUNCATE

Description

You can delete all records in the specified table by using the TRUNCATE statement.

This statement internally delete first all indexes and constraints defined in a table and then deletes all records. Therefore,

it performs the job faster than using the DELETE FROM table_name statement without a WHERE clause.

If the PRIMARY KEY constraint is defined in the table and this is referred by one or more FOREIGN KEY, it

follows the FOREIGN KEY ACTION. If the ON DELETE action of FOREIGN KEY is RESTRICT or

NO_ACTION, the TRUNCATE statement returns an error. If it is CASCADE, it deletes FOREIGN KEY. The

TRUNCATE statement initializes the AUTO INCREMENT column of the table. Therefore, if data is inserted, the

AUTO INCREMENT column value increases from the initial value.

Syntax

TRUNCATE [TABLE] <table_name>

• table_name : Specify the name of the table that contains the data to be deleted.

Example

CREATE TABLE a_tbl(A INT AUTO_INCREMENT(3,10) PRIMARY KEY);

INSERT INTO a_tbl VALUES (NULL),(NULL),(NULL);

SELECT * FROM a_tbl;

 a

=============

 3

 13

 23

--AUTO_INCREMENT column value increases from the initial value after truncating the table

TRUNCATE TABLE a_tbl;

INSERT INTO a_tbl VALUES (NULL);

SELECT * FROM a_tbl;

 a

=============

 3

CUBRID SQL Guide

273

DO

Description

The DO statement executes the specified expression, but does not return the result. Generally, the execution speed of

the DO statement is higher than that of the SELECT expression statement, because the database server does not return

the operation result or errors.

Syntax

DO expression

• expression : Specify an expression.

PREPARED STATEMENT

Overview

In general, the prepared statement is executed through the interface functions of JDBC, PHP, or ODBC; it can also be

executed in the SQL level. The following SQL statements are provided for execution of prepared statement.

• Prepare the SQL statement to execute.

PREPARE stmt_name FROM preparable_stmt

• Execute the prepared statement.

EXECUTE stmt_name [USING value [, value] …]

• Drop the prepared statement.

{DEALLOCATE | DROP} PREPARE stmt_name

PREPARE Statement

Description

The PREPARE statement prepares the query specified in preparable_stmt of the FROM clause, and assigns the name

to be used later when the SQL statement is referenced to stmt_name. See EXECUTE Statement for example.

PREPARE stmt_name FROM preparable_stmt

• stmt_name : The prepared statement is specified. If an SQL statement with the same stmt_name exists in the given

client session, clear the existing prepared statement and prepare a new SQL statement. If the PREPARE statement

is not executed properly due to an error in the given SQL statement, it is processed as if the stmt_name assigned to

the SQL statement does not exist.

• preparable_stmt : You must use only one SQL statement. Multiple SQL statements cannot be specified. You can

use a question mark (?) as a bind parameter in the preparable_stmt statement and it should not be enclosed with

quotes.

Caution

PREPARE statements are started by connecting an application to a server and will be maintained until the application

terminates the connection. The connection maintained during this period is called a session. You can set the session time

with the session_state_timeout parameter of cubrid.conf; the default value is 21600 seconds (=6 hours).

The data managed by the session includes PREPARE statements, custom variables, the last ID

inserted(LAST_INSERT_ID) and the number of rows affected by the statement that you execute at the

end(ROW_COUNT).

CUBRID 2008 R4.0 Help

274

EXECUTE Statement

Description

The EXECUTE statement executes the prepared statement. You can bind the data value after the USING clause if a

bind parameter (?) is included in the prepared statement. You cannot specify user-defined variables like an attribute in

the USING clause. An value such as literal and an input parameter only can be specified.

Syntax

EXECUTE stmt_name [USING value [, value] …]

• stmt_name : The name given to the prepared statement to be executed is specified. An error message is displayed if

the stmt_name is not valid, or if the prepared statement does not exist.

• value : The data to bind is specified if there is a bind parameter in the prepared statement. The number and the order

of the data must correspond to that of the bind parameter. If it does not, an error message is displayed.

Example

PREPARE st FROM 'SELECT 1 + ?';

EXECUTE st USING 4;

 1+ ?:0

==========================

 5

SET @a=3;

EXECUTE st USING @a;

 1+ ?:0

==========================

 4

PREPARE st FROM 'SELECT ? + ?';

EXECUTE st USING 1,3;

 ?:0 + ?:1

==========================

 4

PREPARE st FROM 'SELECT ? + ?';

EXECUTE st USING 'a','b';

 ?:0 + ?:1

==========================

 'ab'

PREPARE st FROM 'SELECT FLOOR(?)';

EXECUTE st USING '3.2';

 floor(?:0)

==========================

 3.000000000000000e+000

PREPARE st FROM 'SELECT FLOOR(?)';

EXECUTE st USING 3.2;

 floor(?:0)

==========================

 3.0

DEALLOCATE PREPARE, DROP PREPARE Statement

Description

DEALLOCATE PREPARE and DROP PREPARE are used interchangeably and they clear the prepared statement.

All prepared statements are cleared automatically by the server when the client session is terminated even if the

DEALLOCATE PREPARE or DROP PREPARE statement is not executed.

Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

CUBRID SQL Guide

275

• stmt_name : The name given to the prepared statement to be cleared is specified. An error message is displayed if

the stmt_name is not valid, or if the prepared statement does not exist.

Example

DEALLOCATE PREPARE stmt1;

SET

Description

The SET statement is the syntax that specifies custom variables and the method that you can use to save values.

You can create custom variables in two ways. One is to use the SET statement and the other is to use the assignment

statement of custom variables within SQL statements. You can delete the custom variables that you defined with the

DEALLOCATE or the DROP statements.

Custom variables are also called session variables as they are used for maintaining connections within one application.

Custom variables are used within the part of a connection session, and the custom variables defined by an application

can not be accessed by other applications. When an application terminates connections, all variables will be removed

automatically. Custom variables are limited to twenty per connection session for an application. If you already have

twenty custom variables and want to define a new custom variable, you must remove some variables with the DROP

VARIABLE statement.

You can use custom variables in most SQL statements. If you define custom variables and refer to them in one

statement, the sequence is not guaranteed. That is, if you refer to the variables specified in the SELECT list of the

HAVING, GROUP BY or ORDER BY clause, you may not get the values in the sequence you expect. You can not

also use custom variables as identifiers, such as column names or table names within SQL statements

Custom variables are not case-sensitive. The custom variable type can be one of the SHORT, INTEGER, BIGINT,

FLOAT, DOUBLE, NUMERIC, CHAR, VARCHAR, NCHAR, VARNCHAR, BIT and BIT VARYING. Other

types will be converted to the VARCHAR type.

SET @v1 = 1, @v2=CAST(1 AS BIGINT), @v3 = '123', @v4 = DATE'2010-01-01';

SELECT typeof(@v1), typeof(@v2), typeof(@v3), typeof(@v4);

 typeof(@v1) typeof(@v2) typeof(@v3) typeof(@v4)

==

 'integer' 'bigint' 'character var' 'character varying (10)'

Custom variables can be changed when you define values.

SELECT @v := 1, typeof(@v1), @v1:='1', typeof(@v1);

 @v := 1 typeof(@v1) @v1 := '1' typeof(@v1)

==

 1 'integer' '1' 'character (1)'

Syntax

<set_statement>

 : <set_statement>, <udf_assignment>

 | SET <udv_assignment>

 ;

<udv_assignment>

 : @<name> = <expression>

 | @<name> := <expression>

 ;

{DEALLOCATE|DROP} VARIABLE <variable_name_list>

<variable_name_list>

 : <variable_name_list> ',' @<name>

• You must define custom variable names with alphanumeric characters and underscores (_).

• When you define custom variables within SQL statements, you should use the ':=' operator.

CUBRID 2008 R4.0 Help

276

Example

Define a custom variable, 'a' and assign a value, 1 to it.

SET @a = 1;

SELECT @a;

 @a

======================

 1

Use the custom variable to count the number of rows in the SELECT statement.

CREATE TABLE t (i INTEGER);

INSERT INTO t(i) VALUES(2),(4),(6),(8);

SET @a = 0;

SELECT @a := @a+1 AS row_no, i FROM t;

 row_no i

 ===================================

 1 2

 2 4

 3 6

 4 8

4 ROWS selected.

Use the custom variable as the input of the bind parameter defined in the prepared statement.

SET @a:=3;

PREPARE stmt FROM 'SELECT i FROM t WHERE i < ?';

EXECUTE stmt USING @a;

 i

=============

 2

Use the ':=' operator to define a custom variable.

SELECT @a := 1, @user_defined_variable := 'user defined variable';

UPDATE t SET i = (@var := 1);

Delete the custom variable a and user_defined_variable.

DEALLOCATE VARIABLE @a, @user_defined_variable;

DROP VARIABLE @a, @user_defined_variable;

Caution

The custom variables that are defined by the SET statement are started by connecting an application to a server and will

be maintained until the application terminates the connection. The connection maintained during this period is called a

session. When an application terminates the connection or when there are no requests for a certain period of time, the

session will expire, and the custom variables will be deleted as a result. You can set the session time with the

session_state_timeout parameter of cubrid.conf; the default value is 21600 seconds (=6 hours).

The data managed by the session includes PREPARE statements, custom variables, the last ID

inserted(LAST_INSERT_ID) and the number of rows affected by the statement that you execute at the

end(ROW_COUNT).

SHOW

SHOW TABLES Statement

Description

Displays the list of all the table names within a database. The name of the result column will be tables_in_<database

name> and it will have one column. If you use the LIKE clause, you can search the table names matching this and if

CUBRID SQL Guide

277

you use the WHERE clause, you can search table names with more general terms. SHOW FULL TABLES displays

the second column, table_type together. The table must have the value, BASE TABLE and the view has the value,

VIEW.

Syntax

SHOW [FULL] TABLES [LIKE 'pattern' | WHERE expr]

Example

The following is the result of executing the query with the demodb.

SHOW TABLES;

 Tables_in_demodb

======================

 'athlete'

 'code'

 'event'

 'game'

 'history'

 'nation'

 'olympic'

 'participant'

 'record'

 'stadium'

SHOW FULL TABLES;

 Tables_in_demodb Table_type

==

 'athlete' 'BASE TABLE'

 'code' 'BASE TABLE'

 'event' 'BASE TABLE'

 'game' 'BASE TABLE'

 'history' 'BASE TABLE'

 'nation' 'BASE TABLE'

 'olympic' 'BASE TABLE'

 'participant' 'BASE TABLE'

 'record' 'BASE TABLE'

 'stadium' 'BASE TABLE'

SHOW FULL TABLES LIKE '%c%';

 Tables_in_demodb Table_type

==

 'code' 'BASE TABLE'

 'olympic' 'BASE TABLE'

 'participant' 'BASE TABLE'

 'record' 'BASE TABLE'

SHOW FULL TABLES WHERE table_type = 'BASE TABLE' and TABLES_IN_demodb LIKE

'%co%'; Tables_in_demodb Table_type

==

 'code' 'BASE TABLE'

 'record' 'BASE TABLE'

SHOW COLUMN Statement

Description

Displays the column information of a table. You can use the LIKE clause to search the column names matching it. If

you use the WHERE clause, you can search column names with more general terms like, "General Considerations for

All SHOW Statements." If you use the FULL keyword, the additional information of a column will be displayed as

follows:

• Field : Column name

• Type : Column data type

• Null : If you can store NULL, the value is YES and if not, it is NO

• Key : Whether a column has an index or not. If there is more than one key value in the given column of a table, this

displays only the one that appears first in the order of PRI, UNI and MUL.

CUBRID 2008 R4.0 Help

278

• If the key is a space, the column doesn't have an index, it is not the first column in the multiple column index or the

index is non-unique.

• If the value is PRI, it is a primary key or the primary key of multiple columns.

• If the value is UNI, it is a unique index. (The unique index allows multiple NULL values but you can also set a

NOT NULL constraint.)

• If the value is MUL, it is the first column of the non-unique index that allows the given value to be displayed in the

column several times. If the column composes a composite unique index, the value will be MUL. The combination

of column values can be unique but the value of each column can appear several times.

• Default : Default value defined in the column

• Extra : Additional information available about the given column. AUTO_INCREMENT The column attribute

must have the auto_increment value.

SHOW FIELDS is the same command as SHOW COLUMNS.

The DESCRIBE(abbreviated DESC) statement and the EXPLAIN statement provide similar information to SHOW

COLUMNS.

Syntax

SHOW COLUMNS {FROM | IN} tbl_name [LIKE 'pattern' | WHERE expr]

Example

The following is the result of a query for the demodb.

SHOW COLUMNS FROM athlete;

 Field Type Null Key

Default Extra

==

==

 'code' 'INTEGER' 'NO' 'PRI'

NULL 'auto_increment'

 'name' 'STRING(40)' 'NO' ''

NULL ''

 'gender' 'CHAR(1)' 'YES' ''

NULL ''

 'nation_code' 'CHAR(3)' 'YES' ''

NULL ''

 'event' 'STRING(30)' 'YES' ''

NULL ''

SHOW COLUMNS FROM athlete LIKE '%c%';

 Field Type Null Key

Default Extra

==

==

 'code' 'INTEGER' 'NO' 'PRI'

NULL 'auto_increment'

 'nation_code' 'CHAR(3)' 'YES' ''

NULL ''

SHOW COLUMNS FROM athlete WHERE "type" = 'INTEGER' and "key"='PRI' AND

extra='auto_increment';

 Field Type Null Key

Default Extra

==

==

 'code' 'INTEGER' 'NO' 'PRI'

NULL 'auto_increment'

SHOW INDEX Statement

Description

The SHOW INDEX statement displays the index information. The query must have the following columns:

• Table : Table Name

• Non_unique

CUBRID SQL Guide

279

• 0 : Duplicate data are not allowed

• 1 : Duplicate data are allowed

• Key_name : Index name

• Seq_in_index : Serial number of the column in the index. Starts from 1.

• Column_name : Column name

• Collation :Method of sorting columns in the index. 'A' means ascending and NULL means not sorted.

• Cardinality : The numerical value of measuring the unique values in the index. Higher cardinality increases the

opportunity of using an index. This value is updated every time SHOW INDEX is executed.

• Sub_part : The number of bytes of the indexed characters if the columns are indexed partially. NULL if all columns

are indexed.

• Packed : Shows how keys are packed. If they are not packed, it will be NULL.

• Null : YES if a column can include NULL, NO if not.

• Index_type : Index to be used (currently, only the BTREE is supported.)

Syntax

SHOW {INDEX | INDEXES | KEYS } {FROM | IN} tbl_name

Example

The following is the result of a query for the demodb.

SHOW INDEX IN athlete;

 Table Non_unique Key_name Seq_in_index Column_name Collation Cardin

ality Sub_part Packed Null Index_type

==

==

 'athlete' 0 'pk_athlete_code' 1 'code' 'A' 6677

 NULL NULL 'NO' 'BTREE'

CREATE TABLE t1(i1 INTEGER , i2 INTEGER NOT NULL, i3 INTEGER UNIQUE, s1 VARCHAR(10), s2

VARCHAR(10), s3 VARCHAR(10) UNIQUE);

CREATE INDEX i_t1_i1 ON t1(i1 desc);

CREATE INDEX i_t1_s1 ON t1(s1(7));

CREATE INDEX i_t1_i1_s1 ON t1(i1,s1);

CREATE UNIQUE INDEX i_t1_i2_s2 ON t1(i2,s2);

SHOW INDEXES FROM t1;

 Table Non_unique Key_name Seq_in_index Column_name Collation Cardinality

 Sub_part Packed Null Index_type

==

==

 't1' 0 'i_t1_i2_s2' 1 'i2' 'A' 0

 NULL NULL 'NO' 'BTREE'

 't1' 0 'i_t1_i2_s2' 2 's2' 'A' 0

 NULL NULL 'YES' 'BTREE'

 't1' 0 'u_t1_i3' 1 'i3' 'A' 0

 NULL NULL 'YES' 'BTREE'

 't1' 0 'u_t1_s3' 1 's3' 'A' 0

 NULL NULL 'YES' 'BTREE'

 't1' 1 'i_t1_i1' 1 'i1' NULL 0

 NULL NULL 'YES' 'BTREE'

 't1' 1 'i_t1_i1_s1' 1 'i1' 'A' 0

 NULL NULL 'YES' 'BTREE'

 't1' 1 'i_t1_i1_s1' 2 's1' 'A' 0

 NULL NULL 'YES' 'BTREE'

 't1' 1 'i_t1_s1' 1 's1' 'A' 0

 7 NULL 'YES' 'BTREE'

SHOW GRANTS Statement

Description

The SHOW GRANT statement displays the permissions associated with the database user accounts.

CUBRID 2008 R4.0 Help

280

Syntax

SHOW GRANTS FOR 'user'

Example

CREATE TABLE testgrant (id int);

CREATE USER user1;

GRANT INSERT,SELECT ON testgrant TO user1;

SHOW GRANTS FOR user1;

 Grants for USER1

======================

 'GRANT INSERT, SELECT ON testgrant TO USER1'

SHOW CREATE VIEW Statement

Description

If you specify a view name, the SHOW CREATE VIEW statement will display the corresponding CREATE VIEW

statement.

Syntax

SHOW CREATE VIEW view_name

Example

The following is the result of a query for the demodb.

SHOW CREATE VIEW "db_class";

 View Create View

==

 'db_class' 'SELECT c.class_name, CAST(c.owner.name AS VARCHAR(255)), CASE

c.class_type WHEN 0 THEN 'CLASS' WHEN 1 THEN 'VCLASS' ELSE

 'UNKNOW' END, CASE WHEN MOD(c.is_system_class, 2) = 1 THEN 'YES' ELSE

'NO' END, CASE WHEN c.sub_classes IS NULL THEN 'NO'

 ELSE NVL((SELECT 'YES' FROM _db_partition p WHERE p.class_of = c and

p.pname IS NULL), 'NO') END, CASE WHEN

 MOD(c.is_system_class / 8, 2) = 1 THEN 'YES' ELSE 'NO' END FROM

_db_class c WHERE CURRENT_USER = 'DBA' OR {c.owner.name}

 SUBSETEQ (SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}),

SET{}) FROM db_user u, TABLE(groups) AS t(g) WHERE

 u.name = CURRENT_USER) OR {c} SUBSETEQ (SELECT

SUM(SET{au.class_of}) FROM _db_auth au WHERE {au.grantee.name} SUBSETEQ

 (SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{}) FROM

db_user u, TABLE(groups) AS t(g) WHERE u.name =

 CURRENT_USER) AND au.auth_type = 'SELECT')'

CUBRID SQL Guide

281

Transaction and Lock

Overview

This chapter covers issues relating to concurrency and restore, as well as how to commit or roll back transactions.

In multi-user environment, controlling access and update is essential to protect database integrity and ensure that a

user’s transaction will have accurate and consistent data. Without appropriate control, data could be updated incorrectly

in the wrong order.

To control parallel operations on the same data, data must be locked during transaction, and unacceptable access to the

data by another transaction must be blocked until the end of the transaction. In addition, any updates to a certain class

must not be seen by other users before they are committed. If updates are not committed, all queries entered after the

last commit or rollback of the update can be invalidated.

All examples introduced here were executed by csql. Outputs in the examples are displayed in italics.

Database Transaction

Overview

A database transaction groups CUBRID queries into a unit of consistency (for ensuring valid results in multi-user

environment) and restore (for making the results of committed transactions permanent and ensuring that the aborted

transactions are canceled in the database despite any failure, such as system failure). A transaction is a collection of one

or more queries that access and update the database.

CUBRID allows multiple users to access the database simultaneously and manages accesses and updates to prevent

inconsistency of the database. For example, if data is updated by one user, the changes made by this transaction are not

seen to other users or the database until the updates are committed. This principle is important because the transaction

can be rolled back without being committed.

You can delay permanent updates to the database until you are confident of the transaction result. Also, you can remove

(ROLLBACK) all updates in the database if an unsatisfactory result or failure occurs in the application or computer

system during the transaction. The end of the transaction is determined by the COMMIT WORK or ROLLBACK

WORK statement. The COMMIT WORK statement makes all updates permanent while the ROLLBACK WORK

statement cancels all updates entered in the transaction. For more information, see the Transaction Commit and

Transaction Rollback sections.

Transaction Commit

Description

Updates that occurred in the database are not permanently stored until the COMMIT WORK statement is executed.

"Permanently stored" means that storing the updates in the disk is completed; The WORK keyword can be omitted. In

addition, other users of the database cannot see the updates until they are permanently applied. For example, when a

new row is inserted into a class, only the user who inserted the row can access it until the database transaction is

committed. (If the UNCOMMITTED INSTANCES isolation level is used, other users can see inconsistent

uncommitted updates.)

All locks obtained by the transaction are released after the transaction is committed.

Syntax

COMMIT [WORK]

CUBRID 2008 R4.0 Help

282

Example

The database transaction in the following example consists of three UPDATE statements and changes three column

values of seats from the stadium. To compare the results, check the current values and names before the update is made.

Since, by default, csql runs in an autocommit mode, the following example is executed after setting the autocommit

mode to off.

;autocommit off

AUTOCOMMIT IS OFF

SELECT name, seats

FROM stadium WHERE code IN (30138, 30139, 30140);

 name seats

==================================

 'Athens Olympic Tennis Centre' 3200

 'Goudi Olympic Hall' 5000

 'Vouliagmeni Olympic Centre' 3400

Let each UPDATE statement have the current seats of each stadium. To verify whether the command is correctly

executed, you can retrieve the columns related to the seats table.

UPDATE stadium

SET seats = seats + 1000

WHERE code IN (30138, 30139, 30140);

SELECT name, seats FROM stadium WHERE code in (30138, 30139, 30140);

 name seats

===================================

 'Athens Olympic Tennis Centre' 4200

 'Goudi Olympic Hall' 6000

 'Vouliagmeni Olympic Centre' 4400

If the update is properly done, the changes can be semi-permentanetly fixed. In this time, use the COMMIT

WORK as below:

COMMIT WORK;

Note In CUBRID, an auto-commit mode is set by default for transaction management. An auto-commit mode is a mode

that commits or rolls back all SQL statements. The transaction is committed automatically if the SQL is executed

successfully, or is rolled back automatically if an error occurs.

Such auto commit modes are supported in CUBRID JDBC, ODBC, OLEDB and the CSQL Interpreter. In CUBRID

CCI and CUBRID PHP, auto commit modes can be applied only for SELECT statements by setting broker parameters.

For details, see Parameter by Broker. For a session command (;AUtocommit) that sets the auto-commit mode in the

CSQL interpreter, see Session Commands.

Transaction Rollback

Description

The ROLLBACK WORK statement removes all updates to the database since the last transaction. The WORK

keyword can be omitted. By using this statement, you can cancel incorrect or unnecessary updates before they are

permanently applied to the database. All locks obtained during the transaction are released.

Syntax

ROLLBACK [WORK]

Example

The following example shows two commands that modify the definition and the row of the same table.

ALTER TABLE code DROP s_name;

INSERT INTO code (s_name, f_name) VALUES ('D','Diamond');

ERROR: s_name is not defined.

The INSERT statement fails because the s_name column has been dropped in the definition of code. The data intended

to be entered to the code table is correct, but the s_name column is wrongly removed. At this point, you can use the

ROLLBACK WORK statement to restore the original definition of the code table.

CUBRID SQL Guide

283

ROLLBACK WORK;

Later, remove the s_name column by entering the ALTER TABLE again and modify the INSERT statement. The

INSERT command must be entered again because the transaction has been aborted. If the database update has been

done as intended, commit the transaction to make the changes permanent.

ALTER TABLE code drop s_name;

INSERT INTO code (f_name) VALUES ('Diamond');

COMMIT WORK;

Savepoint and Partial Rollback

Description

A savepoint is established during the transaction so that database changes made by the transaction are rolled back to the

specified savepoint. Such operation is called a partial rollback. In a partial rollback, database operations (insert, update,

delete, etc.) after the savepoint are rolled back, and transaction operations before it are not rolled back. The transaction

can proceed with other operations after the partial rollback is executed. Or the transaction can be terminated with the

COMMIT WORK or ROLLBACK WORK statement. Note that the savepoint does not commit the changes made by

the transaction.

A savepoint can be created at a certain point of the transaction, and multiple savepoints can be used for a certain point.

If a partial rollback is executed to a savepoint before the specified savepoint or the transaction is terminated with the

COMMIT WORK or ROLLBACK WORK statement, the specified savepoint is removed. The partial rollback after

the specified savepoint can be performed multiple times.

Savepoints are useful because intermediate steps can be created and named to control long and complicated utilities. For

example, if you use a savepoint during the update operation, you don't need to perform all statements again when you

made a mistake.

Syntax 1

SAVEPOINT mark

mark:

_ a SQL identifier

_ a host variable (starting with :)

If you make mark all the same value when you specify multiple savepoints in a single transaction, only the latest

savepoint appears in the partial rollback. The previous savepoints remain hidden until the rollback to the latest savepoint

is performed and then appears when the latest savepoint disappears after being used.

Syntax 2

ROLLBACK [WORK] [TO [SAVEPOINT] mark] []

mark:

_ a SQL identifier

_ a host variable (starting with :)

Previously, the ROLLBACK WORK statement canceled all database changes added since the latest transaction. The

ROLLBACK WORK statement is also used for the partial rollback that rolls back the transaction changes after the

specified savepoint.

If mark value is not given, the transaction terminates canceling all changes including all savepoints created in the

transaction. If mark value is given, changes after the specified savepoint are canceled and the ones before it are

remained.

Example

The following is an example of rolling back part of the transaction.

First, set savepoints SP1 and SP2.

CREATE TABLE athlete2 (name VARCHAR(40), gender CHAR(1), nation_code CHAR(3), event

VARCHAR(30));

CUBRID 2008 R4.0 Help

284

INSERT INTO athlete2(name, gender, nation_code, event)

VALUES ('Lim Kye-Sook', 'W', 'KOR', 'Hockey');

SAVEPOINT SP1;

SELECT * from athlete2;

INSERT INTO athlete2(name, gender, nation_code, event)

VALUES ('Lim Jin-Suk', 'M', 'KOR', 'Handball');

SELECT * FROM athlete2;

SAVEPOINT SP2;

RENAME TABLE athlete2 AS sportsman;

SELECT * FROM sportsman;

ROLLBACK WORK TO SP2;

In the example above, the name change of the athlete2 table is rolled back by the partial rollback. The following is an

example of executing the query with the original name and examining the result.

SELECT * FROM athlete2;

DELETE FROM athlete2 WHERE name = 'Lim Jin-Suk';

SELECT * FROM athlete2;

ROLLBACK WORK TO SP2;

The following is an example of rolling back to SP1.

SELECT * FROM athlete2;

ROLLBACK WORK TO SP1;

SELECT * FROM athlete2;

COMMIT WORK;

Database Concurrency

If there are multiple users with read and write privileges in a database, possibility exists that more than one user will

access the database simultaneously. Controlling access and update in multi-user environment is essential to protect

database integrity and ensure that users and transactions should have accurate and consistent data. Without appropriate

control, data could be updated incorrectly in the wrong order.

Like most commercial database systems, CUBRID adopts serializability, an element that is essential to maintaining data

concurrency within the database. Serializability ensures no interference between transactions when multiple transactions

are executed at the same time. It is guaranteed more with the higher isolation level. This principle is based on the

assumption that database consistency is guaranteed as long as transaction is executed automatically. This will be

covered in the Lock Protocol section in detail.

The transaction must ensure database concurrency, and each transaction must guarantee appropriate results. When

multiple transactions are being executed at the same time, an event in transaction T1 should not affect an event in

transaction T2. This means isolation. Transaction isolation level is the degree to which a transaction is separated from

all other concurrent transactions. The higher isolation level means the lower interference from other transactions. The

lower isolation level means the higher the concurrency. A database determines whether which lock is applied to tables

and records based on these isolation levels. Therefore, can control the level of consistency and concurrency specific to a

service by setting appropriate isolation level.

You can set an isolation level by using the SET TRANSACTION ISOLATION LEVEL statement or system parameters

provided by CUBRID. For more information, see Concurrency/Lock Parameters.

The read operations that allow interference between transactions with isolation levels are as follows:

• Dirty read : A transaction T2 can read D' before a transaction T1 updates data D to D' and commits it.

• Non-repeatable read : A transaction T1 can read other value, if a transaction T2 updates data while data is

retrieved in the transaction T2 multiple times.

• Phantom read : A transaction T1 can read E, if a transaction T2 inserts new record E while data is retrieved in the

transaction T1 multiple times.

The default value of CUBRID isolation level is REPEATABLE READ CLASS with READ UNCOMMITTED

INSTANCES (3).

Isolation Levels Provided by CUBRID

CUBRID SQL Guide

285

CUBRID Isolation Level(isolation_level) Other DBMS Isolation Level

(isolation_level)

DIRTY

READ

UNREPEATABLE

READ

PHANTOM

READ

Schema Changes of the

Table Being Retrieved

SERIALIZABLE (6) SERIALIZABLE (4) N N N N

REPEATABLE READ CLASS with

REPEATABLE READ INSTANCES (5)

REPEATABLE READ (3) N N Y N

REPEATABLE READ CLASS with

READ COMMITTED INSTANCES (4)

READ COMMITTED (2) N Y Y N

REPEATABLE READ CLASS with

READ UNCOMMITTED INSTANCES

(3)

READ UNCOMMITTED (1) Y Y Y N

READ COMMITTED CLASS with

READ COMMITTED INSTANCES (2)

 N Y Y Y

READ COMMITTED CLASS with

READ UNCOMMITTED INSTANCES

(1)

 Y Y Y Y

Lock Protocol

Overview

In the two-phase locking protocol used by CUBRID, a transaction obtains a shared lock before it reads an object, and an

exclusive lock before it updates the object so that conflicting operations are not executed simultaneously.

If transaction T1 requires a lock, CUBRID checks if the requested lock conflicts with the existing one. If it does,

transaction T1 enters a standby state and delays the lock. If another transaction T2 releases the lock, transaction T1

resumes and obtains it. Once the lock is released, the transaction do not require any more new locks.

Granularity Locking

CUBRID uses a granularity locking protocol to decrease the number of locks. In the granularity locking protocol, a

database can be modeled as a hierarchy of lockable units: bigger locks have more granular locks.

For example, suppose that a database consists of multiple tables and each table consists of multiple instances. If the

database is locked, all tables and instances are implicitly considered to be locked. A lock on a big unit results in less

overhead, because only one lock needs to be managed. However, it leads to decreased concurrency because almost all

concurrent transactions conflict with each other. The finer the granularity, the better the concurrency; it causes more

overhead because more locks need to be managed. CUBRID selects a locking granularity level based on the operation

being executed. For example, if a transaction retrieves all instances of a table, the entire tables will be locked, rather

than each instance. If the transaction accesses a few instances of the table, the instances are locked individually.

If the locking granularities overlap, effects of a finer granularity are propagated in order to prevent conflicts. That is, if a

shared lock is required on an instance of a table, an intention shared lock will be set on the table. If an exclusive lock is

required on an instance of a table, an intention exclusive lock will be set on the table. An intention shared lock on a

table means that a shared lock can be set on an instance of the table. An intention exclusive lock on a table means that a

shared/exclusive lock can be set on an instance of the table. That is, if an intention shared lock on a table is allowed in

one transaction, another transaction cannot obtain an exclusive lock on the table (for example, to add a new column).

However, the second transaction may obtain a shared lock on the table. If an intention exclusive lock on the table is

allowed in one transaction, another transaction cannot obtain a shared lock on the table (for example, a query on an

instance of the tables cannot be executed because it is being changed).

A mechanism called lock escalation is used to limit the number of locks being managed. If a transaction has more than a

certain number of locks (a number which can be changed by the lock_escalation system parameter), the system begins

to require locks at the next higher level of granularity. This escalates the locks to a coarser level of granularity.

CUBRID 2008 R4.0 Help

286

CUBRID performs lock escalation when no transactions have a higher level of granularity in order to avoid a deadlock

caused by lock conversion.

Lock Mode Types And Compatibility

CUBRID determines the lock mode depending on the type of operation to be performed by the transaction, and

determines whether or not to share the lock depending on the mode of the lock preoccupied by another transaction. Such

decisions concerning the lock are made by the system automatically. Manual assignment by the user is not allowed. To

check the lock information of CUBRID, use the cubrid lockdb db_name command. For details, see Checking Lock

Status.

• Shared lock (shared lock, S_LOCK) : This lock is obtained before the read operation is executed on the object. It

can be obtained by multiple transactions for the same object.

Transaction T1 obtains the shared lock first before it performs the read operation on a certain object X, and releases

it immediately after it completes the operation even before transaction T1 is committed. Here, transaction T2 and

T3 can perform the read operation on X concurrently, but not the update operation.

• Exclusive lock (exclusive lock, X_LOCK) : This lock is obtained before the update operation is executed on the

object. It can only be obtained by one transaction.

Transaction T1 obtains the exclusive lock first before it performs the update operation on a certain object X, and

does not release it until transaction T1 is committed even after the update operation is completed. Therefore,

transaction T2 and T3 cannot perform the read operation as well on X before transaction T1 releases the exclusive

lock.

• Update lock (update lock, U_LOCK) : This lock is obtained when the read operation is executed in the

expression before the update operation is performed.

For example, when an UPDATE statement combined with a WHERE clause is executed, execute the operation by

obtaining the update lock for each tuple and the exclusive lock only for the result tuples that satisfy the condition

when performing index search or full scan search in the WHERE clause. The update lock is converted to an

exclusive lock when the actual update operation is performed. It can be called a quasi-exclusive lock because it

does not allow the read lock on the same object for another transaction.

• Intention lock (intention lock) : A lock that is set inherently in a higher-level object than X to protect the lock on

the object X of a certain level.

For example, when a shared lock is requested for a certain tuple, prevent a situation from occurring in which the

table is locked by another transaction by setting the intention shared lock as well on the table at the higher level in

hierarchy. Therefore, the intention lock is not set on tuples at the lowest level, but is set on higher-level objects. The

types of intention locks are as follows:

• Intention shared lock (intention shared lock, IS_LOCK) : If the intention shared lock is set on the table, which

is the higher-level object, as the result of the shared lock set on a certain tuple, another transaction cannot perform

operations such as changing the schema of the table (e.g. adding a column or changing the table name) or updating

all tuples. However updating some tuples or viewing all tuples is allowed.

• Intention exclusive lock (intention exclusive lock, IX_LOCK) : If the intention exclusive lock is set on the table,

which is the higher-level object, as the result of the exclusive lock set on a certain tuple, another transaction cannot

perform operations such as changing the schema of the table, updating or viewing all tuples. However updating

some tuples is allowed.

• Shared with intent exclusive (shared with intent exclusive, SIX_LOCK) : This lock is set on the higher-level

object inherently to protect the shared lock set on all objects at the lower hierarchical level and the intention

exclusive lock on some object at the lower hierarchical level.

Once the shared intention exclusive lock is set on a table, another transaction cannot change the schema of the table,

update all/some tuples or view all tuples. However, viewing some tuples is allowed.

The following table briefly shows the lock compatibility between the locks described below. Compatibility means that

the lock requester can obtain a lock while the lock holder is keeping the lock obtained for the object X. N/a means 'not

applicable'.

Lock Compatibility

 Lock Holder(lock holder)

NULL_LOCK IS_LOCK S_LOCK IX_LOCK SIX_LOCK U_LOCK X_LOCK

Lock Requester

(lock requester)

NULL_LOCK TRUE TRUE TRUE TRUE TRUE TRUE TRUE

IS_LOCK TRUE TRUE TRUE TRUE TRUE N/a FALSE

CUBRID SQL Guide

287

S_LOCK TRUE TRUE TRUE FALSE FALSE FALSE FALSE

IX_LOCK TRUE TRUE FALSE TRUE FALSE N/a FALSE

SIX_LOCK TRUE TRUE FALSE FALSE FALSE N/a FALSE

U_LOCK TRUE N/a TRUE N/a N/a FALSE FALSE

X_LOCK TRUE FALSE FALSE FALSE FALSE FALSE FALSE

• NULL_LOCK : No lock

Example

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

set transaction isolation level 4;

Isolation level set to:

REPEATABLE READ SCHEMA, READ COMMITTED

INSTANCES.

;autocommit off

AUTOCOMMIT IS OFF

set transaction

isolation level 4;

Isolation level

set to:

REPEATABLE READ

SCHEMA, READ

COMMITTED

INSTANCES.

/*

C:\CUBRID>cubrid

lockdb demodb

*** Lock Table

Dump ***

…

Object Lock Table:

 Current

number of objects

which are

locked = 0

 Maximum

number of objects

which can be

locked = 10000

…

*/

SELECT nation_code, gold FROM participant

WHERE nation_code='USA';

 nation_code gold

======================================

'USA' 36

'USA' 37

'USA' 44

'USA' 37

'USA' 36

/*

C:\CUBRID>cubrid lockdb demodb

*** Lock Table Dump ***

…

Object type: Root class.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= IS_LOCK, Count = 1, Nsubgranules = 1

Object type: Class = participant.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= IS_LOCK, Count = 2, Nsubgranules = 0

*/

CUBRID 2008 R4.0 Help

288

 UPDATE participant

SET gold = 11

WHERE nation_code

= 'USA' ;

SELECT nation_code, gold FROM participant

WHERE nation_code='USA';

/* no results until transaction 2 releases a

lock

C:\CUBRID>cubrid lockdb demodb

*** Lock Table Dump ***

…

Object type: Instance of class

(0| 551| 7) = participant.

LOCK HOLDERS:

 Tran_index = 3, Granted_mode

= X_LOCK, Count = 2

…

Object type: Root class.

LOCK HOLDERS:

 Tran_index = 3, Granted_mode

= IX_LOCK, Count = 1, Nsubgranules = 3

NON_2PL_RELEASED:

 Tran_index = 2, Non_2_phase_lock

= IS_LOCK

…

Object type: Class = participant.

LOCK HOLDERS:

 Tran_index = 3, Granted_mode

= IX_LOCK, Count = 3, Nsubgranules = 5

 Tran_index = 2, Granted_mode

= IS_LOCK, Count = 2, Nsubgranules = 0

*/

 COMMIT;

Current

transaction has

been committed.

nation_code gold

=================================

'USA' 11

'USA' 11

'USA' 11

'USA' 11

'USA' 11

/*

C:\CUBRID>cubrid lockdb demodb

…

Object type: Root class.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= IS_LOCK, Count = 1, Nsubgranules = 1

Object type: Class = participant.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= IS_LOCK, Count = 3, Nsubgranules = 0

…

*/

CUBRID SQL Guide

289

COMMIT;

Current transaction has been committed.

/*

C:\CUBRID>cubrid lockdb demodb

…

Object Lock Table:

 Current number of objects which are

locked = 0

 Maximum number of objects which can

be locked = 10000

*/

Transaction Deadlock

A deadlock is a state in which two or more transactions wait at the same time for another transaction's lock to be

released. CUBRID resolves the problem by rolling back one of the transactions, because transactions in a deadlock state

will hinder the work of another transaction. The transaction to be rolled back is usually the transaction which has made

the least updates, i.e. the one that started more recently. As soon as a transaction is rolled back, the lock held by the

transaction is released and other transactions in a deadlock are permitted to proceed.

It is impossible to predict such deadlocks, but it is recommended that you reduce the range to which lock is applied by

setting the index, shortening the transaction, or setting the transaction isolation level as low in order to decrease such

occurrences.

Example

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

set transaction isolation level 6;

Isolation level set to:

SERIALIZABLE

;autocommit off

AUTOCOMMIT IS OFF

set transaction isolation level 6;

Isolation level set to:

SERIALIZABLE

CREATE TABLE lock_tbl(host_year

integer, nation_code char(3));

INSERT INTO lock_tbl VALUES (2004,

'KOR');

INSERT INTO lock_tbl VALUES (2004,

'USA');

INSERT INTO lock_tbl VALUES (2004,

'GER');

INSERT INTO lock_tbl VALUES (2008,

'GER');

COMMIT;

SELECT * FROM lock_tbl;

 host_year nation_code

===================================

 2004 'KOR'

 2004 'USA'

 2004 'GER'

 2008 'GER'

 SELECT * FROM lock_tbl;

 host_year nation_code

===================================

 2004 'KOR'

 2004 'USA'

 2004 'GER'

 2008 'GER'

DELETE FROM lock_tbl WHERE

host_year=2008;

CUBRID 2008 R4.0 Help

290

/* no result until transaction 2

releases a lock

C:\CUBRID>cubrid lockdb demodb

*** Lock Table Dump ***

…

Object type: Class = lock_tbl.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= S_LOCK, Count = 2,

Nsubgranules = 0

BLOCKED LOCK HOLDERS:

 Tran_index = 1, Granted_mode

= S_LOCK, Count = 3,

Nsubgranules = 0

 Blocked_mode = SIX_LOCK

 Start_waiting_at = Fri Feb 12

14:22:58 2010

 Wait_for_nsecs = -1

*/

 INSERT INTO lock_tbl VALUES (2004,

'AUS');

ERROR: Your transaction (index 1,

dba@ 090205|4760) has been

unilaterally aborted by the system.

/*

System rolled back the transaction

1 to resolve a deadlock

C:\CUBRID>cubrid lockdb demodb

*** Lock Table Dump ***

Object type: Class = lock_tbl.

LOCK HOLDERS:

 Tran_index = 2, Granted_mode

= SIX_LOCK, Count = 3,

Nsubgranules = 0

*/

Transaction Timeout

CUBRID provides the lock timeout feature, which sets the waiting time for the lock until the transaction lock setting is

allowed.

If the lock is allowed within the lock timeout, CUBRID rolls back the transaction and outputs an error message when

the timeout has passed. If a transaction deadlock occurs within the lock timeout, CUBRID rolls back the transaction

whose waiting time is closest to the timeout.

Setting the Lock Timeout

Description

The system parameter lock_timeout_in_secs in the $CUBRID/conf/cubrid.conf file or the SET TRANSACTION

statement sets the timeout (in seconds) during which the application will wait for the lock and rolls back the transaction

and outputs an error message when the specified time has passed. The default value of the lock_timeout_in_secs

parameter is -1, which means the application will wait indefinitely until the transaction lock is allowed. Therefore, the

user can change this value depending on the transaction pattern of the application. If the lock timeout value has been set

to 0, an error message will be displayed as soon as a lock occurs.

CUBRID SQL Guide

291

Syntax

SET TRANSACTION LOCK TIMEOUT timeout_spec [;]

timeout_spec:

- INFINITE

- OFF

- unsigned_integer

- variable

• INFINITE : Wait indefinitely until the transaction lock is allowed. Has the same effect as setting the system

parameter lock_timeout_in_secsto -1.

• OFF : Do not wait for the lock, but roll back the transaction and display an error message. Has the same effect as

setting the system parameter lock_timeout_in_secsto 0.

• unsigned_integer : Set in seconds. Wait for the transaction lock for the specified time period.

• variable : A variable can be specified. Wait for the transaction lock for the value saved by the variable.

Example 1

vi $CUBRID/conf/cubrid.conf

…

lock_timeout_in_secs = 10

…

Example 2

csql> SET TRANSACTION LOCK TIMEOUT 10;

Checking the Lock Timeout

Description

You can check the lock timeout set for the current application by using the GET TRANSACTION statement, or save

this value in a variable.

Syntax

GET TRANSACTION LOCK TIMEOUT [{ INTO | TO } variable] [;]

Example

csql> GET TRANSACTION LOCK TIMEOUT;

 Result

===============

 1.000000e+001

Lock Timeout Error Message

Displays the following message if lock timeout occurs in a transaction that was waiting for another transaction's lock to

be released. To increase the level of detail of the information displayed in the lock timeout error message, see the

description of lock_timeout_message_type in Concurrency/Lock Parameters .

ERROR: Your transaction (index 3, cub_user@cdbs006.cub|15668) timed out waiting

on X_LOCK lock on instance 0|636|34 of class participant. You are waiting for

user(s) to finish.

• Your transaction(index 3 …) : This means that the index of the transaction that was rolled back due to timeout

while waiting for the lock is 3. The transaction index is a number that is sequentially assigned when the client

connects to the database server. You can also check this number by executing the cubrid lockdb utility.

• (…cub_user@cdbs006.cub|15668) : cub_user is the login ID of the client and the part after @ is the name of the

host where the client was running. The part after| is the process ID (PID) of the client.

• X_LOCK : This means the exclusive lock set on the object to perform data update. For details, see Lock Mode

Types And Compatibility.

• Instance 0|636|34 of class participant : This means that X_LOCK has been set on a certain tuple in the table named

participant and the OID (unique ID assigned to the given object) of the tuple is 0|636|34.

CUBRID 2008 R4.0 Help

292

That is, the above lock error message can be interpreted as meaning that "Because another client is holding X_LOCK

on a certain tuple in the participant table, transaction 3 which running on the host cdbs006.cub waited for the lock and

was rolled back as the timeout has passed."

If you want to check the lock information of the transaction specified in the error message, you can do so by using the

cubrid lockdb utility to search for the OID value (ex: 0|636|34) of a specific tuple where the X_LOCK is set currently

to find the transaction ID currently holding the lock, the client program name and the process ID (PID). For details, see

Checking Lock Status. You can also check the transaction lock information in the CUBRID Manager.

You can organize the transactions by checking uncommitted queries through the SQL log after checking the transaction

lock information in the manner described above. For information on checking the SQL log, see Broker Log.

Also, you can force problematic transactions to quit by using the cubrid killtran utility. For details, see Killing

Transactions.

Transaction Isolation Level

Overview

The transaction isolation level is determined based on how much interference occurs. The more isolation means the less

interference from other transactions and more serializable. The less isolation means the more interference from other

transactions and higher level of concurrency. You can control the level of consistency and concurrency specific to a

service by setting appropriate isolation level.

Note A transaction can be restored in all supported isolation levels because updates are not committed before the end of

the transaction.

SET TRANSACTION ISOLATION LEVEL

Description

You can set the level of transaction isolation by using isolation_level and the SET TRANSACTION statement in the

$CUBRID/conf/cubrid.conf. The level of REPEATABLE READ CLASS and READ UNCOMMITTED

INSTANCES are set by default, which indicates the level 3 through level 1 to 6. For more information, see Database

Concurrency.

Syntax

SET TRANSACTION ISOLATION LEVEL isolation_level_spec [;]

isolation_level_spec:

_ SERIALIZABLE

_ CURSOR STABILITY

_ isolation_level [{ CLASS | SCHEMA } [, isolation_level INSTANCES]]

_ isolation_level [INSTANCES [, isolation_level { CLASS | SCHEMA }]]

_ variable

isolation_level:

_ REPEATABLE READ

_ READ COMMITTED

_ READ UNCOMMITTED

Example 1

vi $CUBRID/conf/cubrid.conf

…

isolation_level = 1

…

or

isolation_level = "TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE"

CUBRID SQL Guide

293

Example 2

csql> SET TRANSACTION ISOLATION LEVEL 1;

or

csql> SET TRANSACTION ISOLATION LEVEL READ COMMITTED CLASS,READ UNCOMMITTED INSTANCES;

The following table shows the isolation levels from 1 to 6. It consists of table schema (row) and isolation level. For the

unsupported isolation level, see Unsupported Combination of Isolation Level.

Levels of Isolation Supported by CUBRID

Name Description

SERIALIZABLE (6) In this isolation level, problems concerning concurrency (e.g. dirty read,

non-repeatable read, phantom read, etc.) do not occur.

REPEATABLE READ

CLASS with

REPEATABLE READ

INSTANCES (5)

Another transaction T2 cannot update the schema of table A while

transaction T1 is viewing table A.

Transaction T1 may experience phantom read for the record R that was

inserted by another transaction T2 when it is repeatedly retrieving a

specific record.

REPEATABLE READ

CLASS with

READ COMMITTED

INSTANCES

(or CURSOR STABILITY)

(4)

Another transaction T2 cannot update the schema of table A while

transaction T1 is viewing table A.

Transaction T1 may experience R read (non-repeatable read) that was

updated and committed by another transaction T2 when it is repeatedly

retrieving the record R.

REPEATABLE READ

CLASS with

READ UNCOMMITTED

INSTANCES (3)

Default isolation level.

Another transaction T2 cannot update the schema of table A while

transaction T1 is viewing table A.

Transaction T1 may experience R' read (dirty read) for the record that was

updated but not committed by another transaction T2.

READ COMMITTED

CLASS with

READ COMMITTED

INSTANCES (2)

Transaction T1 may experience A' read (non-repeatable read) for the table

that was updated and committed by another transaction T2 while it is

viewing table A repeatedly.

Transaction T1 may experience R' read (non-repeatable read) for the record

that was updated and committed by another transaction T2 while it is

retrieving the record R repeatedly.

READ COMMITTED

CLASS with

READ UNCOMMITTED

INSTANCES (1)

Transaction T1 may experience A' read (non-repeatable read) for the table

that was updated and committed by another transaction T2 while it is

repeatedly viewing table A.

Transaction T1 may experience R' read (dirty read) for the record that was

updated but not committed by another transaction T2.

If the transaction level is changed in an application while a transaction is executed, the new level is applied to the rest of

the transaction being executed. Therefore, some object locks that have already been obtained may be released during the

transaction while the new isolation level is applied. For this reason, it is recommended that the transaction isolation

level be modified when the transaction starts (after commit, rollback or system restart) because an isolation level which

has already been set does not apply to the entire transaction, but can be changed during the transaction.

GET TRANSACTION ISOLATION LEVEL

Description

You can assign the current isolation level to variable by using the GET TRANSACTION statement. The following is a

statement that verifies the isolation level. variable.

Syntax

GET TRANSACTION ISOLATION LEVEL [{ INTO | TO } variable] [;]

CUBRID 2008 R4.0 Help

294

Example

csql> GET TRANSACTION ISOLATION LEVEL;

 Result

=============

 READ COMMITTED SCHEMA, READ UNCOMMITTED INSTANCES

SERIALIZABLE

The highest isolation level (6). Problems concerning concurrency (e.g. dirty read, non-repeatable read, phantom read,

etc.) do not occur.

The following are the rules of this isolation level:

• Transaction T1 cannot read or modify the record being updated by another transaction T2.

• Transaction T1 cannot read or modify the record being viewed by another transaction T2.

• Another transaction T2 cannot insert a new record into table A while transaction T1 is retrieving the records of

table A.

This isolation level uses a two-phase locking protocol for shared and exclusive lock: the lock is maintained until the

transaction ends even after the operation has been executed.

Example

The following is an example that shows that another transaction cannot access the table or record while one transaction

is reading or updating the object when the transaction level of the concurrent transactions is SERIALIZABLE.

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION

LEVEL 6;

Isolation level set to:

SERIALIZABLE

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 6;

Isolation level set to:

SERIALIZABLE

--creating a table

CREATE TABLE

isol6_tbl(host_year

integer, nation_code

char(3));

INSERT INTO isol6_tbl

VALUES (2008, 'AUS');

COMMIT;

 --selecting records from the table

SELECT * FROM isol6_tbl WHERE

nation_code = 'AUS';

 host_year nation_code

===================================

 2008 'AUS'

INSERT INTO isol6_tbl

VALUES (2004, 'AUS');

/* unable to insert a row

until the tran 2 committed

*/

 COMMIT;

 SELECT * FROM isol6_tbl WHERE

nation_code = 'AUS';

/* unable to select rows until tran

CUBRID SQL Guide

295

1 committed */

COMMIT;
 host_year nation_code

===================================

 2008 'AUS'

 2004 'AUS'

DELETE FROM isol6_tbl

WHERE nation_code = 'AUS'

and

host_year=2008;

/* unable to delete rows

until tran 2 committed */

 COMMIT;

 SELECT * FROM isol6_tbl WHERE

nation_code = 'AUS';

/* unable to select rows until tran

1 committed */

COMMIT;
 host_year nation_code

===================================

 2004 'AUS'

ALTER TABLE isol6_tbl

ADD COLUMN gold INT;

/* unable to alter the

table schema until tran 2

committed */

/* repeatable read is ensured while

tran_1 is altering table schema */

SELECT * FROM isol6_tbl WHERE

nation_code = 'AUS';

 host_year nation_code

===================================

 2004 'AUS'

 COMMIT;

 SELECT * FROM isol6_tbl WHERE

nation_code = 'AUS';

/* unable to access the table until

tran_1 committed */

COMMIT;
host_year nation_code gold

===================================

 2004 'AUS' NULL

REPEATABLE READ CLASS with REPEATABLE READ INSTANCES

A relatively high isolation level (5). A dirty or non-repeatable read does not occur, but a phantom read may.

The following are the rules of this isolation level:

• Transaction T1 cannot read or modify the record being updated by another transaction T2.

• Transaction T1 cannot read or modify the record being viewed by another transaction T2.

• Another transaction T2 can insert a new record into table A while transaction T1 is retrieving records of table A.

However, transaction T1 and T2 cannot set the lock on the same record.

This isolation level uses a two-phase locking protocol.

Example

The following is an example that shows that phantom read may occur because another transaction can add a new record

while one transaction is performing the object read when the transaction level of the concurrent transactions is

REPEATABLE READ CLASS with REPEATABLE READ INSTANCES.

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 5

CUBRID 2008 R4.0 Help

296

SET TRANSACTION ISOLATION

LEVEL 5

;xr

Isolation level set to:

REPEATABLE READ SCHEMA,

REPEATABLE READ INSTANCES.

;xr

Isolation level set to:

REPEATABLE READ SCHEMA, REPEATABLE

READ INSTANCES.

--creating a table

CREATE TABLE

isol5_tbl(host_year

integer, nation_code

char(3));

CREATE UNIQUE INDEX on

isol5_tbl(nation_code,

host_year);

INSERT INTO isol5_tbl

VALUES (2008, 'AUS');

INSERT INTO isol5_tbl

VALUES (2004, 'AUS');

COMMIT;

;xr

--selecting records from the table

SELECT * FROM isol5_tbl WHERE

nation_code='AUS';

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2004 'AUS'

 2008 'AUS'

2 rows selected.

INSERT INTO isol5_tbl

VALUES (2004, 'KOR');

INSERT INTO isol5_tbl

VALUES (2000, 'AUS');

;xr

2 rows affected.

/* able to insert new rows

only when locks are not

conflicted */

SELECT * FROM isol5_tbl WHERE

nation_code='AUS';

;xr

/* phantom read may occur when tran

1 committed */

COMMIT;

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2000 'AUS'

 2004 'AUS'

 2008 'AUS'

3 rows selected.

DELETE FROM isol5_tbl

WHERE nation_code = 'AUS'

and

host_year=2008;

;xrun

/* unable to delete rows

CUBRID SQL Guide

297

until tran 2 committed */

1 rows affected.

1 command(s) successfully

processed.

COMMIT;

;xr

SELECT * FROM isol5_tbl WHERE

nation_code = 'AUS';

;xr

/* unable to select rows until tran

1 committed */

COMMIT;

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2000 'AUS'

 2004 'AUS'

2 rows selected.

ALTER TABLE isol5_tbl

ADD COLUMN gold INT;

;xr

/* unable to alter the

table schema until tran 2

committed */

/* repeatable read is ensured while

tran_1 is altering table schema */

SELECT * FROM isol5_tbl WHERE

nation_code = 'AUS';

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2000 'AUS'

 2004 'AUS'

2 rows selected.

1 command(s) successfully

processed.

COMMIT;

;xr

SELECT * FROM isol5_tbl WHERE

nation_code = 'AUS';

;xr

/* unable to access the table until

tran_1 committed */

COMMIT;

;xr

=== <Result of SELECT Command > ===

host_year nation_code gold

===================================

 2000 'AUS' NULL

 2004 'AUS' NULL

2 rows selected.

REPEATABLE READ CLASS with READ COMMITTED INSTANCES

A relatively low isolation level (4). A dirty read does not occur, but non-repeatable or phantom read may. That is,

transaction T1 can read another value because insert or update by transaction T2 is allowed while transaction T1 is

repeatedly retrieving one object.

The following are the rules of this isolation level:

• Transaction T1 cannot read the record being updated by another transaction T2.

CUBRID 2008 R4.0 Help

298

• Transaction T1 can update/insert record to the table being viewed by another transaction T2.

• Transaction T1 cannot change the schema of the table being viewed by another transaction T2.

This isolation level uses a two-phase locking protocol for an exclusive lock. A shared lock on a row is released

immediately after it is read; however, an intention lock on a table is released when a transaction terminates to ensure

repeatable read on the schema.

Example

The following is an example that shows that a phantom or non-repeatable read may occur because another transaction

can add or update a record while one transaction is performing the object read but repeatable read for the table schema

update is ensured when the transaction level of the concurrent transactions is REPEATABLE READ CLASS with

READ COMMITTED INSTANCES.

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION

LEVEL 4;

Isolation level set to:

REPEATABLE READ SCHEMA,

READ COMMITTED INSTANCES.

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 4;

Isolation level set to:

REPEATABLE READ SCHEMA, READ

COMMITTED INSTANCES.

--creating a table

CREATE TABLE

isol4_tbl(host_year

integer, nation_code

char(3));

INSERT INTO isol4_tbl

VALUES (2008, 'AUS');

COMMIT;

--selecting records from the table

SELECT * FROM isol4_tbl;

 host_year nation_code

===================================

 2008 'AUS'

INSERT INTO isol4_tbl

VALUES (2004, 'AUS');

INSERT INTO isol4_tbl

VALUES (2000, 'NED');

/* able to insert new rows

even if tran 2 uncommitted

*/

SELECT * FROM isol4_tbl;

/* phantom read may occur when tran

1 committed */

COMMIT;
 host_year nation_code

===================================

 2008 'AUS'

 2004 'AUS'

 2000 'NED'

INSERT INTO isol4_tbl

VALUES (1994, 'FRA');

SELECT * FROM isol4_tbl;

/* unrepeatable read may occur when

CUBRID SQL Guide

299

tran 1 committed */

DELETE FROM isol4_tbl

WHERE nation_code = 'AUS'

and

host_year=2008;

/* able to delete rows

while tran 2 is selecting

rows*/

COMMIT;
 host_year nation_code

===================================

 2004 'AUS'

 2000 'NED'

 1994 'FRA'

ALTER TABLE isol4_tbl

ADD COLUMN gold INT;

/* unable to alter the

table schema until tran 2

committed */

/* repeatable read is ensured while

tran_1 is altering table schema */

SELECT * FROM isol4_tbl;

 host_year nation_code

===================================

 2004 'AUS'

 2000 'NED'

 1994 'FRA'

 COMMIT;

SELECT * FROM isol4_tbl;

/* unable to access the table until

tran_1 committed */

COMMIT;
host_year nation_code gold

===================================

 2004 'AUS' NULL

 2000 'NED' NULL

 1994 'FRA' NULL

REPEATABLE READ CLASS with READ UNCOMMITTED INSTANCES

The default isolation of CUBRID (3). The concurrency level is high. A dirty, non-repeatable or phantom read may occur

for the tuple, but repeatable read is ensured for the table. That is, transaction T2 can read an object while transaction T1

is updating one.

The following are the rules of this isolation level:

• Transaction T1 can read the record being updated by another transaction T2.

• Transaction T1 can update/insert record to the table being viewed by another transaction T2.

• Transaction T1 cannot change the schema of the table being viewed by another transaction T2.

This isolation level uses a two-phase locking protocol for an exclusive and update lock. However, the shared lock on the

tuple is released immediately after it is retrieved. The intention lock on the table is released when the transaction ends to

ensure repeatable reads.

Example

The following is an example that shows that another transaction can read dirty data uncommitted by one transaction but

repeatable reads are ensured for table schema update when the transaction level of the concurrent transactions is

REPEATABLE READ CLASS with READ UNCOMMITTED INSTANCES.

CUBRID 2008 R4.0 Help

300

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION

LEVEL 3;

Isolation level set to:

REPEATABLE READ SCHEMA,

READ UNCOMMITTED INSTANCES.

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 3;

Isolation level set to:

REPEATABLE READ SCHEMA, READ

UNCOMMITTED INSTANCES.

--creating a table

CREATE TABLE

isol3_tbl(host_year

integer, nation_code

char(3));

CREATE UNIQUE INDEX on

isol3_tbl(nation_code,

host_year);

INSERT INTO isol3_tbl

VALUES (2008, 'AUS');

COMMIT;

 --selecting records from the table

SELECT * FROM isol3_tbl;

 host_year nation_code

===================================

 2008 'AUS'

INSERT INTO isol3_tbl

VALUES (2004, 'AUS');

INSERT INTO isol3_tbl

VALUES (2000, 'NED');

/* able to insert new rows

even if tran 2 uncommitted

*/

 SELECT * FROM isol3_tbl;

 host_year nation_code

===================================

 2008 'AUS'

 2004 'AUS'

 2000 'NED'

/* dirty read may occur so that

tran_2 can select new rows

uncommitted by tran_1 */

ROLLBACK;

 SELECT * FROM isol3_tbl;

 host_year nation_code

===================================

 2008 'AUS'

/* unrepeatable read may occur so

that selected results are different

*/

INSERT INTO isol3_tbl

VALUES (1994, 'FRA');

DELETE FROM isol3_tbl

WHERE nation_code = 'AUS'

and

host_year=2008;

CUBRID SQL Guide

301

/* able to delete rows even

if tran 2 uncommitted */

 SELECT * FROM isol3_tbl;

 host_year nation_code

===================================

 1994 'FRA'

ALTER TABLE isol3_tbl

ADD COLUMN gold INT;

/* unable to alter the

table schema until tran 2

committed */

 /* repeatable read is ensured while

tran_1 is altering table schema */

SELECT * FROM isol3_tbl;

 host_year nation_code

===================================

 1994 'FRA'

 COMMIT;

 SELECT * FROM isol3_tbl;

COMMIT;
host_year nation_code gold

===================================

 1994 'FRA' NULL

Note CUBRID flushes dirty data (or dirty instances) in the client buffers to the database (server) such as the following

situations. For more information, see How to Handle Dirty Instances.

READ COMMITTED CLASS with READ COMMITTED INSTANCES

A relatively low isolation level (2). A dirty read does not occur, but non-repeatable or phantom read may occur. That is,

this level is similar to REPEATABLE READ CLASS with READ COMMITTED INSTANCES(level 4) described

above, but works differently for table schema. Non-repeatable read due to a table schema update may occur because

another transaction T2 can change the schema of the table being viewed by the transaction T1.

The following are the rules of this isolation level:

• Transaction T1 cannot read the record being updated by another transaction T2.

• Transaction T1 can update/insert a record to the table being viewed by another transaction T2.

• Transaction T1 can change the schema of the table being viewed by another transaction T2.

This isolation level uses a two-phase locking protocol for an exclusive lock. However, non-repeatable read may occur

because the shared lock on the tuple is released immediately after it is retrieved and the intention lock on the table is

released immediately as well.

Example

The following is an example that shows that phantom or non-repeatable read for the record as well as for the table

schema may occur because another transaction can add or update a new record while one transaction is performing the

object read when the transaction level of the concurrent transactions is READ COMMITTED CLASS with READ

COMMITTED INSTANCES.

session 1 session 2

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION

LEVEL 2

;xr

;autocommit off

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 2

;xr

Isolation level set to:

CUBRID 2008 R4.0 Help

302

Isolation level set to:

READ COMMITTED SCHEMA, READ

COMMITTED INSTANCES.

READ COMMITTED SCHEMA, READ

COMMITTED INSTANCES.

--creating a table

CREATE TABLE

isol2_tbl(host_year

integer, nation_code

char(3));

CREATE UNIQUE INDEX on

isol2_tbl(nation_code,

host_year);

INSERT INTO isol2_tbl

VALUES (2008, 'AUS');

COMMIT;

;xr

 --selecting records from the table

SELECT * FROM isol2_tbl;

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2008 'AUS'

1 rows selected.

INSERT INTO isol2_tbl

VALUES (2004, 'AUS');

INSERT INTO isol2_tbl

VALUES (2000, 'NED');

;xr

2 rows affected.

/* able to insert new rows

even if tran 2 uncommitted

*/

 SELECT * FROM isol2_tbl;

;xr

/* phantom read may occur when tran

1 committed */

COMMIT;

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2008 'AUS'

 2004 'AUS'

 2000 'NED'

3 rows selected.

INSERT INTO isol2_tbl

VALUES (1994, 'FRA');

;xr

1 rows affected.

 SELECT * FROM isol2_tbl;

;xr

/* unrepeatable read may occur when

tran 1 committed */

DELETE FROM isol2_tbl

CUBRID SQL Guide

303

WHERE nation_code = 'AUS'

and

host_year=2008;

;xr

1 rows affected.

/* able to delete rows even

if tran 2 uncommitted */

COMMIT;

;xr

=== <Result of SELECT Command> ===

 host_year nation_code

===================================

 2004 'AUS'

 2000 'NED'

 1994 'FRA'

3 rows selected.

ALTER TABLE isol2_tbl

ADD COLUMN gold INT;

;xr

1 command(s) successfully

processed.

/* able to alter the table

schema even if tran 2 is

uncommitted yet*/

 /* unrepeatable read may occur so

that result shows different schema

*/

SELECT * FROM isol2_tbl;

;xr

COMMIT;

;xr

=== <Result of SELECT Command > ===

host_year nation_code gold

===================================

 2004 'AUS' NULL

 2000 'NED' NULL

 1994 'FRA' NULL

3 rows selected.

READ COMMITTED CLASS with READ UNCOMMITTED INSTANCES

The lowest isolation level (1). The concurrency level is the highest. A dirty, non-repeatable or phantom read may occur

for the tuple and a non-repeatable read may occur for the table as well. Similar to REPEATABLE READ CLASS with

READ UNCOMMITTED INSTANCES(level 3) described above, but works differently for the table schema. That is,

non-repeatable read due to table schema update may occur because another transaction T2 can change the schema of the

table being viewed by the transaction T1.

The following are the rules of this isolation level:

• Transaction T1 can read the record being updated by another transaction T2.

• Transaction T1 can update/insert record to the table being viewed by another transaction T2.

• Transaction T1 can change the schema of the table being viewed by another transaction T2.

This isolation level uses a two-phase locking protocol for an exclusive and update lock. However, the shared lock on the

tuple is released immediately after it is retrieved. The intention lock on the table is released immediately after the

retrieval as well.

Example

session 1 session 2

;autocommit off
;autocommit off

CUBRID 2008 R4.0 Help

304

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION

LEVEL 1;

Isolation level set to:

READ COMMITTED SCHEMA,

READ UNCOMMITTED

INSTANCES.

AUTOCOMMIT IS OFF

SET TRANSACTION ISOLATION LEVEL 1;

Isolation level set to:

READ COMMITTED SCHEMA, READ

UNCOMMITTED INSTANCES.

--creating a table

CREATE TABLE

isol1_tbl(host_year

integer, nation_code

char(3));

CREATE UNIQUE INDEX on

isol1_tbl(nation_code,

host_year);

INSERT INTO isol1_tbl

VALUES (2008, 'AUS');

COMMIT;

 --selecting records from the table

SELECT * FROM isol1_tbl;

 host_year nation_code

===================================

 2008 'AUS'

INSERT INTO isol1_tbl

VALUES (2004, 'AUS');

INSERT INTO isol1_tbl

VALUES (2000, 'NED');

/* able to insert new rows

even if tran 2 uncommitted

*/

 SELECT * FROM isol1_tbl;

 host_year nation_code

===================================

 2008 'AUS'

 2004 'AUS'

 2000 'NED'

/* dirty read may occur so that

tran_2 can select new rows

uncommitted by tran_1 */

ROLLBACK;

 SELECT * FROM isol1_tbl;

 host_year nation_code

===================================

 2008 'AUS'

/* unrepeatable read may occur so

that selected results are different

*/

INSERT INTO isol1_tbl

VALUES (1994, 'FRA');

DELETE FROM isol1_tbl

WHERE nation_code = 'AUS'

and

host_year=2008;

/* able to delete rows

while tran 2 is selecting

CUBRID SQL Guide

305

rows*/

 SELECT * FROM isol1_tbl;

 host_year nation_code

===================================

 1994 'FRA'

ALTER TABLE isol1_tbl

ADD COLUMN gold INT;

/* able to alter the table

schema even if tran 2 is

uncommitted yet*/

 /* unrepeatable read may occur so

that result shows different schema

*/

SELECT * FROM isol1_tbl;

COMMIT;
host_year nation_code gold

====================================

 1994 'FRA' NULL

UPDATE INCONSISTENCY

In this isolation level, uncommitted updates may be lost, which makes a transaction unrestorable (cannot be rolled back)

because the data are committed before the end of the transaction. CUBRID does not support this isolation level because

this can cause the updates made by the user to be lost. However, if this isolation level is specified, CUBRID provides an

appropriate level to the user application.

The following are the rules of this isolation level:

• A transaction does not overwrite an object being modified by another transaction.

Note A transaction can be restored in all supported isolation levels because updates are not committed before the end of

the transaction.

Combination of Unsupported Isolation Level

You can set customized isolation levels by using the SET TRANSACTION ISOLATION LEVE statement. However,

combinations of isolation levels below are not supported. If they are used, a system error message is shown up and an

isolation level closest to the one specified is chosen.

The following are unsupported isolation levels. If table schema is changed while data is selected, unrepeatable read

occurs; therefore, the combinations below are not supported.

• READ COMMITTED CLASS with REPEATABLE READ INSTANCES

• READ UNCOMMITTED CLASS with REPEATABLE READ INSTANCES

Neither are isolation levels below supported because updating a row by a transaction is not allowed while table schema

is changed by other transaction.

• READ UNCOMMITTED CLASS with READ COMMITTED INSTANCES

• READ UNCOMMITTED CLASS with READ UNCOMMITTED INSTANCES

How to Handle Dirty Instance

CUBRID flushes dirty data (or dirty instances) in the client buffers to the database (server) such as the following

situations. In additions to those, there can be more situations where flushes can be performed.

• Dirty data can be flushed to server when a transaction is committed.

• Some of dirty data can be flushed to server when a lot of data is loaded into the client buffers.

• Dirty data of table A can be flushed to server when the schema of table A is updated.

• Dirty data of table A can be flushed to server when the table A is retrieved (SELECT)

CUBRID 2008 R4.0 Help

306

• Some of dirty data can be flushed to server when a server function is called.

Transaction Termination and Restoration

Overview

The restore process in CUBRID makes it possible that the database is not affected even if a software or hardware error

occurs. In CUBRID, all read and update commands that are made during a transaction must be atomic. This means that

either all of the transaction's commands are committed to the database or none are. The concept of atomicity is extended

to the set of operations that consists of a transaction. The transaction must either commit so that all effects are

permanently applied to the database or roll back so that all effects are removed. To ensure transaction atomicity,

CUBRID applies the effects of the committed transaction again every time an error occurs without the updates of the

transaction being written to the disk. CUBRID also removes the effects of partially committed transactions in the

database every time the site fails (some transactions may have not committed or applications may have requested to

cancel transactions). This restore feature eases the burden for the applications of maintaining the database consistency

depending on the system error. The restore process used in CUBRID is based on the undo/redo logging mechanism.

CUBRID provides an automatic restore method to maintain the transaction atomicity when a hardware or software error

occurs. You do not have to take the responsibility for restore since CUBRID's restore feature always returns the

database to a consistent state even when an application or computer system error occurs. For this purpose, CUBRID

automatically rolls back part of committed transactions when the application fails or the user requests explicitly. For

example, a system error that occurred during the execution of the COMMIT WORK statement must be stopped if the

transaction has not committed yet (it cannot be confirmed that the user's operation has been committed). Automatic stop

prevents errors causing undesired changes to the database by canceling uncommitted updates.

Restarting Database

CUBRID uses log volumes/files and database backups to restore committed or uncommitted transactions when a system

or media (disk) error occurs. Logs are also used to support the user-specified rollback. A log consists of a collection of

sequential files created by CUBRID. The most recent log is called the active log, and the rest are called archive logs. A

log file refers to both the active log and archive logs.

All updates of the database are written to the log. Actually, two copies of the updates are logged. The first one is called

a before image and used to restore data during execution of the user-specified ROLLBACK WORK statement or

during media or system errors. The second copy is an after image and used to re-apply the updates when a media or

system error occurs.

When the active log is full, CUBRID copies it to an archive log to store in the disk. The archive log is needed to restore

the database when a system failure occurs. You don't need to maintain archive logs if there is no need for system failure

restore. This configuration can be set by using the media_failure_support system parameter. For more information on

this parameter, see Logging-Related Parameters.

Normal Termination or Error

CUBRID restores the database if it restarts due to a normal termination or a device error. The restore process re-applies

the committed changes that have not been applied to the database and removes the uncommitted changes stored in the

database. The general operation of the database resumes after the restore is completed. This restore process does not use

any archive logs or database backup.

In a client/server environment, the database can restart by using server utilities.

Media Error

The user's intervention is somewhat needed to restart the database after a media error occurs. The first step is to restore

the database by installing a backup of a known good state. In CUBRID, the most recent log file (the one after the last

backup) must be installed. This specific log (archive or active) is applied to a backup copy of the database. As with

normal termination, the database can restart after restoration is committed.

CUBRID SQL Guide

307

It is important to back up the database periodically. Backup periods differ depending on the frequency of database

updates. Once a database backup is created, CUBRID uses the current database backup to specify the archive log that is

not needed any more. However, CUBRID does not delete the archive log. The database administrator must take extra

care when deleting the database backup or archive log. In some cases, the latest database backup may fail.

Note To minimize the possibility of losing database updates, it is recommended to create a snapshot of the archive log

and backup the log to a disk before it is deleted from the disk. The DBA can backup and restore the database by using

the cubrid backupdb and cubrid restoredb utilities. For more information on these utilities, see Database Backup.

CUBRID 2008 R4.0 Help

308

Database User Authorization

Database User

CUBRID has two types of users by default: DBA and PUBLIC.

• All users have authorization granted to the PUBLIC user. All users of the database are automatically the members

of PUBLIC. Granting authorization to the PUBLIC means granting it all users.

• The DBA user has the authorization of the database administrator. The DBA automatically becomes the member of

all users and groups. That is, the DBA is granted the access for all tables. Therefore, there is no need to grant

authorization explicitly to the DBA and DBA members. Each database user has a unique name. The database

administrator can create multiple users simultaneously using the cubrid createdb utility (see How to Use the

Database Management Utilities for details). A database user cannot have a member who already has the same

authorization. If authorization is granted to a user, all members of the user is automatically granted the same

authorization.

Managing User

Description

DBA and DBA members can create, drop and alter users by using SQL statements.

Syntax

CREATE USER user_name

[PASSWORD password]

[GROUPS user_name [{, user_name } ...]]

[MEMBERS user_name [{, user_name } ...]] ;

DROP_USER user_name;

ALTER_USER user_name PASSWORD password;

• user_name : Specifies the user name to create, delete or change.

• password : Specifies the user password to create or change.

Example 1

The following is an example in which the user Fred is created, the password is changed, and then the user Fred is

deleted.

CREATE USER Fred;

ALTER USER Fred PASSWORD '1234';

DROP USER Fred;

Example 2

The following is an example in which a user is created and then members are added to the user. By the following

statement, company becomes a group that has engineering, marketing and design as its members. marketing becomes a

group with members smith and jones, design becomes a group with a member smith, and engineering becomes a group

with a member brown.

CREATE USER company;

CREATE USER engineering GROUPS company;

CREATE USER marketing GROUPS company;

CREATE USER design GROUPS company;

CREATE USER smith GROUPS design, marketing;

CREATE USER jones GROUPS marketing;

CREATE USER brown GROUPS engineering;

Example 3

The following example creates the same groups as above, but uses the MEMBERS keyword instead of GROUPS.

CREATE USER smith;

CUBRID SQL Guide

309

CREATE USER brown;

CREATE USER jones;

CREATE USER engineering MEMBERS brown;

CREATE USER marketing MEMBERS smith, jones;

CREATE USER design MEMBERS smith;

CREATE USER company MEMBERS engineering, marketing, design;

Granting Authorization

Description

In CUBRID, the smallest grant unit of authorization is a table. You must grant appropriate authorization to other users

(groups) before allowing them to access the table you created.

You don't need to grant authorization individually because the members of the granted group have the same

authorization. The access to the (virtual) table created by a PUBLIC user is allowed to all other users. You can grant

access authorization to a user by using the GRANT statement.

Syntax

GRANT operation [{ ,operation }_] ON table_name [{ ,table_name }_]

TO user [{ ,user }_] [WITH GRANT OPTION] [;]

• operation : Indicates an operation that can be used when granting authorization. The following table shows the

operations:

• SELECT : Allows to read the table definitions and retrieve records. The most general type of permissions.

• INSERT : Allows to create records in the table.

• UPDATE : Allows to modify the records already existing in the table.

• DELETE : Allows to delete records in the table.

• ALTER : Allows to modify the table definition, rename or delete the table.

• INDEX : Allows to call table methods or instance methods.

• EXECUTE : Allows to call table methods or instance methods.

• ALL PRIVILEGES : Includes all permissions described above.

• table_name : Specifies the name of the table or virtual table to be granted.

• user : Specifies the name of the user (group) to be granted. Enter the login name of the database user or PUBLIC, a

system-defined user. If PUBLIC is specified, all database users are granted with the permission.

• WITH GRANT OPTION : WITH GRANT OPTION allows the grantee of authorization to grant that same

privilege to another user.

Example 1

The following is an example in which the SELECT authorization for the olympic table is granted to Fred (all members

of Fred).

GRANT SELECT ON olympic TO Fred;

Example 2

The following is an example in which SELECT, INSERT, UPDATE and DELETE authorization for the nation and

athlete tables are granted to Jeniffer and Daniel (all members belonging to Jeniffer and Daniel).

GRANT SELECT, INSERT, UPDATE, DELETE ON nation, athlete TO Jeniffer, Daniel;

Example 3

The following is an example in which all authorization for the game and event tables are granted to all users.

GRANT ALL PRIVILEGES ON game, event TO public;

CUBRID 2008 R4.0 Help

310

Example 4

In the following example, the GRANT statement grants search authorization for the record and history tables to Ross,

and WITH GRANT OPTION allows Ross to grant the same authorization to another user.

GRANT SELECT ON record, history TO Ross WITH GRANT OPTION;

Caution

• The grantor of authorization must be the owner of all tables listed before the grant operation or have WITH

GRANT OPTION specified.

• Before granting SELECT, UPDATE, DELETE and INSERT authorization for a virtual table, the owner of the

virtual table must have SELECT and GRANT authorization for all the tables included in the queries in the virtual

table's query specification. The DBA user and the members of the DBA group are automatically granted all

authorization for all tables.

Revoking Authorization

Description

You can revoke privileges using the REVOKE statement. The privileges granted to a user can be revoked anytime. If

more than one privilege are granted to a user, all or part of the privileges can be revoked. In addition, if privileges on

multiple tables are granted to more than one user using one GRANT statement, the privileges can be selectively

revoked for specific users and tables.

If the privilege (WITH GRANT OPTION) is revoked from the grantor, the privilege granted to the grantee by that

grantor is also revoked.

Syntax

REVOKE operation [{ , operation }_] ON table_name [{ , class_name }_]

FROM user [{ , user }_] [;]

• operation : Indicates an operation that can be used when granting privileges. (See Syntax in Granting Privileges for

details)

• table_name : Specifies the name of the table or virtual table to be granted.

• user : Specifies the name of the user (group) to be granted.

Example 1

The following is an example in which SELECT, INSERT, UPDATE and DELETE privileges for the nation and

athlete tables are granted to Fred and John.

GRANT SELECT, INSERT, UPDATE, DELETE ON nation, athlete TO Fred, John;

Example 2

The following is an example in which the REVOKE statement is used to allow John only the SELECT privilege while

maintaining all the privileges for Fred granted in Example 1. If John granted the privileges to another user, the grantee is

also allowed to use the SELECT privilege only.

REVOKE INSERT, UPDATE, DELETE ON nation, athlete FROM John;

Example 3

The following is an example in which the REVOKE statement is used to revoke all privileges granted to Fred in

Example 1. If the statement is executed, Fred is not be allowed to perform any operation on the nation and athlete tables.

REVOKE ALL PRIVILEGES ON nation, athlete FROM Fred;

CUBRID SQL Guide

311

User Authorization Management METHOD

Description

The database administrator (DBA) can check and modify user authorization by calling authorization-related methods

defined in db_user where information about database user is stored, and db_authorizations (the system authorization

class). The administrator can specify db_user or db_authorization depending on the method to be called, and save the

return value of a method to a variable. In addition, some methods can be called only by DBA or members of DBA group.

Syntax

CALL method_definition ON CLASS auth_class [TO variable] [;]

CALL method_definition ON variable [;]

login() method

As a class method of db_user class, this method is used to change the users who are currently connected to the database.

The name and password of a new user to connect are given as parameters, and they must be string type. If there is no

password, a blank character ('') can be used as the parameter. DBA and DBA members can call the login() method

without a password.

-- Connect as DBA user who has no password

CALL login ('dba', '') ON CLASS db_user;

-- Connect as a user_1 whose password is cubrid

CALL login ('user_1', 'cubrid') ON CLASS db_user;

add_user() method

As a class method of db_user class, this method is used to add a new user. The name and password of a new user to add

are given as parameters, and they must be string type. At this time, the new user name should not duplicate any user

name already registered in a database. The add_user() can be called only by DBA or members of DBA group.

-- Add user_2 who has no password

CALL add_user ('user_2', '') ON CLASS db_user;

-- Add user_3 who has no password, and save the return value of a method into an admin

variable

CALL add_user ('user_2', '') ON CLASS db_user to admin;

drop_user() method

As a class method of db_user class, this method is used to drop an existing user. Only the user name to be dropped is

given as a parameter, and it must be a string type. However, the owner of a class cannot be dropped thus DBA needs to

specify a new owner of the class before dropping the user. The drop_user() method can be also called only by DBA or

members of DBA.

-- Delete user_2

CALL drop_user ('user_2') ON CLASS db_user;

find_user() method

As a class method of db_user class, this method is used to find a user who is given as a parameter. The name of a user

to be found is given as a parameter, and the return value of the method is stored into a variable that follows 'to'. The

stored value can be used in a next query execution.

-- Find user_2 and save it into a variable called 'admin'

CALL find_user ('user_2') ON CLASS db_user to admin;

set_password() method

This method is an instance method that can call each user instance, and it is used to change a user's password. The new

password of a specified user is given as a parameter. General users other than DBA and DBA group members can only

change their own passwords.

-- Add user_4 and save it into a variable called user_common

CALL add_user ('user_4','') ON CLASS db_user to user_common;

CUBRID 2008 R4.0 Help

312

-- Change the password of user_4 to 'abcdef'

CALL set_password('abcdef') on user_common;

change_owner() method

As a class method of db_authorizations class, this method is used to change the owner of a class. The name of a class

for which you want to change the owner, and the name of a new owner are given as parameters. At this time, the class

and owner that are specified as a parameter must exist in a database. Otherwise, an error occurs. change_owner() can

be called only by DBA or members of DBA group.

-- Change the owner of table_1 to user_4

CALL change_owner ('table_1', 'user_4') ON CLASS db_authorizations;

Example

The following is an example of a CALL statement that calls the find_user method defined in the system table db_user.

It is called to determine whether the database user entered as the find_user exists. The first statement calls the table

method defined in the db_user class. The name (db_user in this case) is stored in x if the user is registered in the

database. Otherwise, NULL is stored.

The second statement outputs the value stored in the variable x. In this query statement, the DB_ROOT is a system

class that can have only one record. It can be used to output the value of sys_date or other registered variables. For this

purpose, the DB_ROOT can be replaced by another table having only one record.

CALL find_user('dba') ON CLASS db_user to x;

Result

======================

db_user

SELECT x FROM db_root;

x

======================

db_user

With find_user, you can determine if the user exists in the database depending on whether the returned value is NULL

or not.

CUBRID SQL Guide

313

Query Optimization

Updating Statistics

Description

With the UPDATE STATISTICS ON statement, you can generate internal statistics used by the query processor. Such

statistics allow the database system to perform query optimization more efficiently.

Syntax

UPDATE STATISTICS ON { table_spec [{, table_spec }] | ALL CLASSES | CATALOG CLASSES }

[;]

table_spec :

single_table_spec

(single_table_spec [{, single_table_spec }])

single_table_spec :

[ONLY] table_name

| ALL table_name [(EXCEPT table_name)]

• ALL CLASSES : If the ALL CLASSES keyword is specified, the statistics on all the tables existing in the

database are updated.

Checking Statistics Information

Description

You can check the statistics Information with the session command of the CSQL interpreter.

Syntax

csql> ;info stats <table_name>

• table_name : Table name to check the statistics Information

Example

The following is an example that outputs the statistics Information of the t1 table in the CSQL interpreter.

CREATE TABLE t1 (code INT);

INSERT INTO t1 VALUES(1),(2),(3),(4),(5); CREATE INDEX ON t1(code); UPDATE STATISTICS ON

t1;

;info stats t1

CLASS STATISTICS **************** Class name: t1 Timestamp: Mon Mar 14 16:26:40

2011 Total pages in class heap: 1 Total objects: 5 Number of attributes: 1 Atrribute:

code id: 0 Type: DB_TYPE_INTEGER Mininum value: 1 Maxinum value:

5 B+tree statistics: BTID: { 0 , 1049 } Cardinality: 5 (5) , Total

pages: 2 , Leaf pages: 1 , Height: 2

Using SQL Hint

Description

Using hints can affect the performance of query execution. you can allow the query optimizer to create more efficient

execution plan by referring the SQL HINT. The SQL HINTs related tale join, index, and statistics information are

provided by CUBRID.

Syntax

CREATE /*+ NO_STATS */ [TABLE | CLASS] ...;

ALTER /*+ NO_STATS */ [TABLE | CLASS] ...;

CUBRID 2008 R4.0 Help

314

CREATE /*+ NO_STATS */ INDEX ...;

ALTER /*+ NO_STATS */ INDEX ...;

DROP /*+ NO_STATS */ INDEX ...;

SELECT /*+ hint [{ hint } ...] */

SELECT --+ hint [{ hint } ...]

SELECT //+ hint [{ hint } ...]

hint :

USE_NL[(spec-name[{, spec-name}...])]

USE_IDX[(spec-name[{, spec-name}...])]

USE_MERGE[(spec-name[{, spec-name}...])]

ORDERED

QUERY_CACHE(1)

USE_DESC_IDX

NO_COVERING_IDX

SQL hints are specified by using plus signs and comments. CUBRID interprets this comment as a list of hints separated

by blanks. The hint comment must appear after the SELECT, CREATE, or ALTER keyword, and the comment must

begin with a plus sign (+), following the comment delimiter.

• hint : The following hints can be specified.

• USE_NL : Related to a table join, the query optimizer creates a nested loop join execution plan with this hint.

• USE_MERGE : Related to a table join, the query optimizer creates a sort merge join execution plan with this hint.

• ORDERED : Related to a table join, the query optimizer create a join execution plan with this hint, based on the

order of tables specified in the FROM clause. The left table in the FROM clause becomes the outer table; the right

one becomes the inner table.

• USE_IDX : Related to a index, the query optimizer creates a index join execution plan corresponding to a specified

table with this hint.

− USE_DESC_IDX : This is a hint for the scan in descending order. For more information, see Index Scan in

Descending Order.

− NO_COVERING_IDX : This is a hint not to use the covering index feature. For more information, see

Covering Index.

• NO_STATS : Related to statistics information, the query optimizer does not update statistics information. Query

performance for the corresponding queries can be improved; however, query plan is not optimized because the

information is not updated.

• spec_name : If the spec_name is specified together with USE_NL, USE_IDX or USE_MERGE, the specified join

method applies only to the spec_name. If USE_NL and USE_MERGE are specified together, the given hint is

ignored. In some cases, the query optimizer cannot create a query execution plan based on the given hint. For

example, if USE_NL is specified for a right outer join, the query is converted to a left outer join internally, and the

join order may not be guaranteed.

• QUERY_CACHE(1) : The query cache feature will be applied only to the queries to which this hint is given in the

second query cache mode. If you set 2 for the system parameter, query_cache_mode, you can call it the second

query cache mode. For more information, see Query/Cache-Related Parameters.

Example 1

The following is an example of retrieving the years when Sim Kwon Ho won medals and the types of medals. Here, a

nested loop join execution plan needs to be created which has the athlete table as an outer table and the game table as

an inner table. It can be expressed by the following query. The query optimizer creates a nested loop join execution plan

that has the game table as an outer table and the athlete table as an inner table.

SELECT /*+ USE_NL ORDERED */ a.name, b.host_year, b.medal

FROM athlete a, game b WHERE a.name = 'Sim Kwon Ho' AND a.code = b.athlete_code;

 name host_year medal

===

 'Sim Kwon Ho' 2000 'G'

 'Sim Kwon Ho' 1996 'G'

2 rows selected.

Example 2

The following is an example of viewing query execution time with NO_STAT hint to improve the functionality of drop

partitioned table (before_2008); any data is not stored in the table. Assuming that there are more than 1 million data in

CUBRID SQL Guide

315

the participant2 table. The execution time in the example can differ depending on system performance and database

configuration.

-- Not using NO_STATS hint

ALTER TABLE participant2 DROP partition before_2008;

SQL statement execution time: 31.684550 sec

Current transaction has been committed.

1 command(s) successfully processed.

-- Using NO_STATS hint

ALTER /*+ NO_STATS */ TABLE participant2 DROP partition before_2008;

SQL statement execution time: 0.025773 sec

Current transaction has been committed.

1 command(s) successfully processed.

Viewing Query Plan

Description

To view a query plan for a CUBRID SQL query, change the value of the optimization level by using the SET

OPTIMIZATION statement. You can get the current optimization level value by using the GET OPTIMIZATION

statement.

The CUBRID query optimizer determines whether to perform query optimization and output the query plan by

referencing the optimization level value set by the user. The query plan is displayed as standard output; the following

explanations are based on the assumption that the plan is used in a terminal-based program such as the CSQL Interpreter.

In the CSQL query editor, you can view execution plan by executing the ;plan command. See Session Commands. For

information on how to view a query plan, see the CUBRID Manager.

Syntax

SET OPTIMIZATION LEVEL opt-level [;]

GET OPTIMIZATION LEVEL [{ TO | INTO } variable] [;]

• opt-level: A value that specifies the optimization level. It has the following meanings.

• 0 : Does not perform query optimization. The query is executed using the simplest query plan. This value is used

only for debugging.

• 1 : Create a query plan by performing query optimization and executes the query. This is a default value used in

CUBRID, and does not have to be changed in most cases.

• 2 : Creates a query plan by performing query optimization. However, the query itself is not executed. Generally,

this value is not used; it is used together with the following values to be set for viewing query plans.

• 257 : Performs query optimization and outputs the created query plan. This value works for displaying the query

plan by internally interpreting the value as 256+1 related with the value 1.

• 258 : Performs query optimization and outputs the created query plan. The difference from the value 257 is that the

query is not executed. That is, this value works for displaying the query plan by internally interpreting the value as

256+2 related with the value 2. This setting is useful to examine the query plan but not to intend to see the query

results.

• 513 : Performs query optimization and outputs the detailed query plan. This value works for displaying more

detailed query plan than the value 257 by internally interpreting the value as 512+1.

• 514 : Performs query optimization and outputs the detailed query plan. However, the query is not executed. This

value works for displaying more detailed query plan than the value 258 by internally interpreting the value as

512+2.

Example

The following example is to display the query plan but not execute a query itself by setting the optimization level to 258,

the query is that retrieves the years when Sim Kwon Ho won medals and the types of medals.

GET OPTIMIZATION LEVEL

 Result

=============

 1

 SET OPTIMIZATION LEVEL 258;

CUBRID 2008 R4.0 Help

316

SELECT a.name, b.host_year, b.medal

FROM athlete a, game b WHERE a.name = 'Sim Kwon Ho' AND a.code = b.athlete_code

Query plan:

 Nested loops

 Sequential scan(game b)

 Index scan(athlete a, pk_athlete_code, a.code=b.athlete_code)

There are no results.

0 rows selected.

Using Indexes

USING INDEX Clause

Description

The USING INDEX clause forces a sequential scan or an index scan to be used or an index for better performance to be

included. The USING INDEX clause must be specified after the WHERE clause of SELECT, DELETE, or

UPDATE statement.

If you specify the list of index names in the USING INDEX clause, the query optimizer calculates the query execution

cost and makes the most optimized execution plan comparing the cost between the index scan and the sequential scan

which are specified (CUBRID performs the query optimization based on the cost to select the execution plan).

You can use the USING INDEX clause in the order that you want without using ORDER BY. If you do an index scan

in CUBRID, the result will be created in the order of being saved in the index and you can USING INDEX to get the

query result in the specific index order when one table has multiple indexes.

Syntax

SELECT . . . FROM . . . WHERE . . .

[USING INDEX { NONE | index_spec [{, index_spec } ...] }] [;]

DELETE FROM . . . WHERE . . .

[USING INDEX { NONE | index_spec [{, index_spec } ...] }] [;]

UPDATE . . . SET . . . WHERE . . .

[USING INDEX { NONE | index_spec [{, index_spec } ...] }] [;]

index_spec :

 [table_name.]index_name [(+)]

• NONE : If NONE is specified, a sequential scan is selected.

• (+) : If (+) is specified after the index name, an index scan using the specified index is selected.

Example

The following is an example of creating an index based on the table creation statement of the athlete table.

CREATE TABLE athlete (

 code SMALLINT NOT NULL PRIMARY KEY,

 name VARCHAR(40) NOT NULL,

 gender CHAR(1) ,

 nation_code CHAR(3) ,

 event VARCHAR(30)

);

CREATE UNIQUE INDEX athlete_idx ON athlete(code, nation_code);

CREATE INDEX char_idx ON athlete(gender, nation_code);

For the following query, the query optimizer can choose an index scan that uses the athlete_idx index.

SELECT * FROM athlete WHERE gender='M' AND nation_code='USA';

As in the query below, if USING INDEX char_idx is specified, the query optimizer calculates the index scan cost only

for the given index specified by USING INDEX.

If the index scan cost is less than the sequential scan cost, an index scan is performed.

SELECT * FROM athlete WHERE gender='M' AND nation_code='USA'

USING INDEX char_idx;

To forcefully specify an index scan that uses the char_idx index, place (+) after the index name.

CUBRID SQL Guide

317

SELECT * FROM athlete WHERE gender='M' AND nation_code='USA'

USING INDEX char_idx(+);

To allow a sequential scan to be selected, specify NONE in the USING INDEX clause as follows:

SELECT * FROM athlete WHERE gender='M' AND nation_code='USA'

USING INDEX NONE;

If more than one indexes were specified in the USING INDEX clause as shown below, the query optimizer chooses an

appropriate one from the specified indexes.

SELECT * FROM athlete WHERE gender='M' AND nation_code='USA'

USING INDEX char_idx, athlete_idx;

If you execute queries for multiple tables, you can specify to perform an index scan on one table by using a special

index, and a sequential scan on other tables. These queries have the following form.

SELECT ... FROM tab1, tab2 WHERE ... USING INDEX tab1.idx1, tab2.NONE;

If you execute a query including the USING INDEX clause, the query optimizer considers all indexes available of the

corresponding table for the tables not specified indexes. For example, if the table tab1 has indices idx1 and idx2, and the

table tab2 has indices idx3, idx4 and idx5, specify the index for only tab1 and if if you do not specify tab2 index, the

query optimizer works considering tab2 index.

SELECT ... FROM tab1, tab2 WHERE ... USING INDEX tab1.idx1;

• Select the best query plan by comparing the sequential scan and index scan of table tab1.

• Select the most optimized query plan by comparing the sequential scan on the table tab2 and the index scan on idx3,

idx4 and idx5.

To perform an index scan on the table tab2 and a sequential scan on the table tab1, specify tab1.NONE so as not to

perform an index scan on the tab1 table.

SELECT * from tab1,tab2 WHERE tab1.id > 2 and tab2.id < 3 USING index i_tab2_id, tab1.NONE;

Index Scan in Descending Order

Description

When a query is executed by sorting in descending order as follows, it usually creates a reverse index.

SELECT * FROM tab [WHERE ...] ORDER BY a DESC

However, if you create an ascending index and an descending index in the same column, the possibility of deadlock

increases. In order to decrease the possibility of such case, CUBRID supports the descending scan without the separate

descending index creation. Users can use the USE_DESC_IDX hint to specify the use of the descending scan. If the

hint is not specified, the following three query executions should be considered, provided that the columns listed in the

ORDER BY clause can use the index.

• Sequential scan + Sort in descending order

• Scan in general ascending order + sort in descending

• Scan in descending order that does not require a separate scan

Although the USE_DESC_IDX hint is omitted for the scan in descending order, the query optimizer decides the last

execution plan of the three listed for an optimal plan.

Note The USE_DESC_IDX hint is not supported for the join query.

Example

CREATE TABLE di (i INT);

CREATE INDEX on di (i);

INSERT INTO di VALUES (5),(3),(1),(4),(3),(5),(2),(5);

The following is an example of executing a query with the USE_DESC_IDX hint.

-- We now run the following query, using the ''use_desc_idx'' SQL hint:

SELECT /*+ USE_DESC_IDX */ * FROM di WHERE i > 0 LIMIT 3;

CUBRID 2008 R4.0 Help

318

Query plan:

 Index scan(di di, i_di_i, (di.i range (0 gt_inf max) and inst_num() range (min inf_le 3))

(covers) (desc_index))

 i

=============

 5

 5

 5

The following example shows that if the query doesn't have the USE_DESC_IDX even though it is same as the above, it

can not be scanned in descending order, and the output result may be different.

-- The same query, without the hint, will have a different output, since descending scan

is not used.

SELECT * FROM di WHERE i > 0 LIMIT 3;

Query plan:

Index scan(di di, i_di_i, (di.i range (0 gt_inf max) and inst_num() range (min inf_le 3))

(covers))

 i

=============

 1

 1

 1

The following example has the same query and requests the sorting in descending order with ORDER BY DESC. There

is no USE_DESC_IDX hint in this case but the output result is the same as in the first example, because it is scanned in

descending order.

-- We also run the same query , this time asking that the results are displayed in

descending order. However, no hint will be given. Since the

-- ORDER BY...DESC clause is present, CUBRID will use descending scan, even if the hint

is was not given, thus avoiding to sort the records.

SELECT * FROM di WHERE i > 0 ORDER BY i DESC LIMIT 3;

Query plan:

 Index scan(di di, i_di_i, (di.i range (0 gt_inf max)) (covers) (desc_index))

 i

=============

 5

 5

 5

Covering Index

Description

The covering index is the index including the data of all columns in the SELECT list and the WHERE, HAVING,

GROUP BY, and ORDER BY clauses.

You only need to scan the index pages, as the covering index contains all the data necessary for executing a query, and

it also reduces the I/O costs as it is not necessary to scan the data storage any further. To increase data search speed, you

can consider creating a covering index but you should be aware that the INSERT and the DELETE processes may be

slowed down due to the increase in index size.

The rules about the applicability of the covering index are as follows:

• If the covering index is applicable, you should use the CUBRID query optimizer first.

• For the join query, if the index includes columns of the table in the SELECT list, use this index.

• You can not use the covering index if an index can not be used.

CUBRID SQL Guide

319

Example

CREATE TABLE t (col1 INT, col2 INT, col3 INT);

CREATE INDEX ON t (col1,col2,col3);

INSERT INTO t VALUES (1,2,3),(4,5,6),(10,8,9);

The following example shows that the index is used as a covering index because both the column SELECT and the

column with WHERE condition exist within the index.

SELECT * FROM t WHERE col1 < col3;

Query plan:

 Index scan(t t, i_t_col1_col2_col3, [(t.col1 range (min inf_lt t.col3))] (covers))

 col1 col2 col3

=======================================

 1 2 3

 4 5 6

Caution

If the covering index is applied when you get the values from the VARCHAR type column, the empty strings that

follow will be truncated. If the covering index is applied to the execution of query optimization, the resulting query

value will be retrieved. This is because the value will be stored in the index with the empty string being truncated.

If you don't want this, use the NO_COVERING_IDX hint, which does not use the covering index function. If you use

the hint, you can get the result value from the data area rather than from the index area.

The following is a detailed example of the above situation. First, create a table with columns in VARCHAR types, and

then INSERT the value with the same start character string value but the number of empty characters. Next, create an

index in the column.

CREATE TABLE tab(c VARCHAR(32));

INSERT INTO tab VALUES('abcd'),('abcd '),('abcd ');

CREATE INDEX ON tab(c);

If you must use the index (the covering index applied), the query result is as follows:

SELECT * FROM tab where c='abcd ' USING INDEX i_tab_c(+);

 c

======================

'abcd'

'abcd'

'abcd'

The following is the query result when you don't use the index.

SELECT * FROM tab WHERE c='abcd ' USING INDEX tab.NONE;

 c

======================

'abcd'

'abcd '

'abcd '

As you can see in the above comparison result, the value in the VARCHAR type retrieved from the index will appear

with the following empty string truncated when the covering index has been applied.

Ordered Index

Description

The index including all columns in the ORDER BY clause is referred to as the ordered index. In general, for an ordered

index, the columns in the ORDER BY clause should be located at the front of the index.

SELECT * FROM tab WHERE col1 > 0 ORDER BY col1, col2

• The index consisting of tab(col1, col2) is an ordered index.

• The index consisting of tab(col1, col2, col3) is also an ordered index. This is because the col3, which is not referred

by the ORDER BY clause comes after col1 and col2.

• The index consisting of tab(col1) is not an ordered index.

CUBRID 2008 R4.0 Help

320

• You can use the index consisting of tab(col3, col1, col2) or tab(col1, col3, col2) for optimization. This is because

col3 is not located at the back of the columns in the ORDER BY clause.

Although the columns composing an index do not exist in the ORDER BY clause, you can use an ordered index if the

column condition is a constant.

SELECT * FROM tab WHERE col2=val ORDER BY col1,col3;

If the index consisting of tab(col1, col2, col3) exists and the index consisting of tab(col1, col2) do not exist when

executing the above query, the query optimizer uses the index consisting of tab(col1, col2, col3) as an ordered index.

You can get the result in the requested order when you execute an index scan, so you don't need to sort rows.

If you can use the sorted index and the covering index, use the latter first. If you use the covering index, you don't need

to retrieve additional data, because the data result requested is included in the index page, and you won't need to sort the

result if you are satisfied with the index order.

If the query doesn't include any conditions and uses an ordered index, the ordered index will be used under the condition

that the first column meets the NOT NULL condition.

Example

CREATE TABLE tab (i INT, j INT, k INT);

CREATE INDEX on tab (j,k);

INSERT INTO tab VALUES (1,2,3),(6,4,2),(3,4,1),(5,2,1),(1,5,5),(2,6,6),(3,5,4);

The following example shows that the j and k columns execute ORDER BY so that the index consisting of tab(j,k) will

be the ordered index and will not go through a separate sorting process.

SELECT i,j,k FROM tab WHERE j > 0 ORDER BY j,k;

-- the selection from the query plan dump shows that the ordering index i_tab_j_k was

used and sorting was not necessary

-- (/* --> skip ORDER BY */)

Query plan:

iscan

 class: tab node[0]

 index: i_tab_j_k term[0]

 sort: 2 asc, 3 asc

 cost: fixed 0(0.0/0.0) var 1(0.0/1.0) card 0

Query stmt:

select tab.i, tab.j, tab.k from tab tab where ((tab.j> ?:0)) order by 2, 3

/* ---> skip ORDER BY */

 i j k

=======================================

 5 2 1

 1 2 3

 3 4 1

 6 4 2

 3 5 4

 1 5 5

 2 6 6

The following example shows that the j and k columns execute ORDER BY and the index including all columns that

SELECT, so that the index consisting of tab(j,k) will be the covering index. Therefore, the value will be retrieved from

the index itself and it will not go through a separate sorting process.

SELECT /*+ RECOMPILE */ j,k FROM tab WHERE j > 0 ORDER BY j,k;

-- in this case the index i_tab_j_k is a covering index and also respects the orderind

index property.

-- Therefore, it is used as a covering index and sorting is not performed.

Query plan:

iscan

 class: tab node[0]

 index: i_tab_j_k term[0] (covers)

 sort: 1 asc, 2 asc

 cost: fixed 0(0.0/0.0) var 1(0.0/1.0) card 0

Query stmt: select tab.j, tab.k from tab tab where ((tab.j> ?:0)) order by 1, 2

CUBRID SQL Guide

321

/* ---> skip ORDER BY */

 j k

==========================

 2 1

 2 3

 4 1

 4 2

 5 4

 5 5

 6 6

The following example shows that when there is i column condition, the ORDER BY will be executed to j and k

column and the columns to SELECT are i, j and k, the index consisting of tab(i,j,k) will be used as the covering index.

The value is retrieved from the index itself but it will go through a separate sorting process for the ORDER BY j, k.

CREATE INDEX ON tab (i,j,k);

SELECT /*+ RECOMPILE */ i,j,k FROM tab WHERE i > 0 ORDER BY j,k;

-- since an index on (i,j,k) is now available, it will be used as covering index. However,

sorting the results according to

-- the ORDER BY clause is needed.

Query plan:

temp(order by)

 subplan: iscan

 class: tab node[0]

 index: i_tab_i_j_k term[0] (covers)

 sort: 1 asc, 2 asc, 3 asc

 cost: fixed 0(0.0/0.0) var 1(0.0/1.0) card 1

 sort: 2 asc, 3 asc

 cost: fixed 6(5.0/1.0) var 1(0.0/1.0) card 1

Query stmt: select tab.i, tab.j, tab.k from tab tab where ((tab.i> ?:0)) order by 2, 3

 i j k

=======================================

 5 2 1

 1 2 3

 3 4 1

 6 4 2

 3 5 4

 1 5 5

 2 6 6

GROUP BY Clause Optimization

Description

GROUP BY caluse optimization works on the premise that if all columns in the GROUP BY clause are included in an

index, you can use the index upon executing a query, so you don't execute a separate sorting job. The columns in the

GROUP BY clause must exist in front side of the column forming the index.

SELECT * FROM tab WHERE col1 > 0 GROUP BY col1,col2

• You can use the index consisting of tab(col1, col2) for optimization.

• The index consisting of tab(col1, col2, col3) can be used because col3 no referred by GROUP BY comes after col1

and col2.

• You can not use the index consisting of tab(col1) for optimization.

• You also can not use the index consisting of tab(col3, col1, col2) or tab(col1, col3, col2), because col3 is not

located at the back of the column in the GROUP BY clause.

You can use the index if the column condition is a constant although the column consisting of the idex doesn't exist in

the GROUP BY clause.

SELECT * FROM tab WHERE col2=val GROUP BY col1,col3

If there is any index that consists of tab(col1, col2, col3) in the above example, use the index for optimizing GROUP

BY.

Row sorting by GROUP BY is not required, because you can get the result as the requested order on the index scan.

CUBRID 2008 R4.0 Help

322

If the index consisting of the GROUP BY column and the first column of the index is NOT NULL, even though there

is no WHERE clause, the GROUP BY optimization will be applied.

GROUP BY optimization is applied only when MIN() or MAX() are used in an aggregate function, and to use the two

aggregate functions together, an identical column must be used.

CREATE INDEX ON T(a, b, c);

SELECT a, MIN(b), c, MAX(b) FROM T WHERE a > 18 GROUP BY a, b;

Example

CREATE TABLE tab (i INT, j INT, k INT);

CREATE INDEX ON tab (j,k);

INSERT INTO tab VALUES (1,2,3),(6,4,2),(3,4,1),(5,2,1),(1,5,5),(2,6,6),(3,5,4);

The following example executes the GROUP BY to j and k column so that the index can be used without a separate

sorting process.

SELECT i,j,k FROM tab WHERE j > 0 GROUP BY j,k;

-- the selection from the query plan dump shows that the index i_tab_j_k was used and

sorting was not necessary

-- (/* ---> skip GROUP BY */)

Query plan:

iscan

 class: tab node[0]

 index: i_tab_j_k term[0]

 sort: 2 asc, 3 asc

 cost: fixed 0(0.0/0.0) var 1(0.0/1.0) card 0

Query stmt:

select tab.i, tab.j, tab.k from tab tab where ((tab.j> ?:0)) group by tab.j, tab.k

/* ---> skip GROUP BY */

 i j k

 5 2 1

 1 2 3

 3 4 1

 6 4 2

 3 5 4

 1 5 5

 2 6 6

The following example executes GROUP BY to the j and k column and there is no condition for the j but the j column

has the NOT NULL attribute so that, the index consisting of tab(j,k) will be used without a separate sorting process.

ALTER TABLE tab CHANGE COLUMN j j INT NOT NULL;

SELECT * FROM tab GROUP BY j,k;

-- the selection from the query plan dump shows that the index i_tab_j_k was used (since

j has the NOT NULL constraint)

-- and sorting was not necessary (/* ---> skip GROUP BY */)

Query plan:

iscan

 class: tab node[0]

 index: i_tab_j_k

 sort: 2 asc, 3 asc

 cost: fixed 0(0.0/0.0) var 1(0.0/1.0) card 0

Query stmt: select tab.i, tab.j, tab.k from tab tab group by tab.j, tab.k

/* ---> skip GROUP BY */

=== <Result of SELECT Command in Line 1> ===

 i j k

=======================================

 5 2 1

 1 2 3

 3 4 1

 6 4 2

 3 5 4

 1 5 5

 2 6 6

CUBRID SQL Guide

323

TRIGGER

CREATE TRIGGER

Guideline for TRIGGER Definition

Trigger definition provides various and powerful functionalities. Before creating a trigger, you must consider the

following:

• Does the trigger condition expression cause unexpected results (side effects)?

You must use the SQL statements within an expectable range.

• Does the trigger action change the table given as its event target?

While this type of design is not forbidden in the trigger definition, it must be carefully applied, because a trigger can

be created that falls into an infinite loop. When the trigger action modifies the event target table, the same trigger

can be called again. If a trigger occurs in a statement that contains a WHERE clause, there is no side effect in the
table affected by the WHERE clause.

• Does the trigger cause unnecessary overhead?

If the desired action can be expressed more effectively in the source, implement it directly in the source.

• Is the trigger executed recursively?

If the trigger action calls a trigger and this trigger calls the previous trigger again, a recursive loop is created in the

database. If a recursive loop is created, the trigger may not be executed correctly, or the current session must be

forced to terminate to break the ongoing infinite loop.

• Is the trigger definition unique?

A trigger defined in the same table or the one started in the same action becomes the cause of an unrecoverable

error. A trigger in the same table must have a different trigger event. In addition, trigger priority must be explicitly
and unambiguously defined.

TRIGGER Definition

Description

A trigger is created by defining a trigger target, condition and action to be performed in the CREATE TRIGGER

statement. A trigger is a database object that performs a defined action when a specific event occurs in the target table.

Syntax

CREATE TRIGGER trigger_name

[STATUS { ACTIVE | INACTIVE }]

[PRIORITYkey]

event_time event_type[event_target]

[IFcondition]

EXECUTE [AFTER | DEFERRED] action [;]

event_time:

 • BEFORE

 • AFTER

 • DEFERRED

event_type:

 • INSERT

 • STATEMENT INSERT

 • UPDATE

 • STATEMENT UPDATE

 • DELETE

 • STATEMENT DELETE

 • ROLLBACK

 • COMMIT

event_target:

CUBRID 2008 R4.0 Help

324

 • ONtable_name

 • ONtable_name [(column_name)]

condition:

 • expression

action:

 • REJECT

 • INVALIDATE TRANSACTION

 • PRINT message_string

 • INSERT statement

 • UPDATE statement

 • DELETE statement

• trigger_name : Specifies the name of the trigger to be defined.

• [STATUS { ACTIVE | INACTIVE }] : Defines the state of the trigger (if not defined, the default value is

ACTIVE).

• If ACTIVE state is specified, the trigger is executed every time the corresponding event occurs.

• If INACTIVE state is specified, the trigger is not executed even when the corresponding event occurs. The state of

the trigger can be modified. For more information, see Altering TRIGGER Definition section.

• [PRIORITY key] : Specifies a trigger priority if multiple triggers are called for an event. key must be a floating

point value that is not negative. If the priority is not defined, the lowest priority 0 is assigned. Triggers having the

same priority are executed in a random order. The priority of triggers can be modified. For more information, see

Altering TRIGGER Definition section.

• event_time : Specifies the point of time when the conditions and actions are executed. BEFORE, AFTER or

DEFERRED can be specified. For more information, see the Event Time section.

• event_type : Trigger types are divided into a user trigger and a table trigger. For more information, see the

TRIGGER Event Type section.

• event_target : An event target is used to specify the target for the trigger to be called. For more information, see the

TRIGGER Event Target section.

• condition : Specifies the trigger condition. For more information, see the TRIGGER Condition section.

• action : Specifies the trigger action. For more information, see the TRIGGER Action section.

Example

The following is an example of creating a trigger that rejects the update if the number of medals won is smaller than 0

when an instance of the participant table is updated.

As shown below, the update is rejected if you try to change the number of gold medals that Korea won in the 2004

Olympic Games to a negative number.

CREATE TRIGGER medal_trigger

BEFORE UPDATE ON participant

IF new.gold < 0 OR new.silver < 0 OR new.bronze < 0

EXECUTE REJECT;

UPDATE participant SET gold = -5 WHERE nation_code = 'KOR'

AND host_year = 2004;

ERROR: The operation has been rejected by trigger "medal_trigger".

Event Time

Description

Specifies the point of time when trigger conditions and actions are executed. The types of event time are BEFORE,

AFTER and DEFERRED.

• BEFORE : Checks the condition before the event is processed.

• AFTER : Checks the condition after the event is processed.

• DEFERRED : Checks the condition at the end of the transaction for the event. If you specify DEFERRED, you

cannot use COMMIT or ROLLBACK as the event type.

CUBRID SQL Guide

325

Trigger Type

User Trigger

• A trigger relevant to a specific user of the database is called a user trigger.

• A user trigger has no event target and is executed only by the owner of the trigger (the user who created the trigger).

• Event types that define a user trigger are COMMIT and ROLLBACK.

Table Trigger

• A trigger that has a table as the event target is called a table trigger (class trigger).

• A table trigger can be seen by all users who have the SELECT privilege on the target table.

• Event types that define a table trigger are instance and statement events.

TRIGGER Event Type

Description

• Instance events : An event type whose unit of operation is an instance. The types of instance events are as follows:

• INSERT

• UPDATE

• DELETE

• Statement events : If you define a statement event as an event type, the trigger is called only once when the trigger

starts even when there are multiple objects (instances) affected by the given statement (event). The types of

statement events are as follows:

• STATEMENT INSERT

• STATEMENT UPDATE

• STATEMENT DELETE

• Other events : COMMIT and ROLLBACK cannot be applied to individual instances.

• COMMIT

• ROLLBACK

Example 1

The following is an example of using an instance event. The example trigger is called by each instance affected by the

database update. For example, if the score values of five instances in the history table are modified, the trigger is called

five times. If you want the trigger to be called only once, before the first instance of the score column is updated, use the

STATEMENT UPDATE type as in example 2.

CREATE TRIGGER example

...

BEFORE UPDATE ON history(score)

...

Example 2

The following is an example of using a statement event. If you define a statement event, the trigger is called only once

before the first instance gets updated even when there are multiple instances affected by the update.

CREATE TRIGGER example

...

BEFORE STATEMENT UPDATE ON history(score)

...

Caution

• You must specify the event target when you define an instance or statement event as the event type.

• COMMIT and ROLLBACK cannot have an event target.

CUBRID 2008 R4.0 Help

326

TRIGGER Event Target

Description

An event target specifies the target for the trigger to be called. The target of a trigger event can be specified as a table or

column name. If a column name is specified, the trigger is called only when the specified column is affected by the

event. If a column is not specified, the trigger is called when any column of the table is affected. Only UPDATE and

STATEMENT UPDATE events can specify a column as the event target.

Example

The following is an example of specifying the score column of the history table as the event target of the example

trigger.

CREATE TRIGGER example

...

BEFORE UPDATE ON history(score)

...

Combination of Event Type and Target

Description

A database event calling triggers is identified by the trigger event type and event target in a trigger definition. The

following table shows the trigger event type and target combinations, along with the meaning of the CUBRID database

event that the trigger event represents.

Event Type Event Target Corresponding Database Activity

UPDATE Table Trigger is called whenever any column of the table is updated.

STATEMENT

UPDATE

Table Trigger is called whenever an UPDATE statement is executed on the

table.

INSERT Table Trigger is called whenever an instance of the table is created.

STATEMENT

INSERT

Table Trigger is called whenever an INSERT statement is executed on the

table.

DELETE Table Trigger is called whenever an instance of the table is deleted.

STATEMENT

DELETE

Table Trigger is called whenever a DELETE statement is executed on the

table.

COMMIT None Trigger is called whenever a database transaction is committed. The

COMMIT WORK statement initiates this trigger.

ROLLBACK None Trigger is called whenever the database transaction is rolled back.

The ROLLBACK WORK statement initiates this trigger.

TRIGGER Condition

Description

You can specify whether a trigger action is to be performed by defining a condition when defining the trigger.

• If a trigger condition is specified, it can be written as an independent compound expression that evaluates to true or

false. In this case, the expression can contain arithmetic and logical operators allowed in the WHERE clause of the

SELECT statement. The trigger action is performed if the condition is true; if it is false, action is ignored.

• If a trigger condition is omitted, the trigger becomes an unconditional trigger, which refers to that the trigger action

is performed whenever it is called.

CUBRID SQL Guide

327

Example 1

The following is an example of using a correlation name in an expression within a condition. If the event type is

INSERT, UPDATE or DELETE, the expression in the condition can reference the correlation names obj, new or old

to access a specific column. This example prefixes obj to the column name in the trigger condition to show that the

example trigger tests the condition based on the current value of the record column.

CREATE TRIGGER example

........

IF obj.record * 1.20 < 500

.......

Example 2

The following is an example of using the SELECT statement in an expression within a condition. The trigger in this

example uses the SELECT statement that contains an aggregate function COUNT(*) to compare the value with a

constant. The SELECT statement must be enclosed in parentheses and must be placed at the end of the expression.

CREATE TRIGGER example

......

IF 1000 > (SELECT COUNT(*) FROM participant)

......

Caution

The expression given in the trigger condition may cause side effects on the database if a method is called while the

condition is performed. A trigger condition must be constructed to avoid unexpected side effects in the database.

Correlation Name

You can access the column values defined in the target table by using a correlation name in the trigger definition. A

correlation name is the instance that is actually affected by the database operation calling the trigger. A correlation name

can also be specified in a trigger condition or action.

The types of correlation names are new, old and obj. These correlation names can be used only in instance triggers that

have an INSERT, UPDATE or DELETE event.

As shown in the table below, the use of correlation names is further restricted by the event time defined for the trigger

condition.

 BEFORE AFTER or DERERRED

INSERT new obj

UPDATE obj

new

obj

old (AFTER)

DELETE obj N/a

Correlation Name Representative Attribute Value

obj Refers to the current attribute value of an instance. This can be used to access

attribute values before an instance is updated or deleted. It is also used to access

attribute values after an instance has been updated or inserted.

new Refers to the attribute value proposed by an insert or update operation. The new

value can be accessed only before the instance is actually inserted or updated.

old Refers to the attribute value that existed prior to the completion of an update

operation. This value is maintained only while the trigger is being performed. Once

the trigger is completed, the old values get lost.

CUBRID 2008 R4.0 Help

328

TRIGGER Action

Description

A trigger action describes what to be performed if the trigger condition is true or omitted. If a specific point of time

(AFTER or DEFERRED) is not given in the action clause, the action is executed at the same time as the trigger event.

The following is a list of actions that can be used for trigger definitions.

• REJECT : REJECT discards the operation that initiated the trigger and keeps the former state of the database, if

the condition is not true. Once the operation is performed, REJECT is allowed only when the action time is

BEFORE because the operation cannot be rejected. Therefore, you must not use REJECT if the action time is

AFTER or DERERRED.

• INVALIDATE TRANSACTION : INVALIDATE TRANSACTION allows the event operation that called the

trigger, but does not allow the transaction that contains the commit to be executed. You must cancel the transaction

by using the ROLLBACK statement if it is not valid. Such action is used to protect the database from having

invalid data after a data-changing event happens.

• PRINT : PRINT outputs trigger actions on the terminal screen in text messages, and can be used during

developments or tests. The results of event operations are not rejected or discarded.

• INSERT : INSERT inserts one or more new instances to the table.

• UPDATE : UPDATE updates one or more column values in the table.

• DELETE : DELETE deletes one or more instances from the table.

Example

The following example shows how to define an action when a trigger is created. The medal_trig trigger defines

REJECT in its action. REJECT can be specified only when the action time is BEFORE.

CREATE TRIGGER medal_trig

BEFORE UPDATE ON participant

IF new.gold < 0 OR new.silver < 0 OR new.bronze < 0

EXECUTE REJECT;

Caution

• Trigger may fall into an infinite loop when you use INSERT in an action of a trigger where an INSERT event is

defined.

• If a trigger where an UPDATE event is defined runs on a partitioned table, you must be careful because the defined

partition can be broken or unintended malfunction may occur. To prevent such situation, CUBRID outputs an error

so that the UPDATE causing changes to the running partition is not executed. Trigger may fall into an infinite loop

when you use UPDATE in an action of a trigger where an UPDATE event is defined.

ALTER TRIGGER

Description

In the trigger definition, STATUS and PRIORITY options can be changed by using the ALTER statement. If you need

to alter other parts of the trigger (event targets or conditional expressions), you must delete and then re-create the trigger.

Syntax

ALTER TRIGGER trigger_name trigger_option [;]

trigger_option :

• STATUS { ACTIVE | INACTIVE }

• PRIORITY key

• trigger_name : Specifies the name of the trigger to be changed.

• trigger_option :

• STATUS { ACTIVE | INACTIVE } : Changes the status of the trigger.

• PRIORITY key : Changes the priority.

CUBRID SQL Guide

329

Example

The following is an example of creating the medal_trig trigger and then changing its state to INACTIVE and its priority

to 0.7.

CREATE TRIGGER medal_trig

STATUS ACTIVE

BEFORE PDATE ON participant

IF new.gold < 0 OR new.silver < 0 OR new.bronze < 0

EXECUTE REJECT;

ALTER TRIGGER medal_trig STATUS INACTIVE;

ALTER TRIGGER medal_trig PRIORITY 0.7;

Caution

• Only one option can be specified in a single ALTER TRIGGER statement.

• To change a table trigger, you must be the trigger owner or granted the ALTER privilege on the table where the

trigger belongs.

• A user trigger can only be changed by its owner. For more information on these options, see the CREATE

TRIGGER (Syntax) section. The key specified together with the PRIORITY option must be a non-negative

floating point value.

DROP TRIGGER

Description

You can drop a trigger by using the DROP TRIGGER statement.

Syntax

DROP TRIGGER trigger_name [;]

• trigger_name : Specifies the name of the trigger to be dropped.

Example

The following is an example of dropping the medal_trig trigger.

DROP TRIGGER medal_trig;

Caution

• A user trigger (i.e. the trigger event is COMMIT or ROLLBACK) can be seen and dropped only by the owner.

• Only one trigger can be dropped by a single DROP TRIGGER statement. A table trigger can be dropped by a user

who has an ALTER authorization on the table.

RENAME TRIGGER

Description

You can change a trigger name by using the TRIGGER reserved word in the RENAME statement.

Syntax

RENAME TRIGGER old_trigger_name AS new_trigger_name [;]

• old_trigger_name : Specifies the current name of the trigger.

• new_trigger_name : Specifies the name of the trigger to be changed.

Example

RENAME TRIGGER medal_trigger AS medal_trig;

CUBRID 2008 R4.0 Help

330

Caution

• A trigger name must be unique among all trigger names. The name of a trigger can be the same as the table name in

the database.

• To rename a table trigger, you must be the trigger owner or granted the ALTER privilege on the table where the

trigger belongs. A user trigger can only be renamed by its user.

Deferred Condition and Action

Definition

A deferred trigger action and condition can be executed later or canceled. These triggers include a DEFERRED time

option in the event time or action clause. If the DEFERRED option is specified in the event time and the time is

omitted before the action, the action is deferred automatically.

Executing Deferred Condition and Action

Description

Executes the deferred condition or action of a trigger immediately.

Syntax

EXECUTE DEFERRED TRIGGER trigger_identifier [;]

trigger_identifier :

• trigger_name

• ALL TRIGGERS

• trigger_identifier :

• trigger_name : Executes the deferred action of the trigger when a trigger name is specified.

• ALL TRIGGERS : All currently deferred actions are executed.

Dropping Deferred Condition and Action

Description

Drops the deferred condition and action of a trigger.

Syntax

DROP DEFERRED TRIGGER trigger_identifier [;]

trigger_option :

• trigger_name

• ALL TRIGGERS

• trigger_option :

• trigger_name : Cancels the deferred action of the trigger when a trigger name is specified.

• ALL TRIGGERS : All currently deferred actions are canceled.

Granting TRIGGER Authorization

Description

Trigger authorization is not granted explicitly. Authorization on the table trigger is automatically granted to the user if

the authorization is granted on the event target table described in the trigger definition. In other words, triggers that have

table targets (INSERT, UPDATE, etc.) are seen by all users. User triggers (COMMIT and ROLLBACK) are seen

only by the user who defined the triggers. All authorizations are automatically granted to the trigger owner.

Caution

• To define a table trigger, you must have an ALTER authorization on the table.

CUBRID SQL Guide

331

• To define a user trigger, the database must be accessed by a valid user.

Trigger on REPLACE and INSERT … ON DUPLICATE KEY UPDATE

Deferred Actions

Description

When the REPLACE statement and INSERT … ON DUPLICATE KEY UPDATE statement are executed, the

trigger is executed in CUBRID, while DELETE, UPDATE, INSERT jobs occur internally. The following table shows

the order in which the trigger is executed in CUBRID depending on the event that occurred when the REPLACE or

INSERT … ON DUPLICATE KEY UPDATE statement is executed. Both the REPLACE statement and INSERT

… ON DUPLICATE KEY UPDATE statement do not execute triggers in the inherited class (table).

Execution Sequence of Triggers in the REPLACE and the INSERT … ON DUPLICATE KEY UPDATE

statements

Event Execution Sequence of Triggers

REPLACE

When a record is deleted and new one is inserted

BEFORE DELETE >

AFTER DELETE >

BEFORE INSERT >

AFTER INSERT

INSERT … ON DUPLICATE KEY UPDATE

When a record is updated

BEFORE UPDATE >

AFTER UPDATE

REPLACE, INSERT … ON DUPLCATE KEY UPDATE

Only when a record is inserted

BEFORE INSERT >

AFTER INSERT

Example

The folllowing is an example in which the trigger inserts records to the trigger table if INSERT … ON DUPLICATE

KEY UPDATE and RELPACE are executed in the with_trigger table.

CREATE TABLE with_trigger (id INT UNIQUE);

INSERT INTO with_trigger VALUES (11);

CREATE TABLE trigger_actions (val INT);

CREATE TRIGGER trig_1 BEFORE INSERT ON with_trigger EXECUTE INSERT INTO trigger_actions

VALUES (1);

CREATE TRIGGER trig_2 BEFORE UPDATE ON with_trigger EXECUTE INSERT INTO trigger_actions

VALUES (2);

CREATE TRIGGER trig_3 BEFORE DELETE ON with_trigger EXECUTE INSERT INTO trigger_actions

VALUES (3);

INSERT INTO with_trigger VALUES (11) ON DUPLICATE KEY UPDATE id=22;

SELECT * FROM trigger_actions;

 va

==============

 2

REPLACE INTO with_trigger VALUES (22);

SELECT * FROM trigger_actions;

 va

==============

 2

 3

 1

CUBRID 2008 R4.0 Help

332

TRIGGER Debugging

Definition and Example

Description

Once a trigger is defined, it is recommended to check whether it is running as intended. Sometimes the trigger takes

more time than expected in processing. This means that it is adding too much overhead to the system or has fallen into a

recursive loop. This section explains several ways to debug the trigger.

Example

The following is an example of a trigger that was defined to fall into a recursive loop when it is called. A loop trigger is

somewhat artificial in its purpose, but can be used as an example for debugging the trigger.

CREATE TRIGGER loop_tgr

BEFORE UPDATE ON participant(gold)

IF new.gold > 0

EXECUTE UPDATE participant

 SET gold = new.gold - 1

 WHERE nation_code = obj.nation_code AND host_year = obj.host_year;

Viewing TRIGGER Execution Log

Description

You can view the execution log of the trigger from a terminal by using the SET TRIGGER TRACE statement.

Syntax

SET TRIGGER TRACE switch [;]

switch:

• ON

• OFF

• switch :

• ON : Runs the TRACE until the switch is set to OFF or the current database session terminates.

• OFF : Stops the TRACE.

Example

The following is an example of running the TRACE and executing the loop trigger to view the trigger execution logs.

To identify the trace for each condition and action executed when the trigger is called, a message is displayed on the

terminal. The following message appears 15 times because the loop trigger is executed until the gold value becomes 0.

SET TRIGGER TRACE ON;

UPDATE participant SET gold =15 WHERE nation_code = 'KOR' AND host_year = 1988;

TRACE: Evaluating condition for trigger "loop".

TRACE: Executing action for trigger "loop".

Limiting Nested TRIGGER

Description

With the MAXIMUM DEPTH keyword of the SET TRIGGER statement, you can limit the number of triggers to be

initiated at each step. By doing so, you can prevent a recursively called trigger from falling into an infinite loop.

Syntax

SET TRIGGER [MAXIMUM] DEPTH count [;]

count:

• unsigned_integer_literal

CUBRID SQL Guide

333

• unsigned_integer_literal : A positive integer value that specifies the number of times that a trigger can recursively

start another trigger or itself. If the number of triggers reaches the maximum depth, the database request

stops(aborts) and the transaction is marked as invalid. The specified DEPTH applies to all other triggers except for

the current session. The maximum value is 32.

Example

The following is an example of setting the maximum number of times of recursive trigger calling to 10. This applies to

all triggers that start subsequently. In this example, the gold column value is updated to 15, so the trigger is called 16

times in total. This exceeds the currently set maximum depth and the following error message occurs.

SET TRIGGER MAXIMUM DEPTH 10;

UPDATE participant SET gold = 15 WHERE nation_code = 'KOR' AND host_year = 1988;

ERROR: Maximum trigger depth 10 exceeded at trigger "loop_tgr".

TRIGGER Example

Description

This section covers trigger definitions in the demo database. The triggers created in the demodb database are not

complex, but use most of the features available in CUBRID. If you want to maintain the original state of the demodb

database when testing such triggers, you must perform a rollback after changes are made to the data.

Triggers created by the user in the own database can be as powerful as applications created by the user.

Example 1

The following trigger created in the participant table rejects an update to the medal column (gold, silver, bronze) if a

given value is smaller than 0. The evaluation time must be BEFORE because a correlation name new is used in the

trigger condition. Although not described, the action time of this trigger is also BEFORE.

CREATE TRIGGER medal_trigger

BEFORE UPDATE ON participant

IF new.gold < 0 OR new.silver < 0 OR new.bronze < 0

EXECUTE REJECT;

The medal_trigger trigger starts when the number of gold medals of the country whose nation code is 'BLA' is updated.

Since a negative value is not permitted for the number of gold medals as shown above, this update is not allowed.

UPDATE participant

SET gold = -10

WHERE nation_code = 'BLA';

Example 2

The following trigger has the same condition as the one above except that STATUS INACTIVE is added. If the

STATUS statement is omitted, the default value is ACTIVE. You can change the status to INACTIVE by using the

ALTER TRIGGER statement.

You can specify whether or not to execute the trigger depending on the STATUS value.

CREATE TRIGGER medal_trig

STATUS ACTIVE

BEFORE UPDATE ON participant

IF new.gold < 0 OR new.silver < 0 OR new.bronze < 0

EXECUTE REJECT;

ALTER TRIGGER medal_trig

STATUS INACTIVE;

Example 3

The following trigger shows how integrity constraint is enforced when a transaction is committed. This example is

different from the previous ones, in that one trigger can have specific conditions for multiple tables.

CREATE TRIGGER check_null_first

CUBRID 2008 R4.0 Help

334

BEFORE COMMIT

IF 0 < (SELECT count(*) FROM athlete WHERE gender IS NULL)

OR 0 < (SELECT count(*) FROM game WHERE nation_code IS NULL)

EXECUTE REJECT;

Example 4

The following trigger delays the update integrity constraint check for the record table until the transaction is committed.

Since the DEFERRED keyword is given as the event time, the trigger is not executed at the time.

CREATE TRIGGER deferred_check_on_record

DEFERRED UPDATE ON record

IF obj.score = '100'

EXECUTE INVALIDATE TRANSACTION;

Once completed, the update in the record table can be confirmed at the last point (commit or rollback) of the current

transaction. The correlation name old cannot be used in the conditional clause of the trigger where DEFERRED

UPDATE is used. Therefore, you cannot create a trigger as the following.

CREATE CLASS foo (n int);

CREATE TRIGGER foo_trigger

 DEFERRED UPDATE ON foo

 IF old.n = 100

 EXECUTE PRINT 'foo_trigger';

If you try to create a trigger as shown above, an error message is displayed and the trigger fails.

ERROR: Error compiling condition for 'foo_trigger' : old.n is not defined

The correlation name old can be used only with AFTER.

CUBRID SQL Guide

335

Java Stored Function/Procedure

Overview

Stored functions and procedures are used to implement complicated program logic that is not possible with SQL. They

allow users to manipulate data more easily. Stored functions/procedures are blocks of code that have a flow of

commands for data manipulation and are easy to manipulate and administer.

CUBRID supports to develop stored functions and procedures in Java. Java stored functions/procedures are executed on

the JVM (Java Virtual Machine) hosted by CUBRID.

You can call Java stored functions/procedures from SQL statements or from Java applications using JDBC.

The advantages of using Java stored functions/procedures are as follows:

• Productivity and usability : Java stored functions/procedures, once created, can be reused anytime. They can be

called from SQL statements or from Java applications using JDBC.

• Excellent interoperability and portability : Java stored functions/procedures use the Java Virtual Machine.

Therefore, they can be used on any system where the Java Virtual Machine is available.

Environment Configuration for Java Stored Function/Procedure

To use Java-stored functions/procedures in CUBRID, you must have JRE (Java Runtime Environment) 1.6 or better

installed in the environment where the CUBRID server is installed. You can download JRE from the Developer

Resources for Java Technology (http://java.sun.com).

If the java_stored_procedure parameter in the CUBRID configuration file (cubrid.conf) is set to yes, CUBRID 64-bit

needs a 64-bit Java Runtime Environment, and CUBRID 32-bit needs a 32-bit Java Runtime Environment. For example,

when you run CUBRID 64-bit in the system in which a 32-bit JAVA Runtime Environment is installed, the following

error may occur.

% cubrid server start demodb

This may take a long time depending on the amount of recovery works to do.

WARNING: Java VM library is not found :

/usr/java/jdk1.6.0_15/jre/lib/amd64/server/libjvm.so: cannot open shared object file: No

such file or directory.

Consequently, calling java stored procedure is not allowed

Execute the following command to check the JRE version if you have it already installed in the system.

% java -version Java(TM) SE Runtime Environment (build 1.6.0_05-b13)

Java HotSpot(TM) 64-Bit Server VM (build 10.0-b19, mixed mode)

Windows Environment

For Windows, CUBRID loads the jvm.dll file to run the Java Virtual Machine. CUBRID first locates the jvm.dll file

from the PATH environment variable and then loads it. If it cannot find the file, it uses the Java runtime information

registered in the system registry.

You can configure the JAVA_HOME environment variable and add the directory in which the Java executable file is

located to Path, by executing the command as follows: For information on configuring environment variables using

GUI, see Setting up the JDBC Environment.

• An example of installing 64 Bit JDK 1.6 and configuring the environment variables

% set JAVA_HOME=C:\jdk1.6.0

% set PATH=%PATH%;%JAVA_HOME%\jre\bin\server

• An example of installing 32 Bit JDK 1.6 and configuring the environment variables

% set JAVA_HOME=C:\jdk1.6.0

% set PATH=%PATH%;%JAVA_HOME%\jre\bin\client

http://java.sun.com/

CUBRID 2008 R4.0 Help

336

To use other vendor's implementation instead of Sun's Java Virtual Machine, add the path of the jvm.dll file to the

PATH variable during the installation.

Linux/UNIX Environment

For Linux/UNIX environment, CUBRID loads the libjvm.so file to run the Java Virtual Machine. CUBRID first locates

the libjvm.so file from the LD_LIBRARY_PATH environment variable and then loads it. If it cannot find the file, it

uses the JAVA_HOME environment variable. For Linux, glibc version 2.3.4 or higher is supported. The following is

an example of configuring the Linux environment variable (e.g., .profile, .cshrc, .bashrc, .bash_profile, etc.).

• An example of installing 64 Bit JDK 1.6 and configuring the environment variables in a bash shell

% JAVA_HOME=/usr/java/jdk1.6.0_10

%

LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/amd64:$JAVA_HOME/jre/lib/amd64/server:$LD_LIBRARY_PA

TH

% export JAVA_HOME

% export LD_LIBRARY_PATH

• An example of installing 32 Bit JDK 1.6 and configuring the environment variables in a bash shell

% JAVA_HOME=/usr/java/jdk1.6.0_10

%

LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/i386/:$JAVA_HOME/jre/lib/i386/client:$LD_LIBRARY_PAT

H

% export JAVA_HOME

% export LD_LIBRARY_PATH

• An example of installing 64 Bit JDK 1.6 and configuring the environment variables in a csh

% setenv JAVA_HOME /usr/java/jdk1.6.0_10

% setenv LD_LIBRARY_PATH

$JAVA_HOME/jre/lib/amd64:$JAVA_HOME/jre/lib/amd64/server:$LD_LIBRARY_PATH

% set path=($path $JAVA_HOME/bin .)

• An example of installing 32 Bit JDK 1.6 and configuring the environment variables in a csh shell

% setenv JAVA_HOME /usr/java/jdk1.6.0_10

% setenv LD_LIBRARY_PATH

$JAVA_HOME/jre/lib/i386:$JAVA_HOME/jre/lib/i386/client:$LD_LIBRARY_PATH

% set path=($path $JAVA_HOME/bin .)

To use other vendor's implementation instead of Sun's Java Virtual Machine, add the path of the JVM (libjvm.so) to the

library path during the installation.

The path of the libjvm.so file can be different depending on the platform. For example, the path is the

$JAVA_HOME/jre/lib/sparc directory in a SUN Sparc machine.

How to Write Java Stored Function/Procedure

Steps to write a Java stored function/procedure are as follows:

• Check the cubrid.conf file

• Write and compile the Java source code

• Load the complied Java class into CUBRID

• Publish the loaded Java class

• Call the Java stored function/procedure

Check the cubrid.conf file

By default, the java_stored_procedure is set to no in the cubrid.conf file. To use a Java stored function/procedure,

this value must be changed to yes. For more information on this value, see Other Parameters in Database Server

Configuration.

Write and compile the Java source code

Compile the SpCubrid.java file as follows:

CUBRID SQL Guide

337

public class SpCubrid{

 public static String HelloCubrid() {

 return "Hello, Cubrid !!";

 }

 public static int SpInt(int i) {

 return i + 1;

 }

 public static void outTest(String[] o) {

 o[0] = "Hello, CUBRID";

 }

}

%javac SpCubrid.java

Here, the Java class method must be public static.

Load the compiled Java class into CUBRID

Load the compiled Java class into CUBRID.

% loadjava demodb SpCubrid.class

Publish the loaded Java class

Create a CUBRID stored function and publish the Java class as shown below.

csql> create function hello() return string

csql> as language java

csql> name 'SpCubrid.HelloCubrid() return java.lang.String';

Call the Java stored function/procedure

Call the published Java stored function as follows:

csql> call hello() into :Hello;

 Result

======================

'Hello, Cubrid !!'

Using Server-side Internal JDBC Driver

To access the database from a Java stored function/procedure, you must use the server-side JDBC driver. As Java stored

functions/procedures are executed within the database, there is no need to make the connection to the server-side JDBC

driver again. To acquire a connection to the database using the server-side JDBC driver, you can either use

"jdbc:default:connection:" as the URL for JDBC connection, or call the getDefaultConnection() method of the

cubrid.jdbc.driver.CUBRIDDriver class.

Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

Connection conn = DriverManager.getConnection("jdbc:default:connection:");

or

cubrid.jdbc.driver.CUBRIDDriver.getDefaultConnection();

If you connect to the database using the JDBC driver as shown above, the transaction in the Java stored

function/procedure is ignored. That is, database operations executed in the Java stored function/procedure belong to the

transaction that called the Java stored function/procedure. In the following example, conn.commit() method of the

Athlete class is ignored.

import java.sql.*;

public class Athlete{

 public static void Athlete(String name, String gender, String nation_code, String

event) throws SQLException{

 String sql="INSERT INTO ATHLETE(NAME, GENDER, NATION_CODE, EVENT)" + "VALUES

(?, ?, ?, ?)";

 try{

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 PreparedStatement pstmt = conn.prepareStatement(sql);

CUBRID 2008 R4.0 Help

338

 pstmt.setString(1, name);

 pstmt.setString(2, gender);

 pstmt.setString(3, nation_code);

 pstmt.setString(4, event);;

 pstmt.executeUpdate();

 pstmt.close();

 conn.commit();

 conn.close();

 } catch (Exception e) {

 System.err.println(e.getMessage());

 }

 }

}

Connecting to Other Database

You can connect to another outside database instead of the currently connected one even when the server-side JDBC

driver is being used. Acquiring a connection to an outside database is not different from a generic JDBC connection. For

more information, see JDBC API.

If you connect to other databases, the connection to the CUBRID database does not terminate automatically even when

the execution of the Java method ends. Therefore, the connection must be explicitly closed so that the result of

transaction operations such as COMMIT or ROLLBACK will be reflected in the database. That is, a separate

transaction will be performed because the database that called the Java stored function/procedure is different from the

one where the actual connection is made.

import java.sql.*;

public class SelectData {

 public static void SearchSubway(String[] args) throws Exception {

Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn =

DriverManager.getConnection("jdbc:CUBRID:localhost:33000:demodb:::","","");

 String sql = "select line_id, line from line";

 stmt = conn.createStatement();

 rs = stmt.executeQuery(sql);

 while(rs.next()) {

 int host_year = rs.getString("host_year");

 String host_nation = rs.getString("host_nation");

 System.out.println("Host Year ==> " + host_year);

 System.out.println(" Host Nation==> " + host_nation);

 System.out.println("\n=========\n");

 }

 rs.close();

 stmt.close();

 conn.close();

 } catch (SQLException e) {

 System.err.println(e.getMessage());

 } catch (Exception e) {

 System.err.println(e.getMessage());

 } finally {

 if (conn != null) conn.close();

 }

 }

}

When the Java stored function/procedure being executed should run only on JVM located in the database server, you

can check where it is running by calling System.getProperty ("cubrid.server.version") from the Java program source.

The result value is the database version if it is called from the database; otherwise, it is NULL.

CUBRID SQL Guide

339

loadjava Utility

Description

To load a compiled Java or JAR (Java Archive) file into CUBRID, use the loadjava utility. If you load a Java *.class or

*.jar file using the loadjava utility, the file is moved to the specified database path.

Syntax

loadjava <option> database-name java-class-file

• database-name : The name of the database where the Java file is to be loaded.

• java-class-file : The name of the Java class or jar file to be loaded.

• <option> :

• -y : Automatically overwrites a class file with the same name, if any. The default value is no. If you load the file

without specifying the -y option, you will be prompted to ask if you want to overwrite the class file with the same

name (if any).

Loaded Java Class Publish

Overview

In CUBRID, it is required to publish Java classes to call Java methods from SQL statements or Java applications. You

must publish Java classes by using call specifications because it is not known how a function in a class will be called by

SQL statements or Java applications when Java classes are loaded.

Call Specifications

To use a Java stored function/procedure in CUBRID, you must write call specifications. With call specifications, Java

function names, parameter types, return values and their types can be accessed by SQL statements or Java applications.

To write call specifications, use CREATE FUNCTION or CREATE PROCEDURE statement. Java stored

function/procedure names are not case sensitive. The maximum number of characters a Java stored function/procedure

can have is 256. The maximum number of parameters a Java stored function/procedure can have is 64.

Syntax

CREATE {PROCEDURE procedure_name[(param[, param]...] | FUNCTION function_name[(param[,

param]...] RETURN sql_type }

{IS | AS} LANGUAGE JAVA

NAME 'method_fullname (java_type_fullname[,java_type_fullname]... [return

java_type_fullname]';

parameter_name [IN|OUT|IN OUT|INOUT] sql_type

 (default IN)

If the parameter of a Java stored function/procedure is set to OUT, it will be passed as a one-dimensional array whose

length is 1. Therefore, a Java method must store its value to pass in the first space of the array.

Example

CREATE FUNCTION Hello() RETURN VARCHAR

AS LANGUAGE JAVA

NAME 'SpCubrid.HelloCubrid() return java.lang.String';

CREATE FUNCTION Sp_int(i int) RETURN int

AS LANGUAGE JAVA

NAME 'SpCubrid.SpInt(int) return int';

CREATE PROCEDURE Phone_Info(name varchar, phoneno varchar)

AS LANGUAGE JAVA

NAME 'PhoneNumber.Phone(java.lang.String, java.lang.String)';

When a Java stored function/procedure is published, it is not checked whether the return definition of the Java stored

function/procedure coincides with the one in the declaration of the Java file. Therefore, the Java stored

CUBRID 2008 R4.0 Help

340

function/procedure follows the sql_type return definition provided at the time of registration. The return definition in the

declaration is significant only as user-defined information.

Data Type Mapping

In call specifications, the data types SQL must correspond to the data types of Java parameter and return value. The

following table shows SQL/Java data types allowed in CUBRID.

Data Type Mapping

SQL Type Java Type

CHAR, VARCHAR java.lang.String, java.sql.Date, java.sql.Time, java.sql.Timestamp,

java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double, java.math.BigDecimal, byte, short, int, long,

float, double

NUMERIC, SHORT,

INT, FLOAT,

DOUBEL,

CURRENCY

java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double, java.math.BigDecimal, java.lang.String,

byte, short, int, long, float, double

DATE, TIME,

TIMESTAMP

java.sql.Date, java.sql.Time, java.sql.Timestamp, java.lang.String

SET, MULTISET,

SEQUENCE

java.lang.Object[], java primitive type array, java.lang.Integer[] ...

OBJECT cubrid.sql.CUBRIDOID

CURSOR cubrid.jdbc.driver.CUBRIDResultSet

Checking the Published Java Stored Function/Procedure Information

You can check the information on the published Java stored function/procedure The db_stored_procedure system

virtual table provides virtual table and the db_stored_procedure_args system virtual table. The db_stored_procedure

system virtual table provides the information on stored names and types, return types, number of parameters, Java class

specifications, and the owner. The db_stored_procedure_args system virtual table provides the information on

parameters used in the stored function/procedure.

SELECT * from db_stored_procedure;

sp_name sp_type return_type arg_count

sp_name sp_type return_type arg_count lang

target owner

==

'hello' 'FUNCTION' 'STRING' 0 'JAVA''SpCu

brid.HelloCubrid() return java.lang.String' 'DBA'

'sp_int' 'FUNCTION' 'INTEGER' 1 'JAVA''SpCu

brid.SpInt(int) return int' 'DBA'

'athlete_add' 'PROCEDURE' 'void' 4 'JAVA''Athl

ete.Athlete(java.lang.String, java.lang.String, java.lang.String,

java.lang.String)' 'DBA'

SELECT * from db_stored_procedure_args;

sp_name index_of arg_name data_type mode

===

 'sp_int' 0 'i' 'INTEGER' 'IN'

 'athlete_add' 0 'name' 'STRING' 'IN'

 'athlete_add' 1 'gender' 'STRING' 'IN'

 'athlete_add' 2 'nation_code' 'STRING' 'IN'

 'athlete_add' 3 'event' 'STRING' 'IN'

Deleting Java Stored Functions/Procedures

You can delete published Java stored functions/procedures in CUBRID. To delete a Java function/procedure, use the

DROP FUNCTION function_name or DROP PROCEDURE procedure_name statement. Also, you can delete

CUBRID SQL Guide

341

multiple Java stored functions/procedures at a time with several function_names or procedure_names separated by a

comma (,).

A Java stored function/procedure can be deleted only by the user who published it or by DBA members. For example, if

a PUBLIC user published the 'sp_int' Java stored function, only the PUBLIC or DBA members can delete it.

drop function hello[, sp_int]

drop procedure Athlete_Add

Java Stored Function/Procedure Call

Using CALL Statement

You can call the Java stored functions/procedures by using a CALL statement, from SQL statements or Java

applications.

The following shows how to call them by using the CALL statement. The name of the Java stored function/procedure

called from a CALL statement is not case sensitive.

Syntax

CALL {procedure_name ([param[, param]...) | function_name ([param[, param]...)

INTO :host_variable

param {literal | :host_variable}

Example

call Hello() into :HELLO;

call Sp_int(3) into :i;

call phone_info('Tom','016-111-1111');

In CUBRID, the Java functions/procedures are called by using the same CALL statement. Therefore, the CALL

statement is processed as follows:

• It is processed as a method if there is a target class in the CALL statement.

• If there is no target class in the CALL statement, it is checked whether a Java stored function/procedure is executed

or not; a Java stored function/procedure will be executed if one exists.

• If no Java stored function/procedure exists in step 2 above, it is checked whether a method is executed or not; a

method will be executed if one with the same name exists.

The following error occurs if you call a Java stored function/procedure that does not exist.

CALL deposit()

ERROR: Stored procedure/function 'deposit' is not exist.

CALL deposit('Tom', 3000000)

ERROR: Methods require an object as their target.

If there is no argument in the CALL statement, a message "ERROR: Stored procedure/function 'deposit' is not exist."

appears because it can be distinguished from a method. However, if there is an argument in the CALL statement, a

message "ERROR: Methods require an object as their target." appears because it cannot be distinguished from a method.

If the CALL statement is nested within another CALL statement calling a Java stored function/procedure, or if a

subquery is used in calling the Java function/procedure, the CALL statement is not executed.

call phone_info('Tom', call sp_int(999));

call phone_info((select * from Phone where id='Tom'));

If an exception occurs during the execution of a Java stored function/procedure, the exception is logged and stored in

the dbname_java.log file. To display the exception on the screen, change a handler value of the

$CUBRID/java/logging.properties file to " java.lang.logging.ConsoleHandler." Then, the exception details are

displayed on the screen.

Calling from SQL Statement

You can call a Java stored function from a SQL statement as shown below.

CUBRID 2008 R4.0 Help

342

select Hello() from db_root;

select sp_int(99) from db_root;

You can use a host variable for the IN/OUT data type when you call a Java stored function/procedure as follows:

SELECT 'Hi' INTO :out_data FROM db_root;

CALL test_out(:out_data);

SELECT :out_data FROM db_root;

The first clause calls a Java stored procedure in out mode by using a parameter variable; the second is a query clause

retrieving the assigned host variable out_data.

Calling from Java Application

To call a Java stored function/procedure from a Java application, use a CallableStatement object.

Create a phone class in the CUBRID database.

CREATE TABLE phone(

 name varchar(20),

 phoneno varchar(20)

)

Compile the following PhoneNumber.java file, load the Java class file into CUBRID, and publish it.

import java.sql.*;

import java.io.*;

public class PhoneNumber{ public static void Phone(String name, String phoneno) throws

Exception{

 String sql="INSERT INTO PHONE(NAME, PHONENO)"+ "VALUES (?, ?)";

 try{

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 PreparedStatement pstmt = conn.prepareStatement(sql);

 pstmt.setString(1, name);

 pstmt.setString(2, phoneno);

 pstmt.executeUpdate();

 pstmt.close();

 conn.commit();

 conn.close();

 } catch (SQLException e) {

 System.err.println(e.getMessage());

 }

 }

}

create PROCEDURE phone_info(name varchar, phoneno varchar)

as language java

name 'PhoneNumber.Phone(java.lang.String, java.lang.String)';

Create and run the following Java application.

import java.sql.*;

public class StoredJDBC{

 public static void main(){

 Connection conn = null;

 Statement stmt= null;

 int result;

 int i;

 try{

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn =

DriverManager.getConnection("jdbc:CUBRID:localhost:33000:subway:::","","");

 CallableStatement cs;

 cs = conn.prepareCall("call PHONE_INFO(?, ?)");

 cs.setString(1, "Jane");

 cs.setString(2, "010-1111-1111");

 cs.executeUpdate();

 conn.commit();

 cs.close();

 conn.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

CUBRID SQL Guide

343

 }}

Retrieve the phone class after executing the program above; the following result would be displayed.

SELECT * from phone;

name phoneno

==

 'Jane' '010-111-1111'

Note

Return Value of Java Stored Function/Procedure and Precision Type on IN/OUT

To limit the return value of Java stored function/procedure and precision type on IN/OUT, CUBRID processes as

follows:

Checks the sql_type of the Java stored function/procedure.

Passes the value returned by Java to the database with only the type converted if necessary, ignoring the number of

digits defined during creating the Java stored function/procedure. In principle, the user manipulates the passed data

directly in the database.

Take a look at the following typestring() Java stored function.

public class JavaSP1{

 public static String typestring(){

 String temp = " ";

 for(int i=0 i< 1 i++)

 temp = temp + "1234567890";

 return temp;

}

}

create function typestring() return char(5)

as language java

name 'JavaSP1.typestring() return java.lang.String';

Call typestring()

 Result

======================

 ' 1234567890'

Returning java.sql.ResultSet in Java Stored Procedure

In CUBRID, you must use CURSOR as the data type when you declare a Java stored function/procedure that returns a

java.sql.ResultSet.

create function rset() return cursor

as language java

name 'JavaSP2.TResultSet() return java.sql.ResultSet'

Before the Java file returns java.sql.ResultSet, it is required to cast to the CUBRIDResultSet class and then to call the

setReturnable() method.

public static class JavaSP2 {

public static ResultSet TResultSet(){

 try{

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 ((CUBRIDConnection)con).setCharset("euc_kr");

 String sql = "select * from station";

 Statement stmt=con.createStatement();

 ResultSet rs = stmt.executeQuery(sql);

 ((CUBRIDResultSet)rs).setReturnable();

 return rs;

 } catch (Exception e) {

 e.printStackTrace();

 }

 return null;

 }

CUBRID 2008 R4.0 Help

344

}

In the calling block, you must set the OUT argument with Types.JAVA_OBJECT, get the argument to the getObject()

function, and then cast it to the java.sql.ResultSet type before you use it. In addition, the java.sql.ResultSet is only

available to use in CallableStatement of JDBC.

import java.sql.*;

public class TestResultSet{

 public static void main(String[] args) {

 Connnection conn = null;

 Statement stmt= null;

 int result;

 int i;

 try{

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn = DriverManager.getConnection("jdbc:CUBRID:localhost:33000:demodb:::","","");

 CallableStatement cstmt = con.prepareCall("?=CALL rset()");

 cstmt.registerOutParameter(1, Types.JAVA_OBJECT);

 cstmt.execute();

 ResultSet rs = (ResultSet) cstmt.getObject(1);

 while(rs.next()) {

 System.out.println(rs.getString(1));

 }

 rs.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

}

You cannot use the ResultSet as an input argument. If you pass it to an IN argument, an error occurs. An error also

occurs when calling a function that returns ResultSet in a non-Java environment.

IN/OUT of Set Type in Java Stored Function/Procedure

If the set type of the Java stored function/procedure in CUBRID is IN OUT, the value of the argument changed in Java

must be applied to IN OUT. When the set type is passed to the OUT argument, it must be passed as a two-dimensional

array.

Create procedure setoid(x in out set, z object)

as language java name

'SetOIDTest.SetOID(cubrid.sql.CUBRIDOID[][], cubrid.sql.CUBRIDOID';

public static void SetOID(cubrid.sql.CUBRID[][] set, cubrid.sql.CUBRIDOID aoid){

 Connection conn=null;

 Statement stmt=null;

 String ret="";

 Vector v = new Vector();

 cubrid.sql.CUBRIDOID[] set1 = set[0];

 try {

 if(set1!=null) {

 int len = set1.length;

 int i = 0;

 for (i=0 i< len i++)

 v.add(set1[i]);

 }

 v.add(aoid);

 set[0]=(cubrid.sql.CUBRIDOID[]) v.toArray(new cubrid.sql.CUBRIDOID[]{});

 } catch(Exception e) {

 e.printStackTrace();

 System.err.pirntln("SQLException:"+e.getMessage());

 }

}

Using OID in Java Stored Function/Procedure

In case of using the OID type value for IN/OUT in CUBRID, use the value passed from the server.

create procedure tOID(i inout object, q string)

as language java

CUBRID SQL Guide

345

name 'OIDtest.tOID(cubrid.sql.CUBRIDOID[], java.lang.String)';

public static void tOID(CUBRIDOID[] oid, String query)

{

 Connection conn=null;

 Statement stmt=null;

 String ret="";

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 conn=DriverManager.getConnection("jdbc:default:connection:");

 conn.setAutoCommit(false);

 stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(query);

 System.out.println("query:"+ query);

 while(rs.next()) {

 oid[0]=(CUBRIDOID)rs.getObject(1);

 System.out.println("oid:"+oid[0].getTableName());

 }

 stmt.close();

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 System.err.println("SQLException:"+e.getMessage());

 } catch (Exception e) {

 e.printStackTrace();

 system.err.println("Exception:"+ e.getMessage());

 }

}

CUBRID 2008 R4.0 Help

346

METHOD

Overview

This chapter describes methods (software routines) that extend or customize the features of the CUBRID database

system.

The methods are written in C and called by the CALL or EVALUATE statement. A method program is loaded and

linked with the application currently running by the dynamic loader when the method is called. The return value created

as a result of the method execution is passed to the caller.

This chapter describes the following topics:

• Method Types

• Calling a Method

METHOD Type

The CSQL language supports the following two types of methods: class and instance methods.

• The class method is a method called by a class object. It is usually used to create a new class instance or to

initialize it. It is also used to access or update class attributes.

• The instance method is a method called by a class instance. It is used more often than the class method because

most operations are executed in the instance. For example, an instance method can be written to calculate or update

the instance attribute. This method can be called from any instance of the class in which the method is defined or of

the subclass that inherits the method.

The method inheritance rules are similar to those of the attribute inheritance. The subclass inherits classes and instance

methods from the super class. The subclass has only the name of a class or instance method definition inherited from the

super class.

The rules for resolving method name conflicts are same as those for attribute name conflicts. For more information

about attribute/method inheritance conflicts, see Overview in Class Conflict Resolution.

Calling METHOD

Overview

Methods are executed by the CALL or EVALUATE statement, and their results are returned the same way as the query

results.

These statements are also used to call a method from a query. (The CALL or EVALUATE keyword is omitted.)

CALL Statement

Description

In CUBRID, the CALL statement is used to call a method defined in the database. Both table and record methods can

be called by the CALL statement.

Syntax

CALL method_call [;]

method_call :

• method_name ([arg_value [{, arg_value }_]]) ON call_target [to_variable]

• method_name (call_target [, arg_value [{, arg_value }_]]) [to_variable]

arg_value :

• any CSQL expression

call_target :

• an object-valued expression

CUBRID SQL Guide

347

to_variable :

• INTO variable

• TO variable

• The method_name is either the method name defined in the table or the system-defined method name provided with

CUBRID. A method requires one or more parameters. If there is no parameter for the method, a set of blank

parentheses must be used.

• call_target can use an object-valued expression that contains a class name, a variable, another method call (which

returns an object). To call a class method for a class object, you must place the CLASS keyword before the

call_target. In this case, the table name must be the name of the class where the table method is defined. To call a

record method, you must specify the expression representing the record object. You can optionally store the value

returned by the table or record method in the to_variable. This returned variable value can be used in the CALL

statement just like the call_target or arg_value parameter.

• Calling nested methods is possible when other method_call is the call_target of the method or given as one of the

arg_value parameters.

EVALUATE Statement

Description

The EVALUATE statement is also used to call a method defined in the database.

In the EVALUATE statement, a method call is a term in an expression. If the method returns a constant value, another

constant (or a method returning a constant) can also be a term in an expression. Both class and instance methods can be

called by the EVALUATE statement.

Syntax

EVALUATE expression [;]

expression:

• [+ | -] term [{ + | - | * | / } term]

term:

• method_call

method_call :

• method_name (call_target [, arg_value [{, arg_value }_]]) [to_variable]

 method_name ([arg_value [{, arg_value }_]])

 ON call_target [to_variable]

arg_value :

• literal

• variable

• expression

call_target :

• CLASS class_name

• variable

• expression

• method_call

to_variable :

• INTO variable

• TO variable

In the EVALUATE statement, the target argument for the specified method is represented in the parentheses following

the method_name. The target can be the first field in the list, followed by method arguments. If the method executed is a

class method, the CLASS keyword must precede the target class as the first field in the list. If only the method

arguments are included in the parentheses, the call_target should be in the ON clause.

The EVALUATE statement also supports nested method calls by allowing one method call to be expressed as the target

or the argument of another method. In these types of expressions, the result of the inner method is used to determine that

of the outer method.

CUBRID 2008 R4.0 Help

348

Partitioning

What is Partitioning?

Partitioning is a method by which a table is divided into multiple independent logical units. Each logical unit used in

partitioning is called a partition. Partitioning can enhance manageability, performance and availability. Some

advantages of partitioning are as follows:

• Improved management of large capacity tables

• Improved performance by narrowing the range of access when retrieving data

• Improved performance and decreased physical loads by distributing disk I/O

• Decreased possibility of data corruption and improved availability by partitioning a table into multiple chunks

• Optimized storage cost

Three types of partitioning methods are supported by CUBRID: range partitioning, hash partitioning, and list

partitioning.

The maximum number of partitions cannot exceed 1,024. Each partition of a table is created as its subtable. The

subtables created by the partitioning process cannot be altered or deleted by users. The name of the subtable is stored in

the system table in a 'class_name__p__partition_name' format. Database users can check the partitioning information in

the db_class and db_partition virtual tables. They can also check the information by using the ;sc <table name>

command in the CUBRID Manager or the CSQL Interpreter.

Range Partitioning

Range Partitioning Definition

Description

You can define a range partition by using the PARTITION BY RANGE clause.

Syntax

CREATE TABLE(

...

)

PARTITION BY RANGE (<partition_expression>) (

PARTITION <partition_name> VALUES LESS THAN (<range_value>),

PARTITION <partition_name> VALUES LESS THAN (<range_value>)),

...)

)

• partition_expression : Specifies the partition expression. The expression can be specified by the name of the

column to be partitioned or by a function. For more information of the data types and functions available, see Data

Types Available for Partition Expression.

• partition_name : Specifies the partition name.

• range_value : Specifies the partition-by value.

Example 1

The following is an example of creating the participant2 table with the participating countries, and inserting data that

partitions the years into before and after the 2000 Olympic Games. When inserting data, the countries that participated

in the 1988 and 1996 Olympic Games are stored in before_2000; the rest of them are stored in before_2008.

CREATE TABLE participant2 (host_year INT, nation CHAR(3), gold INT, silver INT, bronze INT)

PARTITION BY RANGE (host_year)

(PARTITION before_2000 VALUES LESS THAN (2000),

PARTITION before_2008 VALUES LESS THAN (2008));

INSERT INTO participant2 VALUES (1988, 'NZL', 3, 2, 8);

CUBRID SQL Guide

349

INSERT INTO participant2 VALUES (1988, 'CAN', 3, 2, 5);

INSERT INTO participant2 VALUES (1996, 'KOR', 7, 15, 5);

INSERT INTO participant2 VALUES (2000, 'RUS', 32, 28, 28);

INSERT INTO participant2 VALUES (2004, 'JPN', 16, 9, 12);

Example 2

As shown below, the partition key value in a range partition is NULL, the data are stored in the first partition.

INSERT INTO participant2 VALUES(NULL, 'AAA', 0, 0, 0);

Caution

• The maximum number of partitions possible for a given table is 1024.

• If the partition key value is NULL, the data is stored in the first partition (see Example 2).

Range Partitioning Redefinition

Description

You can redefine a partition by using the REORGANIZE PARTITION clause of the ALTER statement. By

redefining partitions, you can combine multiple partitions into one or divide one into multiple.

Syntax

ALTER {TABLE | CLASS} <table_name>

REORGANIZE PARTITION

<alter partition name comma list>

INTO (<partition definition comma list>)

partition definition comma list:

PARTITION <partition_name> VALUES LESS THAN (<range_value>),....

• table_name : Specifies the name of the table to be redefined.

• alter partition name comma list : Specifies the partition to be redefined. Multiple partitions are separated by

commas (,).

• partition definition comma list : Specifies the redefined partitions. Multiple partitions are separated by commas (,).

Example 1

The following is an example of repartitioning the before_2000 partition into the before_1996 and before_2000 partitions.

CREATE TABLE participant2 (host_year INT, nation CHAR(3), gold INT, silver INT, bronze

INT)

PARTITION BY RANGE (host_year)

(PARTITION before_2000 VALUES LESS THAN (2000),

PARTITION before_2008 VALUES LESS THAN (2008));

ALTER TABLE participant2 REORGANIZE PARTITION before_2000 INTO (

PARTITION before_1996 VALUES LESS THAN (1996),

PARTITION before_2000 VALUES LESS THAN (2000)

);

Example 2

The following is an example of combining two partitions redefined in Example 1 back into a single before_2000

partition.

ALTER TABLE participant2 REORGANIZE PARTITION before_1996, before_2000 INTO

(PARTITION before_2000 VALUES LESS THAN (2000));

Caution

• When redefining a range or list partition, duplicate ranges or values are not allowed.

• The REORGANIZE PARTITION clause cannot be used to change the partition table type. For example, a range

partition cannot be changed to a hash partition, or vice versa.

CUBRID 2008 R4.0 Help

350

• The maximum number of partitions cannot exceed 1,024. There must be at least one partition remaining after

deleting partitions. In a range-partitioned table, only adjacent partitions can be redefined.

Adding Range Partitioning

Description

You can add range partitions by using the ADD PARTITION clause of the ALTER statement.

Syntax

ALTER {TABLE | CLASS} <table_name>

ADD PARTITION <partition definitions comma list>

partition definition comma list:

PARTITION <partition_name> VALUES LESS THAN (<range_value>),...

• table_name : Specifies the name of the table to which partitions are added.

• partition definition comma list : Specifies the partitions to be added. Multiple partitions are separated by commas

(,).

Example

Currently, the partition before the 2008 Olympic Games is defined in the participant2 table. The following is an

example of adding the before_2012 and before_2016 partitions; the former will store the information about the 2012

Olympic Games and the latter will store the information about the 2016 Olympic Games.

ALTER TABLE participant2 ADD PARTITION (

PARTITION before_2012 VALUES LESS THAN (2012),

PARTITION before_2016 VALUES LESS THAN MAXVALUE);

Caution

• When a range partition is added, only the partition by value greater than the existing partition value can be added.

Therefore, as shown in the above example, if the maximum value is specified by MAXVALUE, no more partitions

can be added (you can add partitions by changing the MAXVALUE value by redefining the partition).

• To add the partition by value smaller than the existing partition value, use the redefining partitions (see Range

Partitioning Redefinition).

Dropping Range Partitioning

Description

You can drop a partition by using the DROP PARTITION clause of the ALTER statement.

Syntax

ALTER {TABLE | CLASS} <table_name>

DROP PARTITION <partition_name>

• table_name : Specifies the name of the partitioned table.

• partition_name : Specifies the name of the partition to be dropped.

Example

The following is an example of dropping the before_2000 partition in the participant2 table.

ALTER TABLE participant2 DROP PARTITION before_2000;

Caution

• When dropping a partitioned table, all stored data in the partition are also dropped.

• If you want to change the partitioning of a table without losing data, use the ALTER TABLE...REORGANIZE

PARTITION statement (see Range Partitioning Redefinition).

• The number of rows deleted is not returned when a partition is dropped. If you want to delete the data, but want to

maintain the table and partitions, use the DELETE statement.

CUBRID SQL Guide

351

Hash Partitioning

Hash Partitioning Definition

Description

You can define a hash partition by using the PARTITION BY HASH clause.

Syntax

CREATE TABLE (

...

)

(PATITION BY HASH (<partition_expression>)

 PATITIONS (<number_of_partitions>)

)

• partition_expression : Specifies a partition expression. The expression can be specified by the name of the column

to be partitioned or by a function.

• number_of_partitions : Specifies the number of partitions.

Example 1

The following is an example of creating the nation2 table with country codes and country names, and defining 4 hash

partitions based on code values. Only the number of partitions, not the name, is defined in hash partitioning; names such

as p0 and p1 are assigned automatically.

CREATE TABLE nation2

(code CHAR(3),

name VARCHAR(50))

PARTITION BY HASH (code) PARTITIONS 4;

Example 2

The following is an example of inserting data to the hash partition created in the example 1. When a value is inserted

into a hash partition, the partition to store the data is determined by the hash value of the partition key. If the partition

key value is NULL, the data is stored in the first partition.

INSERT INTO nation2 VALUES ('KOR','Korea');

INSERT INTO nation2 VALUES ('USA','USA United States of America');

INSERT INTO nation2 VALUES ('FRA','France');

INSERT INTO nation2 VALUES ('DEN','Denmark');

INSERT INTO nation2 VALUES ('CHN','China');

INSERT INTO nation2 VALUES (NULL,'AAA');

Caution

• The maximum number of partitions cannot exceed 1,024.

Hash Partitioning Redefinition

Description

You can redefine a partition by using the COALESCE PARTITION clause of the ALTER statement. Instances are

preserved if the hash partition is redefined.

Syntax

ALTER {TABLE | CLASS} <table_name>

COALESCE PARTITION <unsigned integer>

• table_name : Specifies the name of the table to be redefined.

• unsigned integer : Specifies the number of partitions to be deleted.

CUBRID 2008 R4.0 Help

352

Example

The following is an example of decreasing the number of partitions in the nation2 table from 4 to 2.

ALTER TABLE nation2 COALESCE PARTITION 2;

Caution

• Decreasing the number of partitions is only available.

• To increase the number of partitions, use the ALTER TABLE ... ADD PARTITION statement as in range

partitioning (see Adding Range Partitioning for more information).

• There must be at least one partition remaining after redefining partitions.

List Partitioning

List Partitioning Definition

Description

You can define a list partition by using the PARTITION BY LIST statement.

Syntax

CREATE TABLE(

...

)

PARTITION BY LIST (<partition_expression>) (

PARTITION <partition_name> VALUES IN (<partition_value_list>),

PARTITION <partition_name> VALUES IN (<partition_value_ list>

,

...

);

• partition_expression : Specifies a partition expression. The expression can be specified by the name of the column

to be partitioned or by a function. For more information on the data types and functions available, see Data Types

Available for Partition Expression.

• partition_name : Specifies the partition name.

• partition_value_list : Specifies the list of the partition by values.

Example 1

The following is an example of creating the athlete2 table with athlete names and sport events, and defining list

partitions based on event values.

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball')

);

Example 2

The following is an example of inserting data to the list partition created in the example 1. In the last query of the

example 2, if you insert an argument that has not been specified in the partition expression of the example 1, data

inserting fails.

INSERT INTO athlete2 VALUES ('Hwang Young-Cho', 'Athletics');

INSERT INTO athlete2 VALUES ('Lee Seung-Yuop', 'Baseball');

INSERT INTO athlete2 VALUES ('Moon Dae-Sung','Taekwondo');

INSERT INTO athlete2 VALUES ('Cho In-Chul', 'Judo');

INSERT INTO athlete2 VALUES ('Hong Kil-Dong', 'Volleyball');

CUBRID SQL Guide

353

Example 3

The following is an example where an error occurs with no data inserted when the partition key value is NULL. To

define a partition where a NULL value can be inserted, define one that has a list including a NULL value as in the

event3 partition as below.

INSERT INTO athlete2 VALUES ('Hong Kil-Dong','NULL');

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics '),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball', NULL)

);

Caution

• The maximum number of partitions cannot exceed 1,024.

List Partitioning Redefinition

Description

You can redefine a partition by using the REORGANIZE PARTITION clause of the ALTER statement. By

redefining partitions, you can combine multiple partitions into one or divide one into multiple.

Syntax

ALTER {TABLE | CLASS} <table_name>

REORGANIZEPARTITION

<alter partition name comma list>

INTO (<partition definition comma list>)

partition definition comma list:

PARTITION <partition_name> VALUES IN (<partition_value_list>),...

• table_name : Specifies the name of the table to be redefined.

• alter partition name comma list : Specifies the partition to be redefined. Multiple partitions are separated by

commas (,).

• partition definition comma list : Specifies the redefined partitions. Multiple partitions are separated by commas (,).

Example 1

The following is an example of creating the athlete2 table partitioned by the list of sport events, and redefining the

event2 partition to be divided into event2_1 (Judo) and event2_2 (Taekwondo, Boxing).

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics '),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball')

);

ALTER TABLE athlete2 REORGANIZE PARTITION event2 INTO

(PARTITION event2_1 VALUES IN ('Judo'),

PARTITION event2_2 VALUES IN ('Taekwondo','Boxing'));

Example 2

The following is an example that combining the event2_1 and event2_2 partitions divided in Example 1 back into a

single event2 partition.

ALTER TABLE athlete2 REORGANIZE PARTITION event2_1, event2_2 INTO

(PARTITION event2 VALUES IN('Judo','Taekwondo','Boxing'));

CUBRID 2008 R4.0 Help

354

Dropping List Partitioning

Description

You can drop a partition by using the DROP PARTITION clause of the ALTER statement.

Syntax

ALTER {TABLE | CLASS} <table_name>

DROP PARTITION <partition_name>

• table_name : Specifies the name of the partitioned table.

• partition_name : Specifies the name of the partition to be dropped.

Example

The following is an example of creating the athlete2 table partitioned by the list of sport events, and dropping the event3

partition.

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics '),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball')

);

ALTER TABLE athlete2 DROP PARTITION event3;

Partitioning Management

Retrieving and Manipulating Data in Partitioning

Description

When retrieving data, the SELECT statement can be used not only for partitioned tables but also for each partition.

Example

The following is an example of creating the athlete2 table to be partitioned by the list of sport events, inserting data, and

retrieving the event1 and event2 partitions.

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics '),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball')

);

INSERT INTO athlete2 VALUES ('Hwang Young-Cho', 'Athletics');

INSERT INTO athlete2 VALUES ('Lee Seung-Yuop', 'Baseball');

INSERT INTO athlete2 VALUES ('Moon Dae-Sung','Taekwondo');

INSERT INTO athlete2 VALUES ('Cho In-Chul', 'Judo');

SELECT * from athlete2__p__event1;

 name event

==

 'Hwang Young-Cho' 'Athletics'

SELECT * from athlete2__p__event2;

 name event

==

 'Moon Dae-Sung' 'Taekwondo'

 'Cho In-Chul' 'Judo'

Caution

• Data manipulation such as insert, update and delete for each partition of the partitioned table is not allowed.

CUBRID SQL Guide

355

Moving Data by Changing Partitioning Key Value

Description

If a partition key value is changed, the changed instance can be moved to another partition by the partition expression.

Example

The following is an example of moving the instance to another partition by changing the partition key value.

If you change the sport event information of Hwang Young-Cho in the event1 partition from Athletics to Football, the

instance is moved to the event3 partition.

CREATE TABLE athlete2(name VARCHAR(40), event VARCHAR(30))

PARTITION BY LIST (event) (

PARTITION event1 VALUES IN ('Swimming', 'Athletics '),

PARTITION event2 VALUES IN ('Judo', 'Taekwondo','Boxing'),

PARTITION event3 VALUES IN ('Football', 'Basketball', 'Baseball')

);

INSERT INTO athlete2 VALUES ('Hwang Young-Cho', 'Athletics');

INSERT INTO athlete2 VALUES ('Lee Seung-Yuop', 'Baseball');

 name event

==

 'Hwang Young-Cho' 'Athletics'

UPDATE athlete2 SET event = 'Football' WHERE name = 'Hwang Young-Cho';

SELECT * FROM athlete2__p__event3;

 name event

==

 'Lee Seung-Yuop' 'Baseball'

 'Hwang Young-Cho' 'Football'

Caution

• Be aware that when moving data between partitions by changing a partition key value, it can cause performance

degradation due to internal deletions and insertions.

Altering Regular Table into Partitioning Table

Description

To alter a regular table into a partitioned one, use the ALTER TABLE statement. Three partitioning methods can be

used with the ALTER TABLE statement. The data in the existing table are moved to and stored in each partition

according to the partition definition.

Syntax

ALTER {TABLE | CLASS} table_name

PARTITION BY {RANGE | HASH | LIST } (<partition_expression>)

(PARTITION partition_name VALUES LESS THAN { MAXVALUE | (<partition_value_option>) }

| PARTITION partition_name VALUES IN (<partition_value_option list) >]

| PARTITION <UNSINGED_INTEGER>)

<partition_expression>

expression_

<partition_value_option>

literal_

• table_name : Specifies the name of the table to be altered.

• partition_expression : Specifies a partition expression. The expression can be specified by the name of the column

to be partitioned or by a function. For more information on the data types and functions available, see Data Types

Available for Partition Expressions.

• partition_name : Specifies the name of the partition.

• partition_value_option : Specifies the value or the value list on which the partition is based.

CUBRID 2008 R4.0 Help

356

Example

The following are examples of altering the record table into a range, list and hash table respectively.

ALTER TABLE record PARTITION BY RANGE (host_year)

(PARTITION before_1996 VALUES LESS THAN (1996),

 PARTITION after_1996 VALUES LESS THAN MAXVALUE);

ALTER TABLE record PARTITION BY list (unit)

(PARTITION time_record VALUES IN ('Time'),

 PARTITION kg_record VALUES IN ('kg'),

 PARTITION meter_record VALUES IN ('Meter'),

 PARTITION score_record VALUES IN ('Score'));

ALTER TABLE record

PARTITION BY HASH (score) PARTITIONS 4;

Caution

• If there is data that does not satisfy the partition condition, partitions cannot be defined.

Altering Partitioning Table into Regular Table

Description

To alter an existing partitioned table into a regular one, use the ALTER TABLE statement.

Syntax

ALTER {TABLE | CLASS} <table_name>

REMOVE PARTITIONING

• table_name : Specifies the name of the table to be altered.

Example

The following is an example of altering the partitioned table of name "nation2" into a regular one.

ALTER TABLE nation2 REMOVE PARTITIONING;

Partition Pruning

Description

Partition pruning is an optimization, limiting the scope of your query according to the criteria you have specified. It is

the skipping of unnecessary data partitions in a query. By doing this, you can greatly reduce the amount of data output

from the disk and time spent on processing data as well as improve query performance and resource availability.

Example 1

The following is an example of creating the olympic2 table to be partitioned based on the year the Olympic Games were

held, and retrieving the countries that participated in the Olympic Games since the 2000 Sydney Olympic Games.

In the WHERE clause, partition pruning takes place when equality or range comparison is performed between a

partition key and a constant value. In this example, the before_1996 partition that has a smaller year value than 2000 is

not scanned.

CREATE TABLE olympic2

(opening_date DATE, host_nation VARCHAR(40))

PARTITION BY RANGE (EXTRACT (YEAR FROM opening_date))

(PARTITION before_1996 VALUES LESS THAN (1996),

 PARTITION before_MAX VALUES LESS THAN MAXVALUE);

SELECT opening_date, host_nation FROM olympic2 WHERE EXTRACT (YEAR FROM (opening_date))

>= 2000;

CUBRID SQL Guide

357

Example 2

The following is an example of showing the method of getting the effects of partition pruning by retrieving data with a

specific partition when partition pruning does not occur. In the first query, partition pruning does not occur because the

value compared is not in the same format as that of the partition expression.

Therefore, you can use the same effect of partition pruning by specifying the appropriate partition as shown in the

second query.

SELECT host_nation FROM olympic2 WHERE opening_date >= '2000 - 01 - 01';

SELECT host_nation FROM olympic2__p__before_max WHERE opening_date >= '2000 - 01 - 01';

Example 3

The following is an example of specifying the search condition to make a partition pruning in the hash partitioned table,

called the manager table.

For hash partitioning, partition pruning occurs only when equality comparison is performed between a partition key and

a constant value in the WHERE clause.

CREATE TABLE manager (

code INT,

name VARCHAR(50))

PARTITION BY HASH (code) PARTITIONS 4;

SELECT * FROM manager WHERE code = 10053;

Caution

• The partition expression and the value compared must be in the same format.

Data Types Available for Partitioning Expression

Description

The following table shows data types of the column that can or cannot be used as a partition key.

Data Types Available Data Types Unavailable

CHAR

VARCHAR

NCHAR

VARNCHAR

INTEGER

SMALLINT

DATE

TIME

TIMESTAMP

FLOAT

REAL

DOUBLE

BIT

BIT VARYING

NUMERIC OR DECIMAL

MONETARY

SET

LIST OR SEQUENCE

MULTISET

OBJECT

The following operator functions can be used in partition expressions to be applied to partition keys.

• Number Operations

+, -, *, /, MOD, STRCAT, FLOOR, CEIL, POWER, ROUND, ABS, TRUNC

• String Operations

POSITION, SUBSTRING, OCTEC_LENGTH, BIT_LENGTH, CHAR_LENGTH, LOWER, UPPER, TRIM,

LTRIM, RTRIM, LPAD, RPAD, REPLACE, TRANSLATE

• Date Operations

ADD_MONTH, LAST_DAY, MONTH_BETWEEN, SYS_DATE, SYS_TIME, SYS_TIMESTAMP, TO_DATE,

TO_NUMBER, TO_TIME, TO_TIMESTAMP, TO_CHAR

• Others

CUBRID 2008 R4.0 Help

358

EXTRACT, CAST

Creating VIEW with Partitioning Table

Description

You can define a virtual table by using each partition of a partitioned table. Retrieving data from the virtual table created

is possible, but data insert, delete and update operations are not allowed.

Example

The following is an example of creating the participant2 table partitioned based on the participating year, and creating

and retrieving a virtual table with the participant2__p__before_2000 partition.

CREATE TABLE participant2 (host_year INT, nation CHAR(3), gold INT, silver INT, bronze INT)

PARTITION BY RANGE (host_year)

(PARTITION before_2000 VALUES LESS THAN (2000),

 PARTITION before_2008 VALUES LESS THAN (2008));

INSERT INTO participant2 VALUES (1988, 'NZL', 3, 2, 8);

INSERT INTO participant2 VALUES (1988, 'CAN', 3, 2, 5);

INSERT INTO participant2 VALUES (1996, 'KOR', 7, 15, 5);

INSERT INTO participant2 VALUES (2000, 'RUS', 32, 28, 28);

INSERT INTO participant2 VALUES (2004, 'JPN', 16, 9, 12);

CREATE VIEW v_2000 AS

SELECT * FROM participant2__p__before_2000

WHERE host_year = 1988;

 host_year nation gold silver bronze

==

 1988 'NZL' 3 2 8

 1988 'CAN' 3 2 5

Updating Statistics on Partitioning Tables

You can update statistics on the database by using the cubrid optimizedb utility or the SQL statement called UPDATE

STATISTICS ON CLASSES. You can also use the ANALYZE PARTITION statement for partitioned tables.

The following is an example of the ANALYZE PARTITION statement.

ALTER TABLE t1 ANALYZE PARTITION p3;

CUBRID SQL Guide

359

Class Inheritance

Overview

Description

To explain the concept of inheritance, a table is represented as a class and a column is represented as an attribute.

Classes in CUBRID database can have class hierarchy. Attributes and methods can be inherited through such hierarchy.

As shown in the previous section, you can create a Manager class by inheriting attributes from an Employee class. The

Manager class is called the subclass of the Employee class, and the Employee class is called the super class of the

Manager class. Inheritance can simplify class creation by reusing the existing class hierarchy.

CUBRID allows multiple inheritance, which means that a class can inherit attributes and methods from more than one

super class. However, inheritance can cause conflicts when an attribute or method of the super class is added or deleted.

Such conflict occurs in multiple inheritance if there are attributes or methods with the same name in different super

classes. For example, if it is likely that a class inherits attributes of the same name and type from more than one super

class, you must specify the attributes to be inherited. In such a case, if the inherited super class is deleted, a new

attribute of the same name and type must be inherited from another super class. In most cases, the database system

resolves such problems automatically. However, if you don't like the way that the system resolves a problem, you can

resolve it manually by using the INHERIT clause.

When attributes are inherited from more than one super class, it is possible that their names are to be the same, while

their domains are different. For example, two super classes may have the same attribute, whose domain is a class. In this

case, a subclass automatically inherits attributes with more specialized (a lower in the class hierarchy) domains. If such

conflict occurs between basic data types (e.g. STRING or INTEGER) provided by the system, inheritance fails.

Conflicts during inheritance and their resolutions will be covered in the Resolving Class Conflicts section.

Caution

The following cautions must be observed during inheritance:

• The class name must be unique in the database. A class can be created as a subclass of one or more super class

names in the database optionally. An error occurs if you create a class that inherits another class that does not exist.

• The name of a method/attribute must be unique within a class. The name cannot contain spaces, and cannot be a

reserved keyword of CUBRID. Alphabets as well as '_', '#', '%' are allowed in the class name, but the first character

cannot be '_'. A class name cannot exceed 255 English letters. Class names are not case-sensitive. A class name will

be saved in the system after being converted to lowercase characters.

Note A super class name can begin with the user name so that the owner of the class can be easily identified.

Class Attribute and Method

You can create class attributes to store the aggregate property of all instances in the class. When you define a CLASS

attribute or method, you must precede the attribute or method name with the keyword CLASS. Because a class attribute

is associated with the class itself, not with an instances of the class, it has only one value. For example, a class attribute

can be used to store the average value determined by a class method or the timestamp when the class was created. A

class method is executed on the class object itself. It can be used to calculate the aggregate value for the instances of the

class.

When a subclass inherits a super class, each class has a separate storage space for class attributes, so that two classes

may have different values of class attribute. Therefore, the subclass does not change even when the attributes of the

super class are changed.

The name of a class attribute can be the same as that of an instance attribute of the same class. Likewise, the name of a

class method can be the same as that of an instance method of the same class.

CUBRID 2008 R4.0 Help

360

Order Rule for Inheritance

The following rules apply to inheritance. The term class is generally used to describe the inheritance relationship

between classes and virtual classes in the database.

• For an object without a super class, attributes are defined in the same order as in the CREATE statement (an ANSI

standard).

• If there is one super class, locally created attributes are placed after the super class attributes. The order of the

attributes inherited from the super class follows the one defined during the super class definition. For multiple

inheritance, the order of the super class attributes is determined by the order of the super classes specified during

the class definition.

• If more than one super class inherits the same class, the attribute that exists in both super classes is inherited to the

subclass only once. At this time, if a conflict occurs, the attribute of the first super class is inherited.

• If a name conflict occurs in more than one super class, you can inherit only the ones you want from the super class

attributes by using the INHERIT clause in order to resolve the conflict.

• If the name of the super class attribute is changed by the alias option of the INHERIT clause, its position is

maintained.

INHERIT Clause

Description

When a class is created as a subclass, the class inherits all attributes and methods of the super class. A name conflict that

occurs during inheritance can be handled by either a system or a user. To resolve the name conflict directly, add the

INHERIT clause to the CREATE CLASS statement.

Syntax

CREATE CLASS

.

.

.

INHERIT resolution [{, resolution }_]

resolution :

{ column_name | method_name } OF super class [AS alias]

For the attr_mthd_name in the INHERIT clause, specify the name of the attribute or method of the super class to

inherit. With the ALIAS clause, you can resolve a name conflict that occurs in multiple inheritance statements by

inheriting a new name.

ADD SUPERCLASS Clause

Description

To extend class inheritance, add a super class to a class. A relationship between two classes is created when a super

class is added to an existing class. Adding a super class does not mean adding a new class.

Syntax

ALTER CLASS

.

.

.

ADD super class [user_name.]class_name [{ , [user_name.]class_name }_]

[INHERIT resolution [{, resolution }_]] []

resolution:

{ column_name | method_name } OF super class_name [AS alias]

For the first class_name, specify the name of the class where a super class is to be added. Attributes and methods of the

super class can be inherited by using the syntax above.

CUBRID SQL Guide

361

Name conflicts can occur when adding a new super class. If a name conflict cannot be resolved by the database system,

attributes or methods to inherit from the super class can be specified by using the INHERIT clause. You can use aliases

to inherit all attributes or methods that cause the conflict. For more information on super class name conflicts, see the

Resolving Class Conflict section.

Example

The following is an example of creating the female_event class by inheriting the event class included in demodb.

CREATE CLASS female_event UNDER event

DROP SUPERCLASS Clause

Description

Deleting a super class from a class means removing the relationship between two classes. If a super class is deleted from

a class, it changes inheritance relationship of the classes as well as of all their subclasses.

Syntax

ALTER CLASS

.

.

.

DROP super class class_name [{ , class_name }_]

[INHERIT resolution [{, resolution }_]] []

resolution:

{ column_name | method_name } OF super class_name [AS alias]

For the first class_name, specify the name of the class to be modified. For the second class_name, specify the name of

the super class to be deleted. If a name conflict occurs after deleting a super class, see the Resolving Class Conflict

section for the resolution.

Example 1

In the following example, the female_event class inherits from the event class.

CREATE CLASS female_event UNDER event

Example 2

In the following example, the ALTER statement deletes the event super class from the female_event class. The

attributes that the female_event class inherited from the event class do not exist any more.

ALTER CLASS female_event

DROP super class event

CUBRID 2008 R4.0 Help

362

Class Conflict Resolution

Overview

If you modify the schema of the database, conflicts can occur between attributes or methods of inheritance classes. Most

conflicts are resolved automatically by CUBRID otherwise, you must resolve the conflict manually. Therefore, you

need to examine the possibility of conflicts before modifying the schema.

Two types of conflicts can cause damage to the database schema. One is conflict with a subclass when the subclass

schema is modified. The other is conflict with a super class when the super class is modified. The following are

operations that may cause conflicts between classes.

• Adding an attribute

• Deleting an attribute

• Adding a super class

• Deleting a super class

• Deleting a class

If a conflict occurs as the result of the above operations, CUBRID applies a basic resolution to the subclass where the

conflict occurred. Therefore, the database schema can always maintain consistent state.

Resolution Specifier

Description

Conflicts between the existing classes or attributes, and inheritance conflicts can occur if the database schema is

modified. If the system fails to resolve a conflict automatically or if you don't like the way the system resolved the

problem, you can suggest how to resolve the conflict by using the INHERIT clause of the ALTER statement (often

referred as resolution specifier).

When the system resolves the conflict automatically, basically, the existing inheritance is maintained (if any). If the

previous resolution becomes invalid when the schema is modified, the system will arbitrarily select another one.

Therefore, you must avoid excessive reuse of attributes or methods in the schema design stage because the way the

system will resolve the conflict cannot always be predictable.

What will be discussed concerning conflicts is applied commonly to both attributes and methods.

Syntax

ALTER [class_type] class_name alter_clause

[INHERIT resolution [{, resolution }_]] []

resolution:

{ column_name | method_name } OF super class_name [AS alias]

Superclass Conflict

Adding a super class

The INHERIT clause of the ALTER CLASS statement is optional, but must be used when a conflict occurs due to

class changes. You can specify more than one resolutions after the INHERIT clause.

super class_name specifies the name of the super class that has the new attribute or method to inherit when a conflict

occurs. attr_mthd_name specifies the name of the attribute or method to inherit. You can use the alias clause when you

need to change the name of the attribute or method to inherit.

The following example creates the soccer_stadium class by inheriting the event and stadium classes in the olympic

database of demodb. Because both event and stadium classes have the name and code attributes, you must specify the

attributes to inherit using the INHERIT clause.

CUBRID SQL Guide

363

CREATE CLASS soccer_stadium UNDER event, stadium

INHERIT name OF stadium, code OF stadium

When the two super classes (event and stadium) have the name attribute, if the soccer_stadium class needs to inherit

both attributes, it can inherit the name unchanged from the stadium class and the name changed from the event class by

using the alias clause of the INHERIT.

The following is an example in which the name attribute of the stadium class is inherited as it is, and that of the event

class is inherited as the 'purpose' alias.

ALTER CLASS soccer_stadium

INHERIT name OF event AS purpose

Deleting a super class

A name conflict may occur again if a super class that explicitly inherited an attribute or method is dropped by using the

INHERIT. In this case, you must specify the attribute or method to be explicitly inherited when dropping the super

class.

The following is an example of creating the seoul_1988_soccer class by inheriting game, participant and stadium

classes from demodb, and deleting the participant class from the super class. Because nation_code and host_year are

explicitly inherited from the participant class, you must resolve their name conflicts before deleting it from the super

class. However, host_year does not need to be specified explicitly because it exists only in the game class.

CREATE CLASS seoul_1988_soccer UNDER game, participant, stadium

INHERIT nation_code OF participant, host_year OF participant

ALTER CLASS seoul_1988_soccer

DROP super class participant

INHERIT nation_code OF stadium

Compatible Domains

When an attribute conflict occurs among two or more super classes, the statement resolving the conflict is not possible

only if all attributes have compatible domains.

For example, the class that inherits a super class with the phone attribute of integer type cannot have another super class

with the phone attribute of string type. If the types of the phone attributes of the two super classes are both String or

Integer, you can add a new super class by resolving the conflict with the INHERIT clause.

Compatibility is checked when inheriting an attribute with the same name, but with the different domain. In this case,

the attribute that has a lower class in the class inheritance hierarchy as the domain is automatically inherited. If the

domains of the attributes to inherit are compatible, the conflict must be resolved in the class where an inheritance

relationship is defined.

Subclass Conflict

Any changes in a class will be automatically propagated to all subclasses. If a problem occurs in the subclass due to the

changes, CUBRID resolves the corresponding subclass conflict and then displays a message saying that the conflict has

been resolved automatically by the system.

Subclass conflicts can occur due to operations such as adding a super class, or creating/deleting a method or an attribute.

Any changes in a class will affect all subclasses. Since changes are automatically propagated, harmless changes can

even cause side effects in subclasses.

Adding Attributes and Methods

The simplest subclass conflict occurs when an attribute is added. A subclass conflict occurs if an attribute added to a

super class has the same name as one already inherited by another super class. In such cases, CUBRID will

automatically resolve the problem. That is, the added attribute will not be inherited to all subclasses that have already

inherited the attribute with the same name.

The following is an example of adding an attribute to the event class. The super classes of the soccer_stadium class are

the event and the stadium classes, and the nation_code attribute already exists in the stadium class. Therefore, a conflict

CUBRID 2008 R4.0 Help

364

occurs in the soccer_stadium class if the nation_code attribute is added to the event class. However, CUBRID resolves

this conflict automatically.

ALTER CLASS event

ADD ATTRIBUTE nation_code CHAR(3)

If the event class is dropped from the soccer_stadium super class, the cost attribute of the stadium class will be inherited

automatically.

Dropping Attributes and Methods

When an attribute is dropped from a class, any resolution specifiers which refer to the attribute by using the INHERIT

clause are also removed. If a conflict occurs due to the deletion of an attribute, the system will determine a new

inheritance hierarchy. If you don't like the inheritance hierarchy determined by the system, you can determine it by

using the INHERIT clause of the ALTER statement. The following is an example of such conflict.

Suppose there is a subclass that inherits attributes from three different super classes. If a name conflict occurrs in all

super classes and the explicitly inherited attribute is dropped, one of the remaining two attributes will be inherited

automatically to resolve the problem.

The following is an example of a subclass conflict. Classes B, C and D are super classes of class E, and have an attribute

whose name is team and the domain is team_event. Class E was created with the place attribute inherited from class C

as follows:

create class E under B, C, D

inherit place of C

In this case, the inheritance hierarchy is as follows:

Suppose that you decide to delete class C from the super class. This drop will require changes to the inheritance

hierarchy. Because the domains of the remaining classes B and D with the game attribute are at the same level, the

system will randomly choose to inherit from one of the two classes. If you don't want the system to make a random

selection, you can specify the class to inherit from by using the INHERIT clause when you change the class.

ALTER CLASS E

INHERIT game OF D

ALTER CLASS C

DROP game

Note If the domain of the game attribute of one super class is event and that of another super class is team_event, the

attribute that has team_event as the domain will be inherited because team_event is more specific than event (as

team_event exists lower in the inheritance hierarchy). In this case, you cannot force the attribute that has event as the

domain to be inherited because the event class exists higher in the inheritance hierarchy than team_event.

Schema Invariant

Invariants of a database schema are a property of the schema that must be preserved consistently (before and after the

schema change). There are four types of invariants: invariants of class hierarchy, name, inheritance and consistency.

CUBRID SQL Guide

365

• Invariant of class hierarchy has a single root and defines a class hierarchy as a Directed Acyclic Graph (DAG)

where all connected classes have a single direction. That is, all classes except for the root have one or more super

classes, and cannot become their own super classes. The root of DAG is "object," a system-defined class.

• Invariant of name means that all classes in the class hierarchy and all attributes in a class must have unique names.

That is, attempts to create classes with the same name or to create attributes or methods with the same name in a

single class are not allowed.

Invariant of name is redefined by the 'rename' qualifier. The 'rename' qualifier allows the name of an attribute or

method to be changed.

• Invariant of inheritance means that a class must inherit all attributes and methods from all super classes. This

invariant can be distinguished with three qualifiers: source, conflict and domain. The names of inherited attributes

and methods can be modified. For default or shared value attributes, the default or shared value can be modified.

Invariant of inheritance means that such changes will be propagated to all classes that inherit these attributes and

methods.

• A source qualifier means that if class C inherits subclasses of class S, only one of the subclass attributes (methods)

inherited from class S can be inherited to class C. That is, if an attribute (method) defined in class S is inherited by

other classes, it is in effect a single attribute (method), even though it exists in many subclasses. Therefore, if a

class multiply inherits from classes that have attributes (methods) of the same source, only one appearance of the

attribute (method) is inherited.

• A conflict qualifier means that if class C inherits from two or more classes that have attributes (methods) with the

same name but of different sources, it can inherit more than one class. To inherit attributes (methods) with the same

name, you must change their names so as not to violate the invariant of name.

• A domain qualifier means that a domain of an inherited attribute can be converted to the domain's subclass.

• Invariant of consistency means that the database schema must always follow the invariants of a schema and all

rules (Rules for Schema Changes) except when it is being changed.

Rule for Schema Changes

The Invariants of a Schema section has described the characteristics of schema that must be preserved all the time.

There are some methods for changing schemas, and all these methods must be able to preserve the invariants of a

schema. For example, suppose that in a class which has a single super class, the relationship with the super class is to be

removed. If the relationship with the super class is removed, the class becomes a direct subclass of the object class, or

the removal attempt will be rejected if the user specified that the class should have at least one super class. To have

some rules for selecting one of the methods for changing schemas, even though such selection seems arbitrary, will be

definitely useful to users and database designers.

The following three types of rules apply: conflict-resolution rules, domain-change rule and class-hierarchy rule.

Seven conflict-resolution rules reinforce the invariant of inheritance. Most schema change rules are needed because of

name conflicts. A domain-change rule reinforces a domain resolution of the invariant of inheritance. A class-hierarchy

rule reinforces the invariant of class hierarchy.

Conflict-Resolution Rules

• Rule 1 : If an attribute (method) name of class C and an attribute name of the super class S conflict with each other

(that is, their names are same), the attribute of class C is used. The attribute of S is not inherited.

If a class has one or more super classes, three aspects of the attribute (method) of each super class must be

considered to determine whether the attributes are semantically equal and which attribute to inherit. The three

aspects of the attribute (method) are the name, domain and source. The following table shows eight combinations of

these three aspects that can happen with two super classes. In Case 1 (two different super classes have attributes

with the same name, domain and source), only one of the two subclasses should be inherited because two attributes

are identical. In Case 8 (two different super classes have attributes with different names, domains and sources), both
classes should be inherited because two attributes are totally different ones.

Case Name Domain Source

1 Same Same Same

2 Same Same Different

3 Same Different Same

CUBRID 2008 R4.0 Help

366

4 Same Different Different

5 Different Same Same

6 Different Same Different

7 Different Different Same

8 Different Different Different

Five cases (1, 5, 6, 7, 8) out of eight have clear meaning. Invariant of inheritance is a guideline for resolving

conflicts in such cases. In other cases (2, 3, 4), it is very difficult to resolve conflicts automatically. Rules 2 and 3
can be resolutions for these conflicts.

• Rule 2 : When two or more super classes have attributes (methods) with different sources but the same name and

domain, one or more attributes (methods) can be inherited if the conflict-resolution statement is used. If the

conflict-resolution statement is not used, the system will select and inherit one of the two attributes.

This rule is a guideline for resolving conflicts of Case 2 in the table above.

• Rule 3 : If two or more super classes have attributes with different sources and domains but the same name,

attributes (methods) with more detailed (lower in the inheritance hierarchy) domains are inherited. If there is no

inheritance relationship between domains, schema change is not allowed.

This rule is a guideline for resolving conflicts of Case 3 and 4. If Case 3 and 4 conflict with each other, Case 3 has

the priority.

• Rule 4 : The user can make any changes except for the ones in Case 3 and 4. In addition, the resolution of subclass

conflicts cannot cause changes in the super class.

The philosophy of Rule 4 is that "an inheritance is a privilege a subclass obtained from a super class, so changes in

a subclass cannot affect the super class." Rule 4 means that the name of the attribute (method) included in the super

class cannot be changed to resolve conflicts between class C and super classes. Rule 4 has an exception in cases
where the schema change causes conflicts in Case 3 and 4.

• For example, suppose that class A is the super class of class B, and class B has the playing_date attribute of DATE

type. If an attribute of STRING type named playing_date is added to class A, it conflicts with the playing_date

attribute in class B. This is what happens in Case 4. The precise way to resolve such conflict is for the user to

specify that class B must inherit the playing_date attribute of class A. If a method refers to the attribute, the user of

class B needs to modify the method properly so that the appropriate playing_date attribute will be referenced.

Schema change of class A is not allowed because the schema falls into an inconsistent state if the user of class B

does not describe an explicit statement to resolve the conflict occurring from the schema change.

• Rule 5 : If a conflict occurs due to a schema change of the super class, the original resolution is maintained as long

as the change does not violate the rules. However, if the original resolution becomes invalid due to the schema

change, the system will apply another resolution.

Rule 5 is for cases where a conflict is caused to a conflict-free class or where the original resolution becomes

invalid.

This is the case where the name or domain of an attribute (method) is modified or a super class is deleted when the

attribute (method) is added to the super class or the one inherited from the super class is deleted. The philosophy of

Rule 5 coincides with that of Rule 4. That is, the user can change the class freely without considering what effects
the subclass that inherits from the given class will have on the inherited attribute (method).

When you change the schema of class C, if you decide to inherit an attribute of the class due to an earlier conflict

with another class, this may cause attribute (method) loss of class C. Instead, you must inherit one of the attributes
(methods) that caused conflicts earlier.

CUBRID SQL Guide

367

The schema change of the super class can cause a conflict between the attribute (method) of the super class and the

(locally declared or inherited) attribute (method) of class C. In this case, the system resolves the conflict
automatically by applying Rule 2 or 3 and may inform the user.

Rule 5 cannot be applied to cases where a new conflict occurs due to the addition or deletion of the relationship

with the super class. The addition/deletion of a super class must be limited to within the class. That is, the user must
provide an explicit resolution.

• Rule 6 : Changes of attributes or methods are propagated only to subclasses without conflicts.

This rule limits the application of Rule 5 and the invariant of inheritance. Conflicts can be detected and resolved by

applying Rule 2 and 3.

• Rule 7 : Class C can be dropped even when an attribute of class R uses class C as a domain. In this case, the

domain of the attribute that uses class C as a domain can be changed to object.

Domain-Change Rule

• Rule 8 : If the domain of an attribute of class C is changed from D to a super class of D, the new domain is less

generic than the corresponding domain in the super class from which class C inherited the attribute. The following

example explains the principle of this rule.

Suppose that in the database there are the game class with the player attribute and the female_game class which

inherits game. The domain of the player attribute of the game class is the athlete class, but the domain of the player

attribute of the female_game class is changed to female_athlete which is a subclass of athlete. The following

diagram shows such relationship. The domain of the player attribute of the female_game class can be changed back
to athlete, which is the super class of female_athlete.

Class-Hierarchy Rule

• Rule 9 : A class without a super class becomes a direct subclass of object. The class-hierarchy rule defines

characteristics of classes without super classes. If you create a class without a super class, object becomes the super

class. If you delete the super class S, which is a unique super class of class C, class C becomes a direct subclass of

object.

CUBRID 2008 R4.0 Help

368

CUBRID System Catalog

Overview

You can easily get various schema information from the SQL statement by using the system catalog virtual class (table).

For example, you can get the following schema information by using the catalog virtual class.

-- Classes that refer to the 'b_user' class

SELECT class_name

FROM db_attribute

WHERE domain_class_name = 'db_user'

-- The number of classes that the current user can access

SELECT COUNT(*)

FROM db_class

-- Attribute of the 'db_user' class

SELECT attr_name, data_type

FROM db_attribute

WHERE class_name = 'db_user'

System Catalog Classes

System Catalog Classes

To define a catalog virtual class, define a catalog class first. The figure below shows catalog classes to be added and

their relationships. The arrows represent the reference relationship between classes, and the classes that start with an

underline (_) are catalog classes.

Added catalog classes represent information about all classes, attributes and methods in the database. Catalog classes

are made up of class composition hierarchy and designed to have OIDs of catalog class instances for cross reference.

_db_class

Represents information about the class. An index for class_name is created.

Attribute Name Data Type Description

class_of object A class object. Represents a meta information object for

the class saved in the system.

inst_attr_count INTEGER The number of instance attributes

CUBRID SQL Guide

369

shared_attr_count INTEGER The number of shared attributes

inst_meth_count INTEGER The number of instance methods

class_meth_count INTEGER The number of class methods

class_attr_count INTEGER The number of class attributes

is_system_class INTEGER 0 for a user-defined class, and 1 for a system class.

class_type INTEGER 0 for a class, and 1 for a virtual class.

owner db_user Class owner

class_name VARCHAR(255) Class name

sub_classes SEQUENCE OF

_db_class

Class one level down

super_classes SEQUENCE OF

_db_class

Class one level up

inst_attrs SEQUENCE OF

_db_attribute

Instance attribute

shared_attrs SEQUENCE OF

_db_attribute

Shared attribute

class_attrs SEQUENCE OF

_db_attribute

Class attribute

inst_meths SEQUENCE OF

_db_method

Instance method

class_meths SEQUENCE OF

_db_method

Class method

meth_files SEQUENCE OF

_db_methfile

File path in which the function for the method is located

query_specs SEQUENCE OF

_db_queryspec

SQL definition statement for a virtual class

indexes SEQUENCE OF

_db_index

Index created in the class

Example

The following is an example of retrieving all subclasses under the class owned by user 'PUBLIC' (for the child class

female_event in the result, see the example in Adding a super class).

SELECT class_name, SEQUENCE(SELECT class_name FROM _db_class s WHERE s IN c.sub_classes)

 FROM _db_class c

 WHERE c.owner.name = 'PUBLIC' AND c.sub_classes IS NOT NULL;

 class_name sequence((select class_name from _db_class s where s in

c.sub_classes))

==

 'event' {'female_event'}

Note All examples of system catalog classes have been written in the csql utility. In this example, --no-auto-commit

(inactive mode of auto-commit) and -u (specifying user DBA) options are used.

% csql --no-auto-commit -u dba demodb

_db_attribute

Represents information about attributes. Indexes for class_of and attr_name are created.

Attribute Name Data Type Description

class_of _db_class Class to which the attribute belongs

CUBRID 2008 R4.0 Help

370

attr_type INTEGER Type defined for the attribute. 0 for an instance attribute, 1 for a

class attribute, and 2 for a shared attribute.

data_type INTEGER Data type of the attribute. One of the values specified in the

"Data Types Supported by CUBRID" table below.

def_order INTEGER Order of attributes in the class. Begins with 0. If the attribute is

inherited, the order is the one defined in the super class. For

example, if class y inherits attribute a from class x and a was first

defined in x, def_order becomes 0.

from_class_of _db_class If the attribute is inherited, the super class in which the attribute

is defined is used. Otherwise, NULL

from_attr_name VARCHAR(255) If the attribute is inherited and its name has been changed to

resolve a name conflict, the original name defined in the super

class is used. Otherwise, NULL

attr_name VARCHAR(255) Attribute name

default_value VARCHAR(255) Default value. Saved as a character string regardless of data

types. If there is no default value, NULL. If the default value is

NULL, 'NULL' is used. If the data type is an object, ‘volume id |

page id | slot id’ is used. If the data type is a set, ‘{element 1,

element 2, ... is used.

domains SEQUENCE OF

_db_domain

Domain information of the data type

is_nullable INTEGER 0 if a not null constraint is configured, and 1 otherwise.

Data Types Supported by CUBRID

Value Meaning Value Meaning

1 INTEGER 13 MONETARY

2 FLOAT 18 SHORT

3 DOUBLE 20 OID

4 STRING 22 NUMERIC

5 OBJECT 23 BIT

6 SET 24 VARBIT

7 MULTISET 25 CHAR

8 SEQUENCE 26 NCHAR

9 ELO 27 VARNCHAR

10 TIME 31 BIGINT

11 TIMESTAMP 32 DATETIME

12 DATE 33 BLOB

 34 CLOB

Character Sets Supported by CUBRID

Value Meaning

0 US English ? ASCII encoding

3 Latin 1 ? ISO 8859 encoding

4 KSC 5601 1990 ? EUC encoding

CUBRID SQL Guide

371

Example

The following is an example of retrieving user classes (from_class_of.is_system_class = 0) among the ones owned by

user 'PUBLIC.'

SELECT class_of.class_name, attr_name

FROM _db_attribute

WHERE class_of.owner.name = 'PUBLIC' AND FROM _class_of.is_system_class = 0

ORDER BY 1, def_order;

class_of.class_name attr_name

==

 'female_event' 'code'

 'female_event' 'sports'

 'female_event' 'name'

 'female_event' 'gender'

 'female_event' 'players'

_db_domain

Represents information about the domain. An index for object_of is created.

Attribute Name Data Type Description

object_of object Attribute that refers to the domain, which can be a method

parameter or domain

data_type INTEGER Data type of the domain (a value in the "Value" column of the

"Data Types Supported by CUBRID" table in _db_attribute)

prec INTEGER Precision of the data type. 0 is used if the precision is not

specified.

scale INTEGER Scale of the data type. 0 is used if the scale is not specified.

class_of _db_class Domain class if the data type is an object, NULL otherwise.

code_set INTEGER Character set (value of table "character sets supported by

CUBRID" in _db_attribute) if it is character data type. 0

otherwise.

set_domains SEQUENCE OF

_db_domain

Domain information about the data type of collection element if

it is collection data type. NULL otherwise.

_db_method

Represents information about the method. Indexes for class_of and meth_name are created.

Attribute Name Data Type Description

class_of _db_class Class to which the method belongs

meth_type INTEGER Type of the method defined in the class. 0 for an instance

method, and 1 for a class method.

from_class_of _db_class If the method is inherited, the super class in which it is

defined is used otherwise NULL

from_meth_name VARCHAR(255) If the method is inherited and its name is changed to resolve a

name conflict, the original name defined in the super class is

used otherwise NULL

meth_name VARCHAR(255) Method name

signatures SEQUENCE OF

_db_meth_sig

C function executed when the method is called

Example

The following is an example of retrieving class methods of the class with a class method (c.class_meth_count > 0),

among classes owned by user 'DBA.'

CUBRID 2008 R4.0 Help

372

SELECT class_name, SEQUENCE(SELECT meth_name

 FROM _db_method m

 WHERE m in c.class_meths)

FROM _db_class c

WHERE c.owner.name = 'DBA' AND c.class_meth_count > 0

ORDER BY 1;

 class_name sequence((select meth_name from _db_method m where m in

c.class_meths))

==

 'db_serial' {'change_serial_owner'}

 'db_authorizations' {'add_user', 'drop_user', 'find_user', 'print_authorizations',

'info', 'change_owner', 'change_trigg

r_owner', 'get_owner'}

 'db_authorization' {'check_authorization'}

 'db_user' {'add_user', 'drop_user', 'find_user', 'login'}

 'db_root' {'add_user', 'drop_user', 'find_user', 'print_authorizations',

'info', 'change_owner', 'change_trigg

r_owner', 'get_owner', 'change_sp_owner'}

_db_meth_sig

Represents information about the C function of the method. An index for meth_of is created.

Attribute Name Data Type Description

meth_of _db_method Method for the function information

arg_count INTEGER The number of input arguments of the function

func_name VARCHAR(255) Function name

return_value SEQUENCE OF _db_meth_arg Return value of the function

arguments SEQUENCE OF _db_meth_arg Input arguments of the function

_db_meth_arg

Represents information about the method argument. An index for meth_sig_of is created.

Attribute Name Data Type Description

meth_sig_of _db_meth_sig Information of the function to which the argument belongs

data_type INTEGER Data type of the argument (a value in the "Value" column of the

"Data Types Supported by CUBRID" in _db_attribute)

index_of INTEGER Order of the argument listed in the function definition. Begins

with 0 if it is a return value, and 1 if it is an input argument.

domains SEQUENCE OF

_db_domain

Domain of the argument

_db_meth_file

Represents information about the file in which the function is defined. An index for class_of is created.

Attribute Name Data Type Description

class_of _db_class Class to which the method file information belongs

from_class_of _db_class If the file information is inherited, the super class in which it is

defined is used otherwise, NULL

path_name VARCHAR(255) File path in which the method is located

_db_query_spec

Represents the SQL definition statement of the virtual class. An index for class_of is created.

CUBRID SQL Guide

373

Attribute Name Data Type Description

class_of _db_class Class information of the virtual class

spec VARCHAR(4096) SQL definition statement of the virtual class

_db_index

Represents information about the index. An index for class_of is created.

Attribute Name Data Type Description

class_of _db_class Class to which to index belongs

index_name varchar(255) Index name

is_unique INTEGER 1 if the index is unique, and 0 otherwise.

key_count INTEGER The number of attributes that comprise the key

key_attrs SEQUENCE OF _db_index_key Attributes that comprise the key

is_reverse INTEGER 1 for a reverse index, and 0 otherwise.

is_primary_key INTEGER 1 for a primary key, and 0 otherwise.

is_foreign_key INTEGER 1 for a foreign key, and 0 otherwise.

Example

The following is an example of retrieving names of indexes that belong to the class.

SELECT class_of.class_name, index_name

FROM _db_index

ORDER BY 1;

 class_of.class_name index_name

==

 '_db_attribute' 'i__db_attribute_class_of_attr_name'

 '_db_auth' 'i__db_auth_grantee'

 '_db_class' 'i__db_class_class_name'

 '_db_domain' 'i__db_domain_object_of'

 '_db_index' 'i__db_index_class_of'

 '_db_index_key' 'i__db_index_key_index_of'

 '_db_meth_arg' 'i__db_meth_arg_meth_sig_of'

 '_db_meth_file' 'i__db_meth_file_class_of'

 '_db_meth_sig' 'i__db_meth_sig_meth_of'

 '_db_method' 'i__db_method_class_of_meth_name'

 '_db_partition' 'i__db_partition_class_of_pname'

 '_db_query_spec' 'i__db_query_spec_class_of'

 '_db_stored_procedure' 'u__db_stored_procedure_sp_name'

 '_db_stored_procedure_args' 'i__db_stored_procedure_args_sp_name'

 'athlete' 'pk_athlete_code'

 'db_serial' 'pk_db_serial_name'

 'db_user' 'i_db_user_name'

 'event' 'pk_event_code'

 'game' 'pk_game_host_year_event_code_athlete_code'

 'game' 'fk_game_event_code'

 'game' 'fk_game_athlete_code'

 'history' 'pk_history_event_code_athlete'

 'nation' 'pk_nation_code'

 'olympic' 'pk_olympic_host_year'

 'participant' 'pk_participant_host_year_nation_code'

 'participant' 'fk_participant_host_year'

 'participant' 'fk_participant_nation_code'

 'record' 'pk_record_host_year_event_code_athlete_code_medal'

 'stadium' 'pk_stadium_code'

_db_index_key

Represents key information of the index. An index for index_of is created.

CUBRID 2008 R4.0 Help

374

Attribute Name Data Type Description

index_of _db_index Index to which the key attribute belongs

key_attr_name VARCHAR(255) Name of the attribute that comprises the key

key_order INTEGER Order of the attribute in the key. Begins with 0.

asc_desc INTEGER 1 if the order of attribute values is descending, and 0 otherwise.

key_prefix_length INTEGER Length of prefix to be used as a key

Example

The following is an example of retrieving names of indexes that belong to the class.

SELECT class_of.class_name, SEQUENCE(SELECT key_attr_name

 FROM _db_index_key k

 WHERE k in i.key_attrs)

FROM _db_index i

WHERE key_count >= 2;

 class_of.class_name sequence((select key_attr_name from _db_index_key k where k in

i.key_attrs))

==

 '_db_partition' {'class_of', 'pname'}

 '_db_method' {'class_of', 'meth_name'}

 '_db_attribute' {'class_of', 'attr_name'}

 'participant' {'host_year', 'nation_code'}

 'game' {'host_year', 'event_code', 'athlete_code'}

 'record' {'host_year', 'event_code', 'athlete_code', 'medal'}

 'history' {'event_code', 'athlete'}

_db_auth

Represents user authorization information of the class. An index for the grantee is created.

Attribute Name Data Type Description

grantor db_user Authorization grantor

grantee db_user Authorization grantee

class_of _db_class Class object to which authorization is to be granted

auth_type VARCHAR(7) Type name of the authorization granted

is_grantable INTEGER 1 if authorization for the class can be granted to other users, and 0

otherwise.

Authorization types supported by CUBRID are as follows:

• SELECT

• INSERT

• UPDATE

• DELETE

• ALTER

• INDEX

• EXECUTE

Example

The following is an example of retrieving the authorization information defined in the class 'db_trig'.

SELECT grantor.name, grantee.name, auth_type

FROM _db_auth

WHERE class_of.class_name = 'db_trig';

 grantor.name grantee.name auth_type

==

 'DBA' 'PUBLIC' 'SELECT'

CUBRID SQL Guide

375

_db_data_type

Represents the data type supported by CUBRID (see the "Data Types Supported by CUBRID" table in _db_attribute).

Attribute Name Data Type Description

type_id INTEGER Data type identifier. Corresponds to the "Value" column in the "Data

Types Supported by CUBRID" table.

type_name VARCHAR(9) Data type name. Corresponds to the "Meaning" column in the "Data

Types Supported by CUBRID" table.

Example

The following is an example of retrieving attributes and type names of the ‘event’ class.

SELECT a.attr_name, t.type_name

FROM _db_attribute a join _db_data_type t ON a.data_type = t.type_id

WHERE class_of.class_name = 'event'

ORDER BY a.def_order;

 attr_name type_name

==

 'code' 'INTEGER'

 'sports' 'STRING'

 'name' 'STRING'

 'gender' 'CHAR'

 'players' 'INTEGER'

_db_partition

Represents information about partitions. Indexes for class_of and pname are created.

Attribute Name Data Type Description

class_of _db_class OID of the parent class

pname VARCHAR(255) Parent - NULL

ptype INTEGER 0 - HASH

1 - RANGE

2 - LIST

pexpr VARCHAR(255) Parent only

pvalues SEQUENCE OF Parent - Column name, Hash size

RANGE - MIN/MAX value :

- Infinite MIN/MAX is saved as NULL

LIST - value list

_db_stored_procedure

Represents information about Java stored procedures. An index for sp_name is created.

Attribute Name Data Type Description

sp_name VARCHAR(255) Stored procedure name

sp_type INTEGER Stored procedure type

(function or procedure)

return_type INTEGER Return value type

arg_count INTEGER The number of arguments

args SEQUENCE OF

_db_stored_procedure_args

Argument list

lang INTEGER Implementation language (currently,

Java)

CUBRID 2008 R4.0 Help

376

target VARCHAR(4096) Name of the Java method to be executed

owner db_user Owner

_db_stored_procedure_args

Represents information about the Java stored procedure arguments. An index for sp_name is created.

Attribute Name Data Type Description

sp_name VARCHAR(255) Stored procedure name

index_of INTEGER Order of the arguments

arg_name VARCHAR(255) Argument name

data_type INTEGER Data type of the argument

mode INTEGER Mode (IN, OUT, INOUT)

db_user

Attribute Name Data Type Description

name VARCHAR(1073741823) User name

id INTEGER User identifier

password db_password User password. Not displayed to the user.

direct_groups SET OF db_user Groups to which the user belongs directly

groups SET OF db_user Groups to which the user belongs directly or indirectly

authorization db_authorization Information of the authorization owned by the user

triggers SEQUENCE OF object Triggers that occur due to user actions

Function Name

• set_password()

• set_password_encoded()

• add_member()

• drop_member()

• print_authorizations()

• add_user()

• drop_user()

• find_user()

• login()

db_authorization

Attribute Name Data Type Description

owner db_user User information

grants SEQUENCE OF

object

Sequence of {object for which the user has authorization,

authorization grantor of the object, authorization type}

Method Name

• check_authorization(varchar(255), integer)

CUBRID SQL Guide

377

db_trigger

Attribute Name Data Type Description

owner db_user Trigger owner

name VARCHAR(1073741823) Trigger name

status INTEGER 1 for INACTIVE, and 2 for ACTIVE. The default

value is 2.

priority DOUBLE Execution priority between triggers. The default value

is 0.

event INTEGER 0 is set for UPDATE, 1 for UPDATE STATEMENT, 2

for DELETE, 3 for DELETE STATEMENT, 4 for

INSERT, 5 for INSERT STATEMENT, 8 for

COMMIT, and 9 for ROLLBACK.

target_class object Class object for the trigger target class

target_attribute VARCHAR(1073741823) Trigger target attribute name. If the target attribute is

not specified, NULL is used.

target_class_attribute INTEGER If the target attribute is an instance attribute, 0 is used.

If it is a class attribute, 1 is used. The default value is

0.

condition_type INTEGER If a condition exist, 1; otherwise NULL.

condition VARCHAR(1073741823) Action condition specified in the IF statement

condition_time INTEGER 1 for BEFORE, 2 for AFTER, and 3 for DEFERRED if

a condition exists; NULL, otherwise.

action_type INTEGER 1 for one of INSERT, UPDATE, DELETE, CALL and

EVALUATE, 2 for REJECT, 3 for

INVALIDATE_TRANSACTION, and 4 for PRINT.

action_definition VARCHAR(1073741823) Execution statement to be triggered

action_time INTEGER 1 for BEFORE, 2 for AFTER, and 3 for DEFERRED.

db_ha_apply_info

A table that saves the progress status every time the applylogdb utility applies replication logs. This table is updated at

every point the applylogdb utility commits, and the acculmative count of operations are stored in the *_counter column.

The meaning of each column is as follows:

Column Name Column Type Meaning

db_name VARCHAR(255) Name of the database saved in the log

db_creation_time DATETIME Creation time of the source database for the log to be

applied

copied_log_path VARCHAR(4096) Path to the log file to be applied

page_id INTEGER Page of the replication log committed in the slave database

offset INTEGER Offset of the replication log committed in the slave database

log_record_time DATETIME Timestamp included in replication log committed in the

slave database, i.e. the creation time of the log

last_access_time DATETIME Time when applylogdb was committed in the slave database

insert_counter BIGINT Number of times that applylogdb was inserted

update_counter BIGINT Number of times that applylogdb was updated

delete_counter BIGINT Number of times that applylogdb was deleted

CUBRID 2008 R4.0 Help

378

schema_counter BIGINT Number of times that applylogdb changed the schema

commit_counter BIGINT Number of times that applylogdb was committed

fail_counter BIGINT Number of times that applylogdb failed to be

inserted/updated/deleted/committed and to change the

schema

required_page_id INTEGER Minimum pageid that applylogdb can read

start_time DATETIME Time when the applylogdb process accessed the slave

database

status INTEGER Progress status (0: IDLE, 1: BUSY)

System Catalog Virtual Class

System Catalog Virtual Class

General users can only see information of classes for which they have authorization through system catalog virtual

classes.

This section explains which information each system catalog virtual class represents, and virtual class definition

statements.

DB_CLASS

Represents information of the classes for which the current user has access authorization in the database.

Attribute Name Data Type Description

class_name VARCHAR(255) Class name

owner_name VARCHAR(255) Name of class owner

class_type VARCHAR(6) 'CLASS' for a class, and 'VCLASS' for a virtual class

is_system_class VARCHAR(3) 'YES' for a system class, and ‘NO’ otherwise.

partitioned VARCHAR(3) 'YES' for a partitioned group class, and 'NO' otherwise.

is_reuse_oid_class VARCHAR(3) 'YES' for a REUSE_OID class, and 'NO' otherwise.

Definition

CREATE VCLASS db_class (class_name, owner_name, class_type, is_system_class, partitioned,

is_reuse_oid_class)

AS

SELECT c.class_name, CAST(c.owner.name AS VARCHAR(255)),

 CASE c.class_type WHEN 0 THEN 'CLASS' WHEN 1 THEN 'VCLASS' ELSE 'UNKNOW' END,

 CASE WHEN MOD(c.is_system_class, 2) = 1 THEN 'YES' ELSE 'NO' END,

 CASE WHEN c.sub_classes IS NULL THEN 'NO' ELSE NVL((SELECT 'YES' FROM _db_partition p

WHERE p.class_of = c and p.pname IS NULL), 'NO') END,

 CASE WHEN MOD(c.is_system_class / 8, 2) = 1 THEN 'YES' ELSE 'NO' END

FROM _db_class c

WHERE CURRENT_USER = 'DBA' OR

 {c.owner.name} SUBSETEQ (

 SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{})

 FROM db_user u, TABLE(groups) AS t(g)

 WHERE u.name = CURRENT_USER) OR

 {c} SUBSETEQ (

 SELECT SUM(SET{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} SUBSETEQ(

 SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{})

 FROM db_user u, TABLE(groups) AS t(g)

 WHERE u.name = CURRENT_USER) AND au.auth_type = 'SELECT');

CUBRID SQL Guide

379

Example 1

The following is an example of retrieving classes owned by the current user.

SELECT class_name

FROM db_class

WHERE owner_name = CURRENT_USER;

 class_name

======================

 'stadium'

 'code'

 'nation'

 'event'

 'athlete'

 'participant'

 'olympic'

 'game'

 'record'

 'history'

'female_event'

Note All examples of system catalog classes have been written in the csql utility. In this example, the user option is

omitted (if omitted, the default user is PUBLIC). If not otherwise specified, --no-auto-commit (No auto-commit mode)

and -u (Specify the user dba) options are used.

% csql --no-auto-commit -u dba demo

Example 2

The following is an example of retrieving virtual classes that can be accessed by the current user.

SELECT class_name

FROM db_class

WHERE class_type = 'VCLASS';

 class_name

======================

 'db_stored_procedure_args'

 'db_stored_procedure'

 'db_partition'

 'db_trig'

 'db_auth'

 'db_index_key'

 'db_index'

 'db_meth_file'

 'db_meth_arg_setdomain_elm'

 'db_meth_arg'

 'db_method'

 'db_attr_setdomain_elm'

 'db_attribute'

 'db_vclass'

 'db_direct_super_class'

 'db_class'

The following is an example of retrieving system classes that can be accessed by the current user user (PUBLIC user).

SELECT class_name

FROM db_class

WHERE is_system_class = 'YES' AND class_type = 'CLASS'

ORDER BY 1;

 class_name

======================

 'db_authorization'

 'db_authorizations'

 'db_root'

 'db_serial'

 'db_user'

DB_DIRECT_SUPER_CLASS

Represents names of super classes (if any) of the class for which the current user has access authorization in the

database.

CUBRID 2008 R4.0 Help

380

Attribute Name Data Type Description

class_name VARCHAR(255) Class name

super_class_name VARCHAR(255) super class name

Definition

CREATE VCLASS db_direct_super_class (class_name, super_class_name)

AS

SELECT c.class_name, s.class_name

FROM _db_class c, TABLE(c.super_classes) AS t(s)

WHERE (CURRENT_USER = 'DBA' OR

 {c.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}),

set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {c} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} +

coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type =

'SELECT'))

Example

The following is an example of retrieving super classes of the 'female_event' class (see ADD SUPERCLASS Clause).

SELECT super_class_name

FROM db_direct_super_class

WHERE class_name = 'female_event';

 super_class_name

======================

 'event'

The following is an example of retrieving super classes of the class owned by the current user (PUBLIC user).

SELECT c.class_name, s.super_class_name

FROM db_class c, db_direct_super_class s

WHERE c.class_name = s.class_name AND c.owner_name = user

ORDER BY 1;

 class_name super_class_name

==

 'female_event' 'event'

DB_VCLASS

Represents SQL definition statements of virtual classes for which the current user has access authorization in the

database.

Attribute Name Data Type Description

vclass_name VARCHAR(255) Virtual class name

vclass_def VARCHAR(4096) SQL definition statement of the virtual class

Definition

CREATE VCLASS db_vclass (vclass_name, vclass_def)

AS

SELECT q.class_of.class_name, q.spec

FROM _db_query_spec q

WHERE CURRENT_USER = 'DBA' OR

 {q.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

CUBRID SQL Guide

381

 where u.name = CURRENT_USER) OR

 {q.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT');

Example

The following is an example of retrieving SQL definition statements of the 'db_class’ virtual class.

SELECT vclass_def

FROM db_vclass

WHERE vclass_name = 'db_class';

'SELECT c.class_name, CAST(c.owner.name AS VARCHAR(255)), CASE c.class_type WHEN 0 THEN

'CLASS' WHEN 1 THEN 'VCLASS' WHEN 2 THEN 'PROXY' ELSE 'UNKNOW' END, CASE WHEN

MOD(c.is_system_class, 2) = 1 THEN 'YES' ELSE 'NO' END, CASE WHEN c.sub_classes IS NULL

THEN 'NO' ELSE NVL((SELECT 'YES' FROM _db_partition p WHERE p.class_of = c and p.pname IS

NULL), 'NO') END FROM _db_class c WHERE CURRENT_USER = 'DBA' OR {c.owner.name} SUBSETEQ

(SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{}) FROM db_user u,

TABLE(groups) AS t(g) WHERE u.name = CURRENT_USER) OR {c} SUBSETEQ (SELECT

SUM(SET{au.class_of}) FROM _db_auth au WHERE {au.grantee.name} SUBSETEQ (SELECT

SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{}) FROM db_user u, TABLE(groups) AS

t(g) WHERE u.name = CURRENT_USER) AND au.auth_type = 'SELECT')'

DB_ATTRIBUTE

Represents the attribute information of the class for which the current user has access authorization in the database.

Attribute Name Data Type Description

attr_name VARCHAR(255) Attribute name

class_name VARCHAR(255) Name of the class to which the attribute belongs

attr_type VARCHAR(8) ‘INSTANCE’ for an instance attribute, ‘CLASS’ for a class

attribute, and ‘SHARED’ for a shared attribute.

def_order INTEGER Order of attributes in the class. Begins with 0. If the attribute is

inherited, the order is the one defined in the super class.

from_class_name VARCHAR(255) If the attribute is inherited, the super class in which it is defined

is used. Otherwise, NULL

from_attr_name VARCHAR(255) If the attribute is inherited and its name is changed to resolve a

name conflict, the original name defined in the super class is

used. Otherwise, NULL

data_type VARCHAR(9) Data type of the attribute (one in the "Meaning" column of the

"Data Types Supported by CUBRID" table in _db_attribute)

prec INTEGER Precision of the data type. 0 is used if the precision is not

specified.

scale INTEGER Scale of the data type. 0 is used if the scale is not specified.

code_set INTEGER Character set (value of table "character sets supported by

CUBRID" in _db_attribute) if it is string type. 0 otherwise.

domain_class_name VARCHAR(255) Domain class name if the data type is an object. NULL

otherwise.

default_value VARCHAR(255) Saved as a character string by default, regardless of data types. If

no default value is specified, NULL is saved if a default value is

NULL, it is displayed as 'NULL'. An object data type is

represented as 'volume id | page id | slot id' while a set data type

is represented as '{element 1, element 2, ... '.

is_nullable VARCHAR(3) 'NO' if a not null constraint is set, and 'YES' otherwise.

CUBRID 2008 R4.0 Help

382

Definition

CREATE VCLASS db_attribute (

attr_name, class_name, attr_type, def_order, from_class_name, from_attr_name, data_type,

prec, scale, code_set, domain_class_name, default_value, is_nullable)

AS

SELECT a.attr_name, c.class_name,

 CASE WHEN a.attr_type = 0 THEN 'INSTANCE'

 WHEN a.attr_type = 1 THEN 'CLASS'

 ELSE 'SHARED' END,

 a.def_order, a.from_class_of.class_name, a.from_attr_name, t.type_name,

 d.prec, d.scale, d.code_set, d.class_of.class_name, a.default_value,

 CASE WHEN a.is_nullable = 0 THEN 'YES' ELSE 'NO' END

FROM _db_class c, _db_attribute a, _db_domain d, _db_data_type t

WHERE a.class_of = c AND d.object_of = a AND d.data_type = t.type_id AND

 (CURRENT_USER = 'DBA' OR

 {c.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}),

set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {c} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} +

coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type =

'SELECT'))

Example 1

The following is an example of retrieving attributes and data types of the ‘event’ class.

SELECT attr_name, data_type, domain_class_name

FROM db_attribute

WHERE class_name = 'event'

ORDER BY def_order;

 attr_name data_type domain_class_name

==

 'code' 'INTEGER' NULL

 'sports' 'STRING' NULL

 'name' 'STRING' NULL

 'gender' 'CHAR' NULL

 'players' 'INTEGER' NULL

Example 2

The following is an example of retrieving attributes of the ‘female_event’ class and its super class.

SELECT attr_name, from_class_name

FROM db_attribute

WHERE class_name = 'female_event'

ORDER BY def_order;

 attr_name from_class_name

==

 'code' 'event'

 'sports' 'event'

 'name' 'event'

 'gender' 'event'

 'players' 'event'

 'players' 'event'

Example 3

The following is an example of retrieving classes whose attribute names are similar to 'name,' among the ones owned by

the current user. (The user is PUBLIC.)

SELECT a.class_name, a.attr_name

FROM db_class c join db_attribute a ON c.class_name = a.class_name

CUBRID SQL Guide

383

WHERE c.owner_name = CURRENT_USER AND attr_name like '%name%'

ORDER BY 1;

 class_name attr_name

==

 'athlete' 'name'

 'code' 'f_name'

 'code' 's_name'

 'event' 'name'

 'female_event' 'name'

 'nation' 'name'

 'stadium' 'name'

DB_ATTR_SETDOMAIN_ELM

Among attributes of the class to which the current user has access authorization in the database, if an attribute's data

type is a set (set, multiset, sequence), this macro represents the data type of the element of the set.

Attribute Name Data Type Description

attr_name VARCHAR(255) Attribute name

class_name VARCHAR(255) Name of the class to which the attribute belongs

attr_type VARCHAR(8) ‘INSTANCE’ for an instance attribute, 'CLASS' for a class

attribute, and 'SHARED' for a shared attribute.

data_type VARCHAR(9) Data type of the element

prec INTEGER Precision of the data type of the element

scale INTEGER Scale of the data type of the element

code_set INTEGER Character set if the data type of the element is a character

domain_class_name VARCHAR(255) Domain class name if the data type of the element is an object

Definition

CREATE VCLASS db_attr_setdomain_elm (

attr_name, class_name, attr_type,data_type, prec, scale, code_set, domain_class_name)

AS

SELECT a.attr_name, c.class_name,

 CASE WHEN a.attr_type = 0 THEN 'INSTANCE'

 WHEN a.attr_type = 1 THEN 'CLASS'

 ELSE 'SHARED' END,

 et.type_name, e.prec, e.scale, e.code_set, e.class_of.class_name

FROM _db_class c, _db_attribute a, _db_domain d,

 TABLE(d.set_domains) AS t(e), _db_data_type et

WHERE a.class_of = c AND d.object_of = a AND e.data_type = et.type_id AND

 (CURRENT_USER = 'DBA' OR

 {c.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {c} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

If the set_attr attribute of class D is of a SET (A, B, C) type, the following three records exist.

Attr_name Class_name Attr_type Data_type prec Scale Code_set Domain_class_name

‘set_attr’ ‘D’ ‘INSTANCE’ ‘SET’ 0 0 0 ‘A’

‘set_attr’ ‘D’ ‘INSTANCE’ ‘SET’ 0 0 0 ‘B’

‘set_attr’ ‘D’ ‘INSTANCE’ ‘SET’ 0 0 0 ‘C’

CUBRID 2008 R4.0 Help

384

Example

The following is an example of retrieving set type attributes and data types of the ‘city’ class. (The city table defined in

Containment Operators is created.)

SELECT attr_name, attr_type, data_type, domain_class_name

FROM db_attr_setdomain_elm

WHERE class_name = 'city';

 attr_name attr_type data_type domain_class_name

==

'sports' 'INSTANCE' 'STRING' NULL

DB_METHOD

Represents the method information of the class for which the current user has access authorization in the database.

Attribute Name Data Type Description

meth_name VARCHAR(255) Method name

class_name VARCHAR(255) Name of the class to which the method belongs

meth_type VARCHAR(8) ‘INSTANCE’ for an instance method, and 'CLASS' for a class

method.

from_class_name VARCHAR(255) If the method is inherited, the super class in which it is defined is

used otherwise NULL

from_meth_name VARCHAR(255) If the method is inherited and its name is changed to resolve a

name conflict, the original name defined in the super class is used

otherwise NULL

func_name VARCHAR(255) Name of the C function for the method

Definition

CREATE VCLASS db_method (

meth_name, class_name, meth_type, from_class_name, from_meth_name, func_name)

AS

SELECT m.meth_name, m.class_of.class_name,

 CASE WHEN m.meth_type = 0 THEN 'INSTANCE' ELSE 'CLASS' END,

 m.from_class_of.class_name, m.from_meth_name, s.func_name

FROM _db_method m, _db_meth_sig s

WHERE s.meth_of = m AND

 (CURRENT_USER = 'DBA' OR

 {m.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}),

set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {m.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} +

coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type =

'SELECT'))

Example

The following is an example of retrieving methods of the ‘db_user’ class.

SELECT meth_name, meth_type, func_name

FROM db_method

WHERE class_name = 'db_user'

ORDER BY meth_type, meth_name;

 meth_name meth_type func_name

CUBRID SQL Guide

385

==

 'add_user' 'CLASS' 'au_add_user_method'

 'drop_user' 'CLASS' 'au_drop_user_method'

 'find_user' 'CLASS' 'au_find_user_method'

 'login' 'CLASS' 'au_login_method'

 'add_member' 'INSTANCE' 'au_add_member_method'

 'drop_member' 'INSTANCE' 'au_drop_member_method'

 'print_authorizations' 'INSTANCE' 'au_describe_user_method'

 'set_password' 'INSTANCE' 'au_set_password_method'

 'set_password_encoded' 'INSTANCE' 'au_set_password_encoded_method'

 'set_password_encoded_sha1' 'INSTANCE' 'au_set_password_encoded_sha1_method'

DB_METH_ARG

Represents the input/output argument information of the method of the class for which the current user has access

authorization in the database.

Attribute Name Data Type Description

meth_name VARCHAR(255) Method name

class_name VARCHAR(255) Name of the class to which the method belongs

meth_type VARCHAR(8) ‘INSTANCE’ for an instance method, and 'CLASS' for a class

method.

index_of INTEGER Order in which arguments are listed in the function definition.

Begins with 0 if it is a return value, and 1 if it is an input

argument.

data_type VARCHAR(9) Data type of the argument

prec INTEGER Precision of the argument

scale INTEGER Scale of the argument

code_set INTEGER Character set if the data type of the argument is a character.

domain_class_name VARCHAR(255) Domain class name if the data type of the argument is an object.

Definition

CREATE VCLASS db_meth_arg (

meth_name, class_name, meth_type,

index_of, data_type, prec, scale, code_set, domain_class_name)

AS

SELECT s.meth_of.meth_name, s.meth_of.class_of.class_name,

 CASE WHEN s.meth_of.meth_type = 0 THEN 'INSTANCE' ELSE 'CLASS' END,

 a.index_of, t.type_name, d.prec, d.scale, d.code_set,

 d.class_of.class_name

FROM _db_meth_sig s, _db_meth_arg a, _db_domain d, _db_data_type t

WHERE a.meth_sig_of = s AND d.object_of = a AND d.data_type = t.type_id AND

 (CURRENT_USER = 'DBA' OR

 {s.meth_of.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {s.meth_of.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

Example

The following is an example of retrieving input arguments of the method of the ‘db_user’ class.

SELECT meth_name, data_type, prec

FROM db_meth_arg

CUBRID 2008 R4.0 Help

386

WHERE class_name = 'db_user';

 meth_name data_type prec

===

 'append_data' 'STRING' 1073741823

DB_METH_ARG_SETDOMAIN_ELM

If the data type of the input/output argument of the method of the class is a set, for which the current user has access

authorization in the database, this macro represents the data type of the element of the set.

Attribute Name Data Type Description

meth_name VARCHAR(255) Method name

class_name VARCHAR(255) Name of the class to which the method belongs

meth_type VARCHAR(8) ‘INSTANCE’ for an instance method, and 'CLASS' for a class

method.

index_of INTEGER Order of arguments listed in the function definition. Begins with

0 if it is a return value, and 1 if it is an input argument.

data_type VARCHAR(9) Data type of the element

prec INTEGER Precision of the element

scale INTEGER Scale of the element

code_set INTEGER Character set if the data type of the element is a character

domain_class_name VARCHAR(255) Domain class name if the data type of the element is an object

Definition

CREATE VCLASS db_meth_arg_setdomain_elm(

meth_name, class_name, meth_type,

index_of, data_type, prec, scale, code_set, domain_class_name)

AS

SELECT s.meth_of.meth_name, s.meth_of.class_of.class_name,

 CASE WHEN s.meth_of.meth_type = 0 THEN 'INSTANCE' ELSE 'CLASS' END,

 a.index_of, et.type_name, e.prec, e.scale, e.code_set,

 e.class_of.class_name

FROM _db_meth_sig s, _db_meth_arg a, _db_domain d,

 TABLE(d.set_domains) AS t(e), _db_data_type et

WHERE a.meth_sig_of = s AND d.object_of = a AND e.data_type = et.type_id AND

 (CURRENT_USER = 'DBA' OR

 {s.meth_of.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {s.meth_of.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

DB_METH_FILE

Represents information of the file where the method of the class for which the current user has access authorization in

the database is defined.

Attribute Name Data Type Description

class_name VARCHAR(255) Name of the class to which the method file belongs

path_name VARCHAR(255) File path in which the C function is defined

from_class_name VARCHAR(255) Name of the super class in which the method file is defined if the

CUBRID SQL Guide

387

method is inherited, and otherwise NULL

Definition

CREATE VCLASS db_meth_file (class_name, path_name, from_class_name)

AS

SELECT f.class_of.class_name, f.path_name, f.from_class_of.class_name

FROM _db_meth_file f

WHERE (CURRENT_USER = 'DBA' OR

 {f.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}),

set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {f.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} +

coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type =

'SELECT'))

DB_INDEX

Represents information of indexes created for the class for which the current user has access authorization in the

database.

Attribute Name Data Type Description

index_name VARCHAR(255) Index name

is_unique VARCHAR(3) ‘YES’ for a unique index, and ‘NO’ otherwise.

is_reverse VARCHAR(3) 'YES’ for a reversed index, and ‘NO’ otherwise.

class_name VARCHAR(255) Name of the class to which the index belongs

key_count INTEGER The number of attributes that comprise the key

is_primary_key VARCHAR(3) 'YES' for a primary key, and ‘NO’ otherwise.

is_foreign_key VARCHAR(3) 'YES' for a foreign key, and ‘NO’ otherwise.

Definition

CREATE VCLASS db_index (index_name, is_unique, is_reverse, class_name, key_count,

is_primary_key, is_foreign_key)

AS

SELECT i.index_name, CASE WHEN i.is_unique = 0 THEN 'NO' ELSE 'YES' END,

CASE WHEN i.is_reverse = 0 THEN 'NO' ELSE 'YES' END, i.class_of.class_name, i.key_count,

CASE WHEN i.is_primary_key = 0 THEN 'NO' ELSE 'YES' END, CASE WHEN i.is_foreign_key = 0

THEN 'NO' ELSE 'YES' END

FROM _db_index i

WHERE (CURRENT_USER = 'DBA' OR

 {i.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {i.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

CUBRID 2008 R4.0 Help

388

Example

The following is an example of retrieving index information of the class.

다음 예제에서는 클래스의 인덱스 정보를 검색한다.

SELECT class_name, index_name, is_unique

FROM db_index

ORDER BY 1;

 class_name index_name is_unique

==

 'athlete' 'pk_athlete_code' 'YES'

 'city' 'pk_city_city_name' 'YES'

 'db_serial' 'pk_db_serial_name' 'YES'

 'db_user' 'i_db_user_name' 'NO'

 'event' 'pk_event_code' 'YES'

 'female_event' 'pk_event_code' 'YES'

 'game' 'pk_game_host_year_event_code_athlete_code' 'YES'

 'game' 'fk_game_event_code' 'NO'

 'game' 'fk_game_athlete_code' 'NO'

 'history' 'pk_history_event_code_athlete' 'YES'

 'nation' 'pk_nation_code' 'YES'

 'olympic' 'pk_olympic_host_year' 'YES'

 'participant' 'pk_participant_host_year_nation_code' 'YES'

 'participant' 'fk_participant_host_year' 'NO'

 'participant' 'fk_participant_nation_code' 'NO'

 'record' 'pk_record_host_year_event_code_athlete_code_medal' 'YES'

 'stadium' 'pk_stadium_code' 'YES'

DB_INDEX_KEY

Represents the key information of indexes created for the class for which the current user has access authorization in the

database.

Attribute Name Data Type Description

index_name VARCHAR(255) Index name

class_name VARCHAR(255) Name of the class to which the index belongs

key_attr_name VARCHAR(255) Name of attributes that comprise the key

key_order INTEGER Order of attributes in the key. Begins with 0.

asc_desc VARCHAR(4) 'DESC' if the order of attribute values is descending, and 'ASC'

otherwise.

key_prefix_length INTEGER Length of prefix to be used as a key

Definition

CREATE VCLASS db_index_key (index_name, class_name, key_attr_name, key_order,

key_prefix_length)

AS

SELECT k.index_of.index_name, k.index_of.class_of.class_name, k.key_attr_name, k.key_order

CASE k.asc_desc

WHEN 0 THEN 'ASC'

WHEN 1 THEN 'DESC' ELSE 'UNKN' END,

k.key_prefix_length

FROM _db_index_key k

WHERE (CURRENT_USER = 'DBA' OR

 {k.index_of.class_of.owner.name}

 subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR {k.index_of.class_of}

 subseteq (

 SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

CUBRID SQL Guide

389

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

Example

The following is an example of retrieving index key information of the class.

SELECT class_name, key_attr_name, index_name

FROM db_index_key

ORDER BY class_name, key_order;

 'athlete' 'code' 'pk_athlete_code'

 'city' 'city_name' 'pk_city_city_name'

 'db_serial' 'name' 'pk_db_serial_name'

 'db_user' 'name' 'i_db_user_name'

 'event' 'code' 'pk_event_code'

 'female_event' 'code' 'pk_event_code'

 'game' 'host_year' 'pk_game_host_year_event_code_athlete_code'

 'game' 'event_code' 'fk_game_event_code'

 'game' 'athlete_code' 'fk_game_athlete_code'

...

DB_AUTH

Represents authorization information of the classes for which the current user has authorization in the database.

Attribute Name Data Type Description

grantor_name VARCHAR(255) Name of the user who grants authorization

grantee_name VARCHAR(255) Name of the user who is granted authorization

class_name VARCHAR(255) Name of the class for which authorization is to be granted

auth_type VARCHAR(7) Name of the authorization type granted

is_grantable VARCHAR(3) 'YES' if authorization for the class can be granted to other users, and

'NO' otherwise.

Definition

CREATE VCLASS db_auth (grantor_name, grantee_name, class_name, auth_type, is_grantable)

AS

SELECT CAST(a.grantor.name AS VARCHAR(255)),

 CAST(a.grantee.name AS VARCHAR(255)),

 a.class_of.class_name, a.auth_type,

 CASE WHEN a.is_grantable = 0 THEN 'NO' ELSE 'YES' END

FROM _db_auth a

WHERE (CURRENT_USER = 'DBA' OR

 {a.class_of.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {a.class_of} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

Example

The following is an example of retrieving authorization information of the classes whose names begin with 'db_a'.

SELECT class_name, auth_type, grantor_name

FROM db_auth

WHERE class_name like 'db_a%'

ORDER BY 1;

 class_name auth_type grantor_name

==

CUBRID 2008 R4.0 Help

390

 'db_attr_setdomain_elm' 'SELECT' 'DBA'

 'db_attribute' 'SELECT' 'DBA'

 'db_auth' 'SELECT' 'DBA'

 'db_authorization' 'EXECUTE' 'DBA'

 'db_authorization' 'SELECT' 'DBA'

 'db_authorizations' 'EXECUTE' 'DBA'

 'db_authorizations' 'SELECT' 'DBA'

DB_TRIG

Represents information of the trigger that has the class for which the current user has access authorization in the

database, or its attribute as the target.

Attribute Name Data Type Description

trigger_name VARCHAR(255) Trigger name

target_class_name VARCHAR(255) Target class

target_attr_name VARCHAR(255) Target attribute. If not specified in the trigger, NULL

target_attr_type VARCHAR(8) Target attribute type. If specified, 'INSTANCE' is used for an

instance attribute, and 'CLASS' is used for a class attribute.

action_type INTEGER 1 for one of INSERT, UPDATE, DELETE, CALL and

EVALUATE, 2 for REJECT, 3 for

INVALIDATE_TRANSACTION, and 4 for PRINT.

action_time INTEGER 1 for BEFORE, 2 for AFTER, and 3 for DEFERRED.

Example

• The following is an example of showing information of the trigger that has the class for which the current user has

access authorization, or its attribute as the target.

CREATE VCLASS db_trig (

trigger_name, target_class_name, target_attr_name, target_attr_type, action_type,

action_time)

AS

SELECT CAST(t.name AS VARCHAR(255)), c.class_name,

 CAST(t.target_attribute AS VARCHAR(255)),

 CASE WHEN t.target_class_attribute = 0 THEN 'INSTANCE' ELSE 'CLASS' END,

 t.action_type, t.action_time

FROM _db_class c, db_trigger t

WHERE t.target_class = c.class_of AND

 (CURRENT_USER = 'DBA' OR

 {c.owner.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) OR

 {c} subseteq (

SELECT sum(set{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} subseteq (

 SELECT set{CURRENT_USER} + coalesce(sum(set{t.g.name}), set{})

 from db_user u, table(groups) as t(g)

 where u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'));

DB_PARTITION

Represents information of partitioned classes for which the current user has access authorization in the database.

Attribute Name Data Type Description

class_name VARCHAR(255) Class name

partition_name VARCHAR(255) Partition name

partition_class_name VARCHAR(255) Partitioned class name

CUBRID SQL Guide

391

partition_type VARCHAR(32) Partition type

(HASH, RANGE, LIST)

partition_expr VARCHAR(255) Partition expression

partition_values SEQUENCE OF RANGE ? MIN/MAX value

- For infinite MIN/MAX, NULL

LIST - value list

Definition

CREATE VCLASS db_partition

(sp_name, sp_type, return_type, arg_count, lang, target, owner)

AS

SELECT p.class_of.class_name AS class_name, p.pname AS partition_name,

 p.class_of.class_name || '__p__' || p.pname AS partition_class_name,

 CASE WHEN p.ptype = 0 THEN 'HASH'

 WHEN p.ptype = 1 THEN 'RANGE'

 ELSE 'LIST' ENDASpartition_type,

 TRIM(SUBSTRING(pi.pexpr FROM 8 FOR (POSITION(' FROM ' IN pi.pexpr)-8))) AS

 partition_expression,

 p.pvalues AS partition_values

FROM _db_partition p,

 (select * from _db_partition sp

where sp.class_of = p.class_of AND sp.pname is null) pi

WHERE p.pname is not null AND

 (CURRENT_USER = 'DBA'

 OR

 {p.class_of.owner.name} SUBSETEQ

 (SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{})

 FROM db_user u, TABLE(groups) AS t(g)

 WHERE u.name = CURRENT_USER

)

 OR

 {p.class_of} SUBSETEQ

 (SELECT SUM(SET{au.class_of})

 FROM _db_auth au

 WHERE {au.grantee.name} SUBSETEQ

 (SELECT SET{CURRENT_USER} + COALESCE(SUM(SET{t.g.name}), SET{})

 FROM db_user u, TABLE(groups) AS t(g)

 WHERE u.name = CURRENT_USER) AND

 au.auth_type = 'SELECT'

)

)

Example

The following is an example of retrieving the partition information currently configured for the participant2 class (see

examples in Defining Range Partitions).

SELECT * FROM db_partition WHERE class_name = 'participant2';

 class_name partition_name partition_class_name partition_type

 partition_expr partition_values

==

==

 'participant2' 'before_2000' 'participant2__p__before_2000' 'RANGE'

 'host_year' {NULL, 2000}

 'participant2' 'before_2008' 'participant2__p__before_2008' 'RANGE'

 'host_year' {2000, 2008}

DB_STORED_PROCEDURE

Represents information of Java stored procedures for which the current user has access authorization in the database.

Attribute Name Data Type Description

sp_name VARCHAR(255) Stored procedure name

sp_type VARCHAR(16) Stored procedure type (function or procedure)

CUBRID 2008 R4.0 Help

392

return_type VARCHAR(16) Return value type

arg_count INTEGER The number of arguments

lang VARCHAR(16) Implementing language (currently, Java)

target VARCHAR(4096) Name of the Java method to be executed

owner VARCHAR(256) Owner

Definition

CREATE VCLASS db_stored_procedure

(sp_name, sp_type, return_type, arg_count, lang, target, owner)

AS

SELECT sp.sp_name,

 CASE sp.sp_type WHEN 1 THEN 'PROCEDURE'

 ELSE 'FUNCTION' END,

 CASE WHEN sp.return_type = 0 THEN 'void'

 WHEN sp.return_type = 28 THEN 'CURSOR'

 ELSE (SELECT dt.type_name

 FROM _db_data_type dt

 WHERE sp.return_type = dt.type_id) END,

 sp.arg_count,

 CASE sp.lang WHEN 1 THEN 'JAVA'

 ELSE '' END, sp.target, sp.owner.name

FROM _db_stored_procedure sp

Example

The following is an example of retrieving Java stored procedures owned by the current user.

SELECT sp_name, target from db_stored_procedure WHERE sp_type = 'FUNCTION' AND owner =

CURRENT_USER

 sp_name target

==

 'hello' 'SpCubrid.HelloCubrid() return java.lang.String'

 'sp_int' 'SpCubrid.SpInt(int) return int'

DB_STORED_PROCEDURE_ARGS

Represents the argument information of Java stored procedures for which the current user has access authorization in the

database.

Attribute Name Data Type Description

 sp_name VARCHAR(255) Stored procedure name

 index_of INTEGER Order of the arguments

 arg_name VARCHAR(256) Argument name

 data_type VARCHAR(16) Data type of the argument

 mode VARCHAR(6) Mode (IN, OUT, INOUT)

Definition

CREATE VCLASS db_stored_procedure_args (sp_name, index_of, arg_name, data_type, mode)

AS

SELECT sp.sp_name, sp.index_of, sp.arg_name,

 CASE sp.data_type WHEN 28 THEN 'CURSOR'

 ELSE (SELECT dt.type_name FROM _db_data_type dt

 WHERE sp.data_type = dt.type_id) END,

 CASE WHEN sp.mode = 1 THEN 'IN' WHEN sp.mode = 2 THEN 'OUT'

 ELSE 'INOUT' END

FROM _db_stored_procedure_args sp

ORDER BY sp.sp_name, sp.index_of ;

CUBRID SQL Guide

393

Example

The following is an example of retrieving arguments the 'phone_info' Java stored procedure in the order of the

arguments.

SELECT index_of, arg_name, data_type, mode FROM db_stored_procedure_args

WHERE sp_name = 'phone_info'

ORDER BY index_of

 index_of arg_name data_type mode

===

 0 'name' 'STRING' 'IN'

 1 'phoneno' 'STRING' 'IN'

Catalog Class/Virtual Class Authorization

Catalog classes are created to be owned by DBA. However, DBA can only execute SELECT operations. If DBA

executes operations such as UPDATE/DELETE, an authorization failure error occurs. General users cannot execute

queries on system catalog classes.

Although catalog virtual classes are created to be owned by DBA, all users can perform the SELECT statement on

catalog virtual classes. Of course, UPDATE/DELETE operations on catalog virtual classes are not allowed.

Updating catalog classes/virtual classes is automatically performed by the system when users execute a DDL statement

that creates/modifies/deletes a class/attribute/index/user/authorization.

Consistency of Catalog Information

Catalog information is represented by the instance of a catalog class/virtual class. If such information is accessed at the

READ UNCOMMITTED INSTANCES (TRAN_REP_CLASS_UNCOMMIT_INSTANCE or

TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE) isolation level, incorrect values (values being changed) can

be read. Therefore, to get correct catalog information, you must use the SELECT query on the catalog class/virtual

class at the READ COMMITTED INSTANCES isolation level or higher.

Querying on Catalog

To query on catalog classes, you must convert identifiers such as class, virtual class, attribute, trigger, method and index

names to lowercases, and create them. Therefore, you must use lowercases when querying on catalog classes.

CREATE TABLE Foo(name varchar(255));

SELECT class_name, partitioned FROM db_class WHERE class_name = 'Foo';

There are no results.

SELECT class_name, partitioned FROM db_class WHERE class_name = 'foo';

 class_name partitioned

============================

 'foo' 'NO'

395

Administrator's Guide

CUBRID 2008 R4.0 Help

396

Administrator's Guide

The "Administrator's Guide" provides the database administrators (DBA) with details on how to operate the CUBRID

system. The guide includes instructions on the following: database management tasks (creating and deleting databases,

adding volume, etc.), migration tasks (moving database to a different location or making changes so that it fits the

system's version), and making back-ups and rollbacks of the database in case of failures.

It also includes instructions on how to use the CUBRID utilities, which starts and stops various processes of the

CUBRID server, the broker and manager server.

This chapter contains the following:

• How to use CUBRID utilities

• How to control the CUBRID (service, database server, broker, manager server)

• How to use the database administrative utilities

• Database migration

• Database backup and restore

• CUBRID HA

Administrator's Guide

397

CUBRID Utilities

The CUBRID utilities provide features that can be used to comprehensively manage the CUBRID service. CUBRID

utilities are divided into the service management utility, which is used to manage the CUBRID service process, and the

database management utility, which is used to manage the database.

The service management utility is as follows:

• Service utility : Operates and manages the master process.

• cubrid service

• Server Utility : Operates and manages the server process.

• cubrid server

• Broker utility : Operates and manages the broker process and application server (CAS) process.

• cubrid broker

• Manager utility : Operates and manages the manager server process.

• cubrid manager

• HA utility : Operates an;d manages the HA related process.

• cubrid_heartbeat

See Registering Services for details.

The database management utility is as follows:

• Database create/add volume/delete utility

• cubrid createdb

• cubrid addvoldb

• cubrid deletedb

• Database rename/alter host/copy/install utility

• cubrid renamedb

• cubrid alterdbhost

• cubrid copydb

• cubrid installdb

• Database space check/space compaction utility

• cubrid spacedb

• cubrid compactdb

• Database query plan check/optimization utility

• cubrid plandump

• cubrid optimizedb

• cubrid statdump

• Database lock check/transaction kill/consistency check utility

• cubrid lockdb

• cubrid killtran

• cubrid checkdb

• Database diagnostics utility

• cubrid diagdb

• cubrid paramdump

• Database loading Utilities

• cubrid loaddb

• cubrid unloaddb

• Database backup/restore utility

• cubrid backupdb

• cubrid restoredb

CUBRID 2008 R4.0 Help

398

• HA utilities

• cubrid changemode

• cubrid copylogdb

• cubrid applylogdb

• cubrid_applyinfo

See How to Use the CUBRID Management Utilities (Syntax) for details.

The following information will be displayed upon entering cubrid in the prompt.

% cubrid

cubrid utility, version R4.0

usage: cubrid <utility-name> [args]

Type 'cubrid <utility-name>' for help on a specific utility.

Available service's utilities:

 service

 server

 broker

 manager

 heartbeat

Available administrator's utilities:

 addvoldb

 alterdbhost

 backupdb

 checkdb

 compactdb

 copydb

 createdb

 deletedb

 diagdb

 installdb

 killtran

 loaddb

 lockdb

 optimizedb

 plandump

 renamedb

 restoredb

 spacedb

 unloaddb

 paramdump

 statdump

 changemode

 copylogdb

 applylogdb

 applyinfo

cubrid is a tool for DBMS.

For additional information, see http://www.cubrid.com

Remark

If you want to control the service using Cubrid utilities in Windows Vista and the later versions of Windows, you are

recommended to open the command prompt window as an administrator.

If you do not use the command prompt window as an administrator to use Cubrid utilities, you can execute it through

UAC (User Account Control) dialog, but cannot check the result message.

To open the command prompt window in Windows Vista and the later versions of Windows as an administrator, right-

click [Start] > [All Programs] > [Accessories] > [Command Prompt] to select [Run as Administrator]. When the dialog

box to check the elevation of rights pops up, click [Yes] to open the Command Prompt as an administrator.

http://www.cubrid.com/

Administrator's Guide

399

CUBRID Controls

How to Use CUBRID Utilities (Syntax)

The following provides descriptions on how to use CUBRID utilities (syntaxes).

CUBRID Service Control

The following is the cubrid utility syntax used to control services registered in the CUBRID configuration file. The

following can be used as command; start to start the service, stop to stop the service, restart to restart the service,

status to verify the status. It is not required to enter additional options or arguments.

cubrid service command

command : { start | stop | restart | status }

Database Server Control

The following is the cubrid utility syntax used to control the database server process. The following can be used as

command; start to start the service, stop to stop the process, restart to restart the process, and status to verify the status.

In all commands, except status, the database name must be assigned as a argument.

cubrid server command [<database_name>]

command : { start | stop | restart | status }

Broker Control

The following is the cubrid utility syntax used to control the CUBRID broker process. The following can be used as

command; start to start the broker process, stop to stop the process, restart to restart the process, status to verify the

status, on to start a specific broker and off to stop it.

cubrid broker command

command : { start | stop | restart | status [<broker_name>] | on <broker_name> | off

<broker_name> | reset <broker_name> | acl {status|reload} <broker_name> }

CUBRID HA Control

cubrid heartbeat utility statements for the use of the CUBRID HA feature are as follows: start used to execute the HA

related process, stop used to terminate the process, reload used to execute the process according to the HA

configuration information by re-reading the information, deact used to exclude nodes from CUBRID HA group, and act

used to include the missing nodes from the group. These can be used as a command. For more information, see Utilities

of cubrid heartbeat.

cubrid heartbeat command

command : { start | stop | reload | deact | act }

CUBRID Services

Registering Services

You can register one or more of database server, CUBRID Broker, CUBRID Manager or CUBRID HA as CUBRID

services in the database environment configuration file (cubrid.conf). Only a master process is registered by default if

you have not registered a specific service by yourself. You can conveniently run, stop or check the status of all related

processes at once by using the cubrid service utility if they are registered as CUBRID services. The following is an

example of registering the database Server and Broker as services in the database environment configuration file, and

configuring the demodb and testdb databases to be started automatically when the CUBRID service starts.

For details about CUBRID HA configuration, see Utilities of cubrid service

The following is an example of configuring cubrid.conf so that database server and broker are registered to service, and

demodb and testdb start automatically when CUBRID service starts.

CUBRID 2008 R4.0 Help

400

cubrid.conf

…

[service]

The list of processes to be started automatically by 'cubrid service start' command

Any combinations are available with server, broker, manager and heartbeat.

service=server,broker

The list of database servers in all by 'cubrid service start' command.

This property is effective only when the above 'service' property contains 'server'

keyword.

server=demodb,testdb

Starting and Stopping Services

Starting Services

On Linux, after installing CUBRID, enter the following to start a CUBRID service. If no services are registered in the

database environment configuration file, only a master process is stopped by default.

On Windows, the following command can be normally executed by a 'SYSTEM' user only. An administrator or general

user can run or stop the CUBRID Server by clicking the CUBRID Service tray icon that appears after installing the

CUBRID Manager.

% cubrid service start

@ cubrid master start

++ cubrid master start: success

The following message appears if the master process is already running:

% cubrid service start

@ cubrid master start

++ cubrid master is running.

The following message appears if the master process fails to start: The following is an example that the service fails to

start due to the conflict between the cubrid_port_id parameters, which is set in the database environment configuration

file (cubrid.conf). In a such case, you can change the port to prevent conflicts. If it fails starting even if no port is

occupied by the processes, you should restart it after deleting a /tmp/CUBRID1523 file.

% cubrid service start

@ cubrid master start

cub_master: '/tmp/CUBRID1523' file for UNIX domain socket exist.... Operation not

permitted

++ cubrid master start: fail

After registering a service as explained in Registering Services, enter the following to start the service. You can see that

the master process, database server process, Broker and registered demodb, and testdb all start at the same time.

% cubrid service start

@ cubrid master start

++ cubrid master start: success

@ cubrid server start: demodb

This may take a long time depending on the amount of restore works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

@ cubrid server start: testdb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0……

++ cubrid server start: success

@ cubrid broker start

++ cubrid broker start: success

Administrator's Guide

401

Stopping Services

Enter the following to stop a CUBRID service. If no services are registered by the user, only the master process is

stopped.

% cubrid service stop

@ cubrid master stop

++ cubrid master stop: success

Enter the following to stop the registered CUBRID service. You can see that the server process, Broker process and

master process as well as demodb and testdb are all stopped.

% cubrid service stop

@ cubrid server stop: demodb

Server demodb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

@ cubrid server stop: testdb

Server testdb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

@ cubrid broker stop

++ cubrid broker stop: success

@ cubrid master stop

++ cubrid master stop: success

Restarting Services

Enter the following to restart a CUBRID service. If no services are registered by the user, only the master process is

stopped and then restarted.

% cubrid service restart

@ cubrid master stop

++ cubrid master stop: success

@ cubrid master start

++ cubrid master start: success

Enter the registered CUBRID service as shown below. You can see that the server process, Broker process and master

process as well as demodb and testdb are all stopped and then restarted.

% cubrid service restart

@ cubrid server stop: demodb

Server demodb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

@ cubrid server stop: testdb

Server testdb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

@ cubrid broker stop

++ cubrid broker stop: success

@ cubrid master stop

++ cubrid master stop: success

@ cubrid master start

++ cubrid master start: success

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0……

++ cubrid server start: success

@ cubrid server start: testdb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0……

++ cubrid server start: success

@ cubrid broker start

++ cubrid broker start: success

CUBRID 2008 R4.0 Help

402

Checking Service Status

Enter the following to check the status of the registered master process and database server.

% $ cubrid service status

@ cubrid master status

++ cubrid master is running.

@ cubrid server status

 Server testdb (rel 8.2, pid 31059)

 Server demodb (rel 8.2, pid 30950)

@ cubrid broker status

% query_editor - cub_cas [15464,40000]

/home1/cubrid22/CUBRID/log/broker//query_editor.access

/home1/cubrid22/CUBRID/log/broker//query_editor.err

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60.00, LONG_QUERY_TIME:60.00, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

--

ID PID QPS LQS PSIZE STATUS

--

 1 15465 0 0 48032 IDLE

 2 15466 0 0 48036 IDLE

 3 15467 0 0 48036 IDLE

 4 15468 0 0 48036 IDLE

 5 15469 0 0 48032 IDLE

@ cubrid manager server status

++ cubrid manager server is not running.

The following message appears if the master process has been stopped.

% cubrid service status

@ cubrid master status

++ cubrid master is not running.

Database Server

Starting and Stopping Database Server

Starting the Database Server

Enter the following to run the demodb server.

% cubrid server start demodb

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

If you start the demodb server when the master process stops, the master process runs and then the specified database

starts automatically.

% cubrid server start demodb

@ cubrid master start

++ cubrid master start: success

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

The following message appears if the demodb server is already running.

% cubrid server start demodb

@ cubrid server start: demodb

Administrator's Guide

403

++ cubrid server 'demodb' is running.

cubrid server start only starts cub_server process of the database, regardless of HA mode configuration. If you want to

start all HA related processes, you can execute cubrid heartbeat start.

Stopping the Database Server

Enter the following to stop the demodb server.

% cubrid server stop demodb

@ cubrid server stop: demodb

Server demodb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

The following message appears if the demodb server has already been stopped.

% cubrid server stop demodb

@ cubrid server stop: demodb

++ cubrid server 'demodb' is not running.

cubrid server stop only stops cub_server process of the database, regardless of HA mode configuration. The database

does not restart, and failover does not occur. If you want to stop all HA related processes, you can execute cubrid

heartbeat stop.

Restarting the Database Server

Enter the following to restart the demodb server. You can see that the currently running demodb server is stopped and

then restarted.

% cubrid server restart demodb

@ cubrid server stop: demodb

Server demodb notified of shutdown.

This may take several minutes. Please wait.

++ cubrid server stop: success

@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.

CUBRID 2008 R4.0

++ cubrid server start: success

Checking Database Server Status

Enter the following to check the status of the database server. Names of all currently running database servers are

displayed.

% cubrid server status

@ cubrid server status

 Server testdb (rel 8.2, pid 24465)

 Server demodb (rel 8.2, pid 24342)

The following message appears if the master process has been stopped.

% cubrid server status

@ cubrid server status

++ cubrid master is not running.

Database Server Access Limitation

Description

To limit the brokers and the CSQL interpreters connecting to the database server, set yes for the access_ip_control

parameter in the cubrid.conf file, and input a path of the file in which the list of IP addresses allowed to access

theaccess_ip_control_file parameter value is written. You should enter the file path as the absolute path. If you enter

the relative path, the system will search the file under the $CUBRID/conf directory in Linux and under

the %CUBRID%\conf directory in Windows.

CUBRID 2008 R4.0 Help

404

Configure the cubrid.conf file as follows:

cubrid.conf

access_ip_control=yes

access_ip_control_file="/home1/cubrid1/CUBRID/db.access"

The format of the access_ip_control_file file is as follows:

[@<db_name>]

<ip_addr>

…

• <db_name> : A database name that allows an access

• <ip_addr> : An IP address allowed to access the database. If the last digit of the address is specified as *, the IP

addresses are allowed to access the broker server. You can add multiple lines of <ip_addr> to the next line of one

database name.

To configure settings for several database servers, it is possible to specify additional [@<db_name>] and <ip_addr>.

If a value for access_ip_control is set to yes and a value for access_ip_control_file is not specified, the server will

block an access from all IPs and only allow the access from the localhost. If the analysis of access_ip_control_file fails

due to an incorrect format while the server is running, the server will not run.

The following is an example of access_ip_control_file.

[@dbname1]

10.10.10.10

10.156.*

[@dbname2]

*

[@dbname3]

192.168.1.15

For the above example, the dbname1 database allows the access from the IP of 10.10.10.10 or IPs s starting with 10.156.

The dbname2 database allows the access from all IPs. The dbname3 database allows the access from the IP of

192.168.1.15.

For the database which has already been running, you can modify the configuration file or check the currently applied

status of configuration by using the following commands.

Syntax

To change the contents of access_ip_control_file and apply it to the server, use the following command.

cubrid server acl reload <database_name>

• database_name : A database name

To display the IP configuration for the server which is running, use the following command.

cubrid server acl status <database_name>

• database_name : A database name

Database Server Log

If you access the database server through an IP that is not allowed, the following server error logs will be created in a

server error log file.

Time: 10/29/10 17:32:42.360 - ERROR *** ERROR CODE = -1022, Tran = 0, CLIENT =

(unknown):(unknown)(-1), EID = 2

Address(10.24.18.66) is not authorized.

Note For more information on how to limit an access to the broker server, see Broker Server Access Limitation.

Administrator's Guide

405

Broker

Starting and Stopping Broker

Enter the following to start the Broker.

% cubrid broker start

@ cubrid broker start

++ cubrid broker start: success

The following message appears if the Broker is already running.

% cubrid broker start

@ cubrid broker start

++ cubrid broker is running.

Enter the following to stop the Broker.

% cubrid broker stop

@ cubrid broker stop

++ cubrid broker stop: success

The following message appears if the Broker has been stopped.

% cubrid broker stop

@ cubrid broker stop

++ cubrid broker is not running.

Checking Broker Status

Description

By providing various options, the cubrid broker status utility allows you to check the status of the Broker, such as the

number of completed jobs by each Broker and the number of standby jobs. Take a look at the syntax and its examples.

Syntax

The following is the syntax for monitoring the status of the CUBRID Broker. If exor is specified, monitoring of the

status of the specified Broker is performed; if omitted, all Brokers registered in the CUBRID Broker environment

configuration file (cubrid_broker.conf) are monitored.

cubrid broker status options [<expr>]

options : [-b | -f [-l secs] | -q | -t | -s secs]

Options

The following table shows options that can be used together with cubrid broker status.

Options Description

expr Displays the status of the Broker of which name contains <expr>. If this option is not

specified, the status of all Brokers is displayed.

-b Displays the status of the Broker only, excluding the information on the application

server (CAS).

-f [-l secs] Displays DB and host information accessed by Broker.

If it is used with the -b option, information on CAS is displayed as well.

The -l secs option is used to specify accumulation period (unit: sec.) when displaying

the number of CASs of which status is Waiting or Busy. If the -l secs option is omitted,

one sec. is specified by default.

-q Displays standby jobs in the job queue.

-t Displays on screen in tty mode. The output contents can be redirected so that it can be

used as a file.

-s Displays the status of the Broker regularly according to the specified time period.

Returns to the command prompt if q is entered.

CUBRID 2008 R4.0 Help

406

-f Displays DB and host information where the Broker is connected.

Example

If you do not specify any option and argument to check the status of all Brokers, you will get the following output:

% cubrid broker status

@ cubrid broker status

% query_editor - cub_cas [28433,40820] /home/CUBRID/log/broker/query_editor.access

/home/CUBRID/

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60, LONG_QUERY_TIME:60, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

ID PID QPS LQS PSIZE STATUS

1 28434 0 0 50144 IDLE

2 28435 0 0 50144 IDLE

3 28436 0 0 50144 IDLE

4 28437 0 0 50144 IDLE

5 28438 0 0 50144 IDLE

% broker1 - cub_cas [28443,40821] /home/CUBRID/log/broker/broker1.access /home/CUBRID/

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60, LONG_QUERY_TIME:60, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

--

ID PID QPS LQS PSIZE STATUS

--

 1 28444 0 0 50144 IDLE

 2 28445 0 0 50140 IDLE

 3 28446 0 0 50144 IDLE

 4 28447 0 0 50144 IDLE

 5 28448 0 0 50144 IDLE

• % query_editor : Broker name

• cub_cas : Type of the CUBRID application server

• [28433, 40820] : Broker process ID and connection port number of the Broker

• /home/CUBRID/log/broker/query_editor.access : Path of the access log file of query_editor

• JOB QUEUE : The number of standby jobs in the job queue

• AUTO_ADD_APPL_SERVER : The value of the AUTO_ADD_APPL_SERVER parameter in

cubrid_broker.conf is ON, which allows the application server to be added automatically.

• SQL_LOG_MODE : The value of the SQL_LOG parameter in the cubrid_broker.conf file is ALL, which allows

the SQL log to be recorded.

• LONG_TRANSACTION_TIME : Transaction execution time which determines long-duration transaction.

Exceeding 60 seconds is regarded as long-duration transaction.

• LONG_QUERY_TIME : Query execution time which determines long-duration query. Exceeding 60 seconds is

regarded as long-duration query.

• SESSION_TIMEOUT : Session timeout value; the value of SESSION_TIMEOUT parameter in the

cubrid_broker.conf file is 300.

• KEEP_CONNECTION : The value of KEEP_CONNECTION parameter in the cubrid_broker.conf file is AUTO,

which allows client applications is automatically connected to their server.

• ACCESS_MODE: The Broker action mode; Database manipulation as well as retrieval is allowed in the RW mode.

• ID : Serial number of the application server (CAS) within the Broker

• PID : Application server (CAS) process ID within the Broker

• QPS : The number of queries processed per second

• LQS : The number of long-duration queries processed per second

• PSIZE : Size of the application server process

• STATUS : The current status of the application server (BUSY, IDLE, CLIENT_WAIT, CLOSE_WAIT)

To check the status of the Broker, enter as follows:

% cubrid broker status -b

Administrator's Guide

407

@ cubrid broker status

 NAME PID PORT AS JQ REQ TPS QPS LONG-T LONG-Q ERR-Q

===

* query_editor 4094 30000 5 0 0 0 0 0/60 0/60 0

* broker1 4104 33000 5 0 0 0 0 0/60 0/60 0

• NAME : Broker name

• PID : Process ID of the Broker

• PORT : Port number of the Broker

• AS : The number of application servers

• JQ : The number of standby jobs in the job queue

• REQ : The number of client requests processed by the Broker

• TPS : The number of transactions processed per second (calculated only when the option is configured to "-b -s

<sec>")

• QPS : The number of queries processed per second (calculated only when the option is configured to "-b -s <sec>")

• LONG-T : The number of transactions which exceed LONG_TRANSACTION_TIME; the value of the

LONG_TRANSACTION_TIME parameter

• LONG-Q : The number of queries which exceed LONG_QUERY_TIME; the value of the LONG_QUERY_TIME

parameter

• ERR-Q : The number of queries with errors found

Check the status of the Broker whose name contains broker1 by using the -q option, and then enter the following to

check the status of the standby jobs in the job queue of the specified Broker. If broker1 is not entered as an argument,

the list of all standby jobs in the job queue of all Brokers is outputted.

% cubrid broker status -q broker1

@ cubrid broker status

% broker1 - cub_cas [28443,40821] /home/CUBRID/log/broker/broker1.access /home/CUBRID/

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60, LONG_QUERY_TIME:60, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

--

ID PID QPS LQS PSIZE STATUS

--

 1 28444 0 0 50144 IDLE

 2 28445 0 0 50140 IDLE

 3 28446 0 0 50144 IDLE

 4 28447 0 0 50144 IDLE

 5 28448 0 0 50144 IDLE

Enter the monitoring interval of the Broker whose name contains broker1 by using the -s option, and then enter the

following to monitor the status of the Broker regularly. If broker1 is not entered as an argument, monitoring of the

status of all Brokers is performed regularly. If you enter q, the monitoring screen returns to the command prompt.

% cubrid broker status -s 5 broker1

% broker1 - cub_cas [28443,40821] /home/CUBRID/log/broker/broker1.access /home/CUBRID/

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60, LONG_QUERY_TIME:60, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

--

ID PID QPS LQS PSIZE STATUS

--

 1 28444 0 0 50144 IDLE

 2 28445 0 0 50140 IDLE

 3 28446 0 0 50144 IDLE

 4 28447 0 0 50144 IDLE

 5 28448 0 0 50144 IDLE

Output TPS and QPS information to a file by using the -t option. To cancel the output process, press <CTRL+C> to stop

the program.

% cubrid broker status -b -t -s 1 > log_file

Enter the following to monitor the status of all Brokers (including TPS and QPS) regularly by using the -b and -s

options.

% cubrid broker status -b -s 1

NAME PID PORT AS JQ REQ TPS QPS LONG-T LONG-Q ERR-Q

CUBRID 2008 R4.0 Help

408

===

* query_editor 28433 40820 5 0 0 0 0 0/60 0/60 0

* broker1 28443 40821 5 0 0 0 0 0/60 0/60 0

Enter the following to view information of a server/database connected to the Broker, its access

time, and the IP addresses connected to CAS by using the -f option.

$ cubrid broker status -f broker1

@ cubrid broker status

% broker1 - cub_cas [28443,40821] /home/CUBRID/log/broker/broker1.access /home/CUBRID/

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60, LONG_QUERY_TIME:60, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

--

ID PID QPS LQS PSIZE STATUS LAST ACCESS TIME DB HOST LAST CONNECT

TIME CLIENT IP

--

 1 26946 0 0 51168 IDLE 2009/11/06 16:06:41 - - -

 10.0.1.101

 2 26947 0 0 51172 IDLE 2009/11/06 16:06:41 - - -

 10.0.1.101

 3 26948 0 0 51172 IDLE 2009/11/06 16:06:41 - - -

 10.0.1.101

 4 26949 0 0 51172 IDLE 2009/11/06 16:06:41 - - -

 10.0.1.101

 5 26950 0 0 51172 IDLE 2009/11/06 16:06:41 - - -

 10.0.1.101

The -b and the -f options are used to display information on AS(T W B Ns-W Ns-B) and CANCELED. The description

of each information are as follows:

• T : Total number of CASs being executed

• W : The number of CASs in the state of Waiting

• B : The number of CASs in the state of Busy

• Ns-W : The number of CASs that the client belongs to has been waited for N secs.

• Ns-B : The number of CASs that the client belongs to has been Busy for N secs.

• CANCELED: The number of queries have canceled by user interruption since Broker is started (if it is used with

the -l N option, it specifies the number of accumulations for N secs).

// Adding the -f option upon the execution of Broker state information. The -l option is

used to specify the N value (unit: sec) so that Ns-W and Ns-B can be displayed for

specified N secs.

% cubrid broker status -b -f -l 2

@ cubrid broker status

NAME PID PSIZE PORT AS(T W B 2s-W 2s-B) JQ REQ TPS QPS LONG-T LONG-Q ERR-Q

CANCELED ACCESS_MODE SQL_LOG

==

========================

query_editor 16784 56700 38000 5 0 0 0 0 0 0 0 0 0/60.0 0/60.0

0 0 RW ALL

Broker Server Access Limitation

Description

To limit the client applications accessing the broker, set ON for the ACCESS_ CONTROL parameter in the

cubrid_broker.conf file, and input a name of the file in which the users and the list of databases and IP addresses

allowed to access the ACCESS_CONTROL_FILE parameter value are written. The default value of the

ACCESS_CONTROL broker parameter is OFF.

The format of ACCESS_CONTROL_FILE is as follows:

[%<broker_name>]

<db_name>:<db_user>:<ip_list_file>

…

• <broker_name> : A broker name. It is the one of broker names specified in cubrid_broker.conf.

Administrator's Guide

409

• <db_name> : A database name. If it is specified as *, all databases are allowed to access the broker server.

• <db_user> : A database user ID. If it is specified as *, all database user IDs are allowed to access the broker server.

• <ip_list_file> : A file name in which the list of IP addresses that are allowed to access the server is written

To configure settings for several broker servers, it is possible to specify additional [%<broker_name>] and

<db_name>:<db_user>:<ip_list_file>.

The format of the ip_list_file is as follows:

<ip_addr>

…

• <ip_addr> : An IP address that is allowed to access the server. If the last digit of the address is specified as *, all IP

addresses in that rage are allowed to access the broker server.

If a value for ACCESS_CONTROL is set to ON and a value for ACCESS_CONTROL_FILE is not specified, the

broker will only allow the access requests from the localhost. If the analysis of ACCESS_CONTROL_FILE and

ip_list_file fails while a broker is running, the broker will only allow the access requests from the localhost.

If the analysis of ACCESS_CONTROL_FILE and ip_list_file fails while a broker is running, the broker will not run.

cubrid_broker.conf

[broker]

MASTER_SHM_ID =30001

ADMIN_LOG_FILE =log/broker/cubrid_broker.log

ACCESS_CONTROL =ON

ACCESS_CONTROL_FILE =/home1/cubrid/access_file.txt

[%QUERY_EDITOR]

SERVICE =ON

BROKER_PORT =38000

......

The following is an example of ACCESS_CONTROL_FILE. The * symbol represents everything, and you can use it

when you want to specify database names, database user IDs and IPs in the IP list file which are allowed to access the

broker server.

[%QUERY_EDITOR]

dbname1:dbuser1:iplist1.txt

dbname2:*:iplist1.txt

*:dba:iplist1.txt

[%BROKER2]

dbname:dbuser:iplist2.txt

[%BROKER3]

dbname:dbuser:iplist2.txt

[%BROKER4]

dbname:dbuser:iplist2.txt

The brokers specified above are QUERY_EDITOR, BROKER2, BROKER3 and BROKER4.

The QUERY_EDITOR broker only allows the following application access requests.

• If you connect to the IP registered in iplist1.txt and log-in to dbname1 with the dbuser1 account.

• If you connect to the IP registered in iplist1.txt and log-in to dbname2.

• If you connect to the IP registered in iplist1.txt and log-in to all databases with the dba user account.

The following is an example of specifying the IPs allowed in ip_list_file.

192.168.1.25

192.168.*

10.*

*

The descriptions for the IPs specified in the example above are as follows:

• The first line setting allows an access from 192.168.1.25.

• The second line setting allows an access from all IPs starting with 192.168.

• The third line setting allows an access from all IPs starting with 10.

• The fourth line setting allows an access from all IPs.

CUBRID 2008 R4.0 Help

410

For the broker which has already been running, you can modify the configuration file or check the currently applied

status of configuration by using the following commands.

Syntax

To configure databases, database user IDs and IPs allowed to access the broker and then apply the modified

configuration to the server, use the following command.

cubrid broker acl reload [<BR_NAME>]

• BR_NAME : A broker name. If you specify this value, you can apply the changes only to specified brokers. If you

omit it, you can apply the changes to all brokers.

To display the databases, database user IDs and IPs that are allowed to access the broker in running on the screen, use

the following command.

cubrid broker acl status [<BR_NAME>]

• BR_NAME : A broker name. If you specify the value, you can display the specified broker configuration. If you

omit it, you can display all broker configurations.

Broker Log

If you access the broker through an IP that is not allowed, the following logs will be created.

• ACCESS_LOG

1 192.10.10.10 - - 1288340944.198 1288340944.198 2010/10/29 17:29:04 ~ 2010/10/29

17:29:04 14942 - -1 db1 dba : rejected

• SQL LOG

10/29 10:28:57.591 (0) CLIENT IP 192.10.10.10 10/29 10:28:57.592 (0) connect db db1

user dba url jdbc:cubrid:192.10.10.10:30000:db1::: - rejected

Note For more information on how to limit an access to the database server, see Database Server Access Limitation.

Managing Specific Broker

Enter the following to start broker1 only. Here, broker1 is a broker that has been already configured in the shared

memory.

% cubrid broker on broker1

The following message appears if broker1 is not configured in the shared memory.

% cubrid broker on broker1

Cannot open shared memory

Enter the following to stop broker1 only. Here, you can also remove the service pool of broker1.

% cubrid broker off broker1

Enter the following to restart broker1.

% cubrid broker restart broker1

The broker reset feature disconnects the existing connection and reconnects again when CAS connects to an unwanted

database with failover and etc. For example, once the Read Only broker connects to an active server, it does not

reconnect to the standby server automatically even though the standby server is available to connect, and you can

disconnect the existing connection and reconnect to the standby server again only through the "cubrid broker reset"

command.

To reset broker1, input the following:

% cubrid broker reset broker1

Administrator's Guide

411

Dynamically Changing Broker Parameters

Description

You can configure the parameters related to running the Broker in the broker environment configuration file

(cubrid_broker.conf). For more information, see Parameter by Broker in the "Performance Management Guide." You

can also modify some broker parameters temporarily while the Broker is running by using the broker_changer utility.

The following broker parameters can be modified dynamically.

• ACCESS_MODE

• ACCESS_LOG

• APPL_SERVER_MAX_SIZE

• KEEP_CONNECTION

• LOG_BACKUP

• SQL_LOG

• SQL_LOG_MAX_SIZE

• STATEMENT_POOLING

• TIME_TO_KILL

Syntax

The syntax for the broker_changer utility, which is used to change broker parameters while the Broker is running, is as

follows. Enter the name of the currently running Broker for the broker_name. The parameters can be used only for

dynamically modifiable parameters. The value must be specified based on the parameter to be modified. You can

specify CAS identifier (cas_id) to apply the changes to the specific CAS. cas_id is an ID to be output by cubrid broker

status command.

broker_changer broker_name [cas_id] parameters value

Example 1

Enter the following to configure the SQL_LOG parameter to ON so that SQL logs can be written to the currently

running Broker. Such dynamic parameter change is effective only while the Broker is running.

% broker_changer query_editor sql_log on

OK

Example 2

Enter the following to change Broker's ACCESS_MODE to Read Only and automatically reset the Broker in HA

environment.

% broker_changer broker_m access_mode ro

OK

Note If you want to control the service using Cubrid utilities in Windows Vista or the later versions of Window, you

are recommended to open the command prompt window as an administrator. For more information, see the notes of

CUBRID Utilities.

Broker Logs

There are three types of logs that relate to starting the Broker: access, error and SQL logs. Each log can be found in the

log directory under the installation directory. You can change the directory where these logs are to be saved through

LOG_DIR and ERROR_LOG_DIR parameters of the broker environment configuration file (cubrid_broker.conf).

Checking the Access Log

The access log file records information on the application client and is saved with the name of broker_name.access. If

the LOG_BACKUP parameter is configured to ON in the Broker environment configuration file, when the Broker

stops properly, the access log file is saved with the date and time that the Broker has stopped. For example, if broker1

CUBRID 2008 R4.0 Help

412

stopped at 12:27 P.M. on June 17, 2008, an access file named broker1.access.20080617.1227 is generated in the

log/broker directory. The following is an example of an access log.

The following is an example and description of an access log file created in the log directory:

1 192.168.1.203 - - 972523031.298 972523032.058 2008/06/17 12:27:46~2008/06/17 12:27:47

7118 - -1

2 192.168.1.203 - - 972523052.778 972523052.815 2008/06/17 12:27:47~2008/06/17 12:27:47

7119 ERR 1025

1 192.168.1.203 - - 972523052.778 972523052.815 2008/06/17 12:27:49~2008/06/17 12:27:49

7118 - -1

• 1 : ID assigned to the application server of the Broker

• 192.168.1.203 : IP address of the application client

• 972523031.298 : UNIX timestamp value when the client's request processing started

• 2008/06/17 12:27:46 : Time when the client's request processing started

• 972523032.058 : Unix timestamp value when the client's request processing finished

• 2008/06/17 12:27:47 : Time when the client's request processing finished

• 7118 : Process ID of the application server

• -1 : No error occurred during the request processing

• ERR 1025 : Error occurred during the request processing. Error information exists in offset=1025 of the error log

file

Checking the Error Log

The error log file records information on errors that occurred during the client's request processing and is stored with the

name of broker_name_app_server_num.err.

The following is an example and description of an error log:

Time: 02/04/09 13:45:17.687 - SYNTAX ERROR *** ERROR CODE = -493, Tran = 1, EID = 38

Syntax: Unknown class "unknown_tbl". select * from unknown_tbl

• Time : 02/04/09 13:45:17.687 : Time when the error occurred

• - SYNTAX ERROR : Type of error (e.g. SYNTAX ERROR, ERROR, etc.)

• *** ERROR CODE = -493 : Error code

• Tran = 1 : Transaction ID. -1 indicates that no transaction ID is assigned.

• EID = 38 : Error ID. This ID is used to find the SQL log related to the server or client logs when an error occurs

during SQL statement processing.

• Syntax... : Error message (An ellipsis (...) indicates omission.)

Managing the SQL Log

The SQL log file records SQL statements requested by the application client and is stored with the name of

broker_name_app_server_num.sql.log. The SQL log is generated in the log/broker/sql_log directory when the

SQL_LOG parameter is set to ON. Note that the size of the SQL log file to be generated cannot exceed the value set for

the SQL_LOG_MAX_SIZE parameter. CUBRID offers the broker_log_top, broker_log_converter, and

broker_log_runner utilities to manage SQL logs. Each utility should be executed in a directory where the

corresponding SQL log exists.

The following are examples and descriptions of SQL log files:

02/04 13:45:17.687 (38) prepare 0 insert into unique_tbl values (1)

02/04 13:45:17.687 (38) prepare srv_h_id 1

02/04 13:45:17.687 (38) execute srv_h_id 1 insert into unique_tbl values (1)

02/04 13:45:17.687 (38) execute error:-670 tuple 0 time 0.000, EID = 39

02/04 13:45:17.687 (0) auto_rollback

02/04 13:45:17.687 (0) auto_rollback 0

*** 0.000

02/04 13:45:17.687 (39) prepare 0 select * from unique_tbl

02/04 13:45:17.687 (39) prepare srv_h_id 1 (PC)

02/04 13:45:17.687 (39) execute srv_h_id 1 select * from unique_tbl

02/04 13:45:17.687 (39) execute 0 tuple 1 time 0.000

02/04 13:45:17.687 (0) auto_commit

02/04 13:45:17.687 (0) auto_commit 0

Administrator's Guide

413

*** 0.000

• 02/04 13:45:17.687 : Time when the application sent the request

• (39) : Sequence number of the SQL statement group. If prepared statement pooling is used, it is uniquely assigned

to each SQL statement in the file.

• prepare 0 : Whether or not it is a prepared statement

• prepare srv_h_id 1 : Prepares the SQL statement as srv_h_id 1.

• (PC) : It is outputted if the data in the plan cache is used.

• SELECT... : SQL statement to be executed. (An ellipsis (...) indicates omission.) For statement pooling, the

binding variable of the WHERE clause is represented as a question mark (?).

• Execute 0 tuple 1 time 0.000 : One row is executed. The time spent is 0.000 second.

• auto_commit/auto_rollback : Automatically committed or rolled back. The second auto_commit/auto_rollback is an

error code. 0 indicates that the transaction has been completed without an error.

The broker_log_top utility analyses the SQL logs which are generated for a specific period. As a result, the information

of SQL statements and time execution are outputted in files by order of the longest execution time; the results of SQL

statements are stored in log.top.q and those of execution time are stored in log.top.res, respectively.

The broker_log_top utility is useful to analyse the long query. The syntax is as follows:

broker_log_top [options] sql_log_file_list

options : {-t | -F from_date | -T to_date}

The results are outputted in transaction unit if the -t option is specified.

SQL statements which are used for a specific period time can be analyzed by using the -F and -T options. The input

format is MM[/DD[hh[:mm[:ss[.msec]]]]], and the part enclosed by [] can be omitted. If you omit the value, it is

regarded as that 01 is input for DD, and 0 is input for hh, mm, ss and msec.

-- Set the search range to milliseconds

broker_log_top -F "01/19 15:00:25.000" -T "01/19 15:15:25.180" log1.log

-- The part where the time format is omitted is set to 0 by default. This means that -F

"01/19 00:00:00.000" -T "01/20 00:00:00.000" is input.

broker_log_top -F "01/19" -T "01/20" log1.log

All logs are outputted by SQL statement if any option is not specified.

The following logs are the results of executing the broker_log_top utility; logs are generated from Nov. 11th to Nov.

12th, and it is displayed in the order of the longest execution of SQL statements. Each month and day are separated by a

slash (/) when specifying period. Note that "*.sql.log" is not recognized so the SQL logs should separated by a white

space on Windows.

--Execution broker_log_top on Linux

% broker_log_top -F "11/11" -T "11/12" -t *.sql.log

query_editor_1.sql.log

query_editor_2.sql.log

query_editor_3.sql.log

query_editor_4.sql.log

query_editor_5.sql.log

--Executing broker_log_top on Windows

% broker_log_top -F "11/11" -T "11/12" -t query_editor_1.sql.log query_editor_2.sql.log

query_editor_3.sql.log query_editor_4.sql.log query_editor_5.sql.log

The log.top.q and log.top.res files are generated in the same directory where the analyzed logs are stored when

executing the example above; In the log.top.q file, you can view each SQL statement, and its line number. In the

log.top.res, you can the minimum, maximum and avg. time, and the number of execution queries for each SQL

statement.

--log.top.q file

[Q1]---

broker1_6.sql.log:137734

11/11 18:17:59.396 (27754) execute_all srv_h_id 34 select a.int_col, b.var_col from

dml_v_view_6 a, dml_v_view_6 b, dml_v_view_6 c , dml_v_view_6 d, dml_v_view_6 e where

a.int_col=b.int_col and b.int_col=c.int_col and c.int_col=d.int_col and

d.int_col=e.int_col order by 1,2;

CUBRID 2008 R4.0 Help

414

11/11 18:18:58.378 (27754) execute_all 0 tuple 497664 time 58.982

.

.

[Q4]---

broker1_100.sql.log:142068

11/11 18:12:38.387 (27268) execute_all srv_h_id 798 drop table list_test;

11/11 18:13:08.856 (27268) execute_all 0 tuple 0 time 30.469

-- log.top.res file

max min avg cnt(err)

[Q1] 58.982 30.371 44.676 2 (0)

[Q2] 49.556 24.023 32.688 6 (0)

[Q3] 35.548 25.650 30.599 2 (0)

[Q4] 30.469 0.001 0.103 1050 (0)

To store SQL logs created in log/broker/sql_log under the installation directory to a separate file, the

broker_log_converter utility is executed. The syntax of the broker_log_converter utility is as follows: This example

saves queries stored in the query_editor_1.sql.log file to the query_convert.in file.

broker_log_converter SQL_log_file output_file

The following example shows that the query in the query_editor_1.sql.log file is converted into the query_convert.in file.

% broker_log_converter query_editor_1.sql.log query_convert.in

To re-execute queries saved in the query file which has been created by the broker_log_converter utility, the

broker_log_runner utility is executed. The syntax of the broker_log_runner utility is as follows: This example re-

executes queries saved in the query_convert.in in demodb. It is assumed that the IP address of the Broker is

192.168.1.10 and its port number is 30,000.

broker_log_runner options input_file

options : -I cas_ip -P cas_port -d dbname [-u dbuser [-p dbpasswd]] [-t num_thread] [-

r repeat_count] [Q] [-o result_file]

broker_log_runner Utility Options

Option Description

-I broker_ip IP address or host name of the CUBRID Broker

-P broker_port Port number of the CUBRID Broker

-d dbname Name of the database against which queries are to be executed

-u dbuser Database user name (default value : public)

-p dbpasswd Database password

-t numthread The number of threads (default value : 1)

-r repeat_count The number of times that the query is to be executed (default value : 1)

-Q Stores the query plan in result_file.

Name of the file where execution results are to be stored

-o result_file Name of the file where execution results are to be stored

% broker_log_runner -I 192.168.1.10 -P 30000 -d demodb -t 2 query_convert.in

cas_ip = 192.168.1.10

cas_port = 30000

num_thread = 2

repeat = 1

dbname = demodb

dbuser = public

dbpasswd =

exec_time : 0.001

exec_time : 0.000

0.000500 0.000500 –

% broker_log_runner -I 192.168.1.10 -P 30000 -d demodb –o result –Q query_convert.in

 …

Administrator's Guide

415

%cat result.0

-------------- query -----------------

SELECT * FROM athlete where code=10099;

cci_execute:1

---------- query plan --------------

Join graph segments (f indicates final):

seg[0]: [0]

seg[1]: code[0] (f)

seg[2]: name[0] (f)

seg[3]: gender[0] (f)

seg[4]: nation_code[0] (f)

seg[5]: event[0] (f)

Join graph nodes:

node[0]: athlete athlete(6677/107) (sargs 0)

Join graph terms:

term[0]: (athlete.code=10099) (sel 0.000149768) (sarg term) (not-join eligible) (indexable

code[0]) (loc 0)

Query plan:

iscan

 class: athlete node[0]

 index: pk_athlete_code term[0]

 cost: fixed 0(0.0/0.0) var 0(0.0/0.0) card 1

Query stmt:

select athlete.code, athlete.[name], athlete.gender, athlete.nation_code, athlete.event

from athlete athlete where (athlete.code= ?:0)

---------- query result --------------

10099|Andersson Magnus|M|SWE|Handball|

-- 1 rows ----------------------------

CUBRID Manager Server

Starting and Stopping CUBRID Manager

Starting the CUBRID Manager

Enter the following to run the CUBRID Manager Server.

% cubrid manager start

The following message appears if the CUBRID Manager server is already running.

% cubrid manager start

@ cubrid manager server start

++ cubrid manager server is running.

Stopping the CUBRID Manager

Enter the following to stop the CUBRID Manager server.

% cubrid manager stop

@ cubrid manager server stop

++ cubrid manager server stop: success

CUBRID Manager Server Log

CUBRID Manager Server-related logs are stored in log/manager directory under the installation directory. They are

stored as one of the following four types of files depending on the process of the Manager Server.

• cub_auto.access.log : Access log of a client that logged into and out of the Manager Server successfully

• cub_auto.error.log : Access log of a client that failed to log into or out of the Manager Server

• cub_js.access.log : Log of the jobs processed by the Manager Server

• cub_js.error.log : Error log that occurred while the Manager Server is processing jobs

CUBRID 2008 R4.0 Help

416

Database Administration

How to Use the CUBRID Administration Utilities (Syntax)

The following shows how to use the CUBRID management utilities.

cubrid utility_name

utility_name :

 createdb [option] <database_name> --- Creating a database

 deletedb [option] <database_name> --- Deleting a database

 installdb [option] <database-name> --- Installing a database

 renamedb [option] <source-database-name> <target-database-name> --- Renaming a database

 copydb [option] <source-database-name> <target-database-name> --- Copying a database

 backupdb [option] <database-name> --- Backing up a database

 restoredb [option] <database-name> --- Restoring a database

 addvoldb [option] <database-name> number-of-pages --- Adding a database volume file

 spacedb [option] <database-name> --- Displaying details of database space

 lockdb [option] <database-name> --- Displaying details of database lock

 killtran [option] <database-name> --- Removing transactions

 optimizedb [option] <database-name> --- Updating database statistics

 statdump [option] <database-name> --- Outputting statistic information of database

server execution

 compactdb [option] <database-name> --- Optimizing space by freeing unused space

 diagdb [option] <database-name> --- Displaying internal information

 checkdb [option] <database-name> --- Checking database consistency

 alterdbhost [option] <database-name> --- Altering database host

 plandump [option] <database-name> --- Displaying details of the query plan

 loaddb [option] <database-name> --- Loading data and schema

 unloaddb [option] <database-name> --- Unloading data and schema

 paramdump [option] <database-name> --- Checking out the parameter values configured in

a database

 changemode [option] <database-name> --- Displaying or changing the server HA mode

 copylogdb [option] <database-name> --- Multiplating transaction logs to configure HA

 applylogdb [option] <database-name> --- Reading and applying replication logs from

transaction logs to configure HA

Database Users

A CUBRID database user can have members with the same authorization. If authorization A is granted to a user, the

same authorization is also granted to all members belonging to the user. A database user and its members are called a

"group."

CUBRID provides DBA and PUBLIC users by default.

• DBA can access every object in the database, that is, it has authorization at the highest level. Only DBA has

sufficient authorization to add, alter and delete the database users.

• All users including DBA are members of PUBLIC. Therefore, all database users have the authorization granted to

PUBLIC. For example, if authorization B is added to PUBLIC group, all database members will automatically

have the B authorization.

databases.txt File

Description

CUBRID saves information on the locations of all existing databases in the databases.txt file. This file is called the

"database location file." A database location file is used when CUBRID executes utilities for creating, renaming,

deleting or replicating databases; it is also used when CUBRID runs each database. By default, this file is located in the

databases directory under the installation directory. The directory is located through the environment variable

CUBRID_DATABASES.

Syntax

db_name db_directory server_host logfile_directory

Administrator's Guide

417

The format of each line of a database location file is the same as defined by the above syntax; it contains information on

the database name, database path, server host and the path to the log files. The following is an example of checking the

contents of a database location file.

% more databases.txt

dist_testdb /home1/user/CUBRID/bin d85007 /home1/user/CUBRID/bin

dist_demodb /home1/user/CUBRID/bin d85007 /home1/user/CUBRID/bin

testdb /home1/user/CUBRID/databases/testdb d85007 /home1/user/CUBRID/databases/testdb

demodb /home1/user/CUBRID/databases/demodb d85007 /home1/user/CUBRID/databases/demodb

By default, the database location file is stored in the databases directory under the installation directory. You can

change the default directory by modifying the value of the CUBRID_DATABASES environment variable. The path to

the database location file must be valid so that the cubrid utility for database management can access the file properly.

You must enter the directory path correctly and check if you have write permission on the file. The following is an

example of checking the value configured in the CUBRID_DATABASES parameter.

% set | grep CUBRID_DATABASES

CUBRID_DATABASES=/home1/user/CUBRID/databases

An error occurs if an invalid directory path is set in the CUBRID_DATABASES environment variable. If the directory

path is valid but the database location file does not exist, a new location information file is created. If the

CUBRID_DATABASES environment variable has not been configured at all, CUBRID retrieves the location

information file in the current working directory.

Creating Database

Descripton

The cubrid createdb utility creates databases and initializes them with the built-in CUBRID system tables. It can also

define initial users to be authorized in the database and specify the locations of the logs and databases. Generally, the

cubrid createdb utility is used only by DBA.

Syntax

cubrid createdb options database_name

options :

[--db-volume-size=size] [--db-page-size=size] [--log-volume-size=size] [--log-page-

size=size] [--comment=comment] [{-F |--file-path=}path] [{-L |--log-path=}path] [{-B |--

lob-base-path=}path] [--server-name=host] [-r|--replace] [--more-volume-file=file] [--

user-definition-file=file] [--csql-initialization-file=file] [{-o |--output-file=}file] [-

v|--verbose]

• cubrid : An integrated utility for the CUBRID service and database management.

• createdb : A command used to create a new database.

• options : A short option starts with a single dash (-) while a full name option starts with a double dash (--).

• database_name : Specifies a unique name for the database to be created, without including the path name to the

directory where the database will be created. If the specified database name is the same as that of an existing

database name, CUBRID halts creation of the database to protect existing files.

Option

The following table shows options that can be used with cubrid createdb. Options are case sensitive.

Option Description

--db-volume-size Specifies the size of the database volume that will be created first in bytes.

Default value : A value of db_volume_size, the system parameter

--db-page-size Specifies the database page size in bytes.

Default value : 16K

--log-volume-size Specifies the log volume size in bytes.

--log-page-size Specifies the page size of log volume in bytes.

Default value : Database page size

CUBRID 2008 R4.0 Help

418

--comment Adds information on the database to be created in the form of a comment.

-F

--file-path

Specifies the directory path where the database will be created.

Default value : Current working directory

-L

--log-path

Specifies the directory path where log files will be stored.

Default value : A directory path specified with the -F option

-B
--lob-base-path

Specifies the directory path where LOB data files will be stored.
Default value : <location of database volumns created>/lob directory

--server-name Specifies the name of the server host to connect to.

Default value : localhost

-r

--replace

Allows overwriting if the name of the database to be created is the same as that of

an existing database.

Default value : Deactivated

--more-volume-file Specifies the file that includes the specifications for creating an additional volume

of the database.

--user-definition-file Specifies the file that includes user definitions.

--csql-initialization-

file

Specifies the file for csql initialization.

-o

--output-file

Specifies the file where output messages concerning database creation are stored.

-v

--verbose

Displays detailed messages to the screen concerning database creation.

Default value : Deactivated

Size of the first database volume (--db-volume-size)

The --db-volume-size option is used to specify the size of the database volume that will be created first. The default

value is the value of the system parameter db_volume_size, and the minimum value is 20M. You can set units as K, M,

G and T, which stand for KB(kilobytes), MB(megabytes), GB(gigabytes) and TB(terabytes), respectively. If you omit

the unit, bytes will be applied.

The following example shows creating a database named testdb and assigning 256MB to its first volume.

cubrid createdb --db-volume-size=512M testdb

Database page size (--db-page-size)

The --db-page-size option is used to specify the size of the database page to be one of 4K(4KB), 8K(8KB), and

16K(16KB). The default vaule is 16K. If any number besides these is specified, the system rounds up the number. If a

number which is greater than 16K, 16K is used.

The following example shows creating a database named testdb and setting its page size 16KB.

cubrid createdb --db-page-size=16K testdb

Log volume size (--log-volume-size)

The --log-volume-size option is used to specify the size of the database log volume. The default value is the databse

volume size, and the minimum value is 20M. You can set units as K, M, G and T, which stand for KB(kilobytes),MB

(megabytes), GB(gigabytes) and TB(terabytes), respectively. If you omit the unit, bytes will be applied.

The following example shows creating a database named testdb and assigning 256MB to its log volume.

cubrid createdb --log-volume-size=256M testdb

Log page size (--log-page-size)

The --log-page-size option specifies the size of the log volume page to be one of 4K(4KB), 8K(8KB), and 16K(16KB).

The default value is the size of the data page. If any number besides these is specified, the system rounds up the number.

If a number which is greater than 16K, 16K is used.

The following example shows creating a database named testdb and setting its log volume page size 8KB.

Administrator's Guide

419

cubrid createdb --log-page-size=8K testdb

Comment (--comment)

The --comment option is used to specify a comment to be included in the database volume header. If the character

string contains spaces, the comment must be enclosed in double quotes.

The following example shows creating a database named testdb and adding a related comment to the database volume.

cubrid createdb --comment "a new database for study" testdb

Database directory path (-F)

The -F option is used to specify the absolute path to a directory where the new database will be created. If the -F option

is not specified, the new database is created in the current working directory.

The following example shows creating a database named testdb in the directory /dbtemp/new_db.

cubrid createdb -F "/dbtemp/new_db/" testdb

Log file directory path (-L)

The -L option is used to specify the absolute path to the directory where database log files are created. If the -L option is

not specified, log files are created in the directory specified by the -F option. If neither -F nor -L option is specified,

database log files are created in the current working directory.

The following example shows creating a database named testdb in the directory /dbtemp/newdb and log files in the

directory /dbtemp/db_log.

cubrid createdb -F "/dbtemp/new_db/" -L "/dbtemp/db_log/" testdb

LOB data file directory (--lob-base-path)

The --lob-base-path option is used to specify a directory where LOB data files are stored when BLOB/CLOB data is

used. If the --lob-base-path option is not specified, LOB data files are store in "<location of database volumns

created>/lob" directory.

The following example shows creating a database called testdb in the working directory and specifying "/home/data1"

of local file system as a location of LOB data files.

cubrid createdb --lob-base-path "file:/home1/data1" testdb

Server host name (--server-name)

The --server-name option is used to specify that the server for a certain database will be running on a specified host

when a client / server version of CUBRID is used. The information on the server host specified with this option is

written in the database location file (databases.txt). If this option is not specified, the default value is the current

localhost.

The following example shows creating and registering a database named testdb on the aa_host host.

cubrid createdb --server-name aa_host testdb

Overwrite (-r)

The -r option is used to create a new database and overwrite an existing database if one with the same name exists. If

the -r option is not specified, database creation is halted when this occurs.

The following example shows creating a new testdb database which overwrites the existing database with the same

name.

cubrid createdb -r testdb

Adding a database volume (--more-volume-file)

The --more-volume-file option creates an additional volume based on the specification contained in the file specified by

the option. The volume is created in the same directory where the database is created. Instead of using this option, you

can add a volume by using the cubrid addvoldb utility.

CUBRID 2008 R4.0 Help

420

The following example shows creating a database named testdb as well as an additional volume based on the

specification stored in the vol_info.txt file.

cubrid createdb --more-volume-file vol_info.txt testdb

The following is a specification of the additional volume contained in the vol_info.txt file. The specification of each

volume must be written on a single line.

#xxx

NAME volname COMMENTS volcmnts PURPOSE volpurp NPAGES volnpgs

NAME data_v1 COMMENTS "Data information volume" PURPOSE data NPAGES 1000

NAME data_v2 COMMENTS "Data information volume" PURPOSE data NPAGES 1000

NAME data_v3 PURPOSE data NPAGES 1000

NAME index_v1 COMMENTS "Index information volume" PURPOSE index NPAGES 500

NAME temp_v1 COMMENTS "Temporary information volume" PURPOSE temp NPAGES 500

NAME generic_v1 COMMENTS "Generic information volume" PURPOSE generic NPAGES 500

#xxx

As shown in the example, the specification of each volume is composed of followings.

NAME volname COMMENTS volcmnts PURPOSE volpurp NPAGES volnpgs

• NAME volname : volname is the name of the volume to be created. It must follow the UNIX file name conventions

and be a simple name not including the directory path. The specification of a volume name can be omitted. If it is,

the "database name to be created by the system_volume identifier" becomes the volume name.

• COMMENTS volcmnts : volcmnts is a comment to be written in the volume header and contains information on

the additional volume to be created. The specification of the comment on a volume can also be omitted.

• PURPOSE volpurp : volpurp must be one of the types: data, index, temp, and generic, with the purpose of saving

volumes. The specification of the purpose of a volume can be omitted in which case the default value is generic.

• NPAGES volnpgs : volnpgs is the number of pages of the additional volume to be created. The specification of the

number of pages of the volume cannot be omitted; it must be specified.

User information file (--user-definition-file)

The --user-definition-file option is used to add users who have access to the database to be created. It adds a user based

on the specification contained in the user information file specified by the parameter. Instead of using the --user-

definition-file option, you can add a user by using the Managing USER statement.

The following example shows creating a database named testdb and adding users to testdb based on the user information

defined in the user_info.txt file.

cubrid createdb --user-definition-file user_info.txt testdb

The syntax of a user information file is as follows:

USER user_name [groups_clause | members_clause]|

groups_clause:

 [GROUPS group_name [{ group_name }...]]

members_clause:

 [MEMBERS member_name [{ member_name... }]]

• The user_name is the name of the user who has access to the database. It must not include spaces.

• The GROUPS clause is optional. The group_name is the upper level group that contains the user_name. Here, the

group_name can be multiply specified and must be defined as USER in advance.

• The MEMBERS clause is optional. The member_name is the name of the lower level member that belongs to the

user_name. Here, the member_name can be multiply specified and must be defined as USER in advance.

Comments can be used in a user information file. A comment line must begin with a hyphen (-). Blank lines are ignored.

The following example is a user information file that defines the group sedan to include grandeur and sonata, the group

suv to include tuscan, and the group hatchback to include i30. The name of the user information file is user_info.txt.

--

-- Example 1 of a user information file

--

USER sedan

USER suv

USER hatchback

USER grandeur GROUPS sedan

USER sonata GROUPS sedan

Administrator's Guide

421

USER tuscan GROUPS suv

USER i30 GROUPS hatchback

The following file defines the same user relationship as the one above, except that it uses the MEMBERS clause.

--

-- Example 2 of a user information file

--

USER grandeur

USER sonata

USER tuscan

USER i30

USER sedan MEMBERS sonata grandeur

USER suv MEMBERS tuscan

USER hatchback MEMBERS i30

File containing CSQL statements (--csql-initialization-file)

The --csql-initialization-file option executes an SQL statement on the database to be created by using the CSQL

Interpreter. A schema can be created based on the SQL statement contained in the file specified by the parameter.

The following example shows creating a database named testdb and executing the SQL statement defined in

table_schema.sql through the CSQL Interpreter.

cubrid createdb --csql-initialization-file table_schema.sql testdb

Saving output messages to a file (-o)

The -o option is used to save messages related to the database creation to the file given as a parameter. The file is

created in the same directory where the database was created. If the -o option is not specified, messages are displayed on

the console screen. The -o option allows you to use information on the creation of a certain database by saving messages,

generated during the database creation, to a specified file.

The following example shows creating a database named testdb and saving the output of the utility to the db_output file

instead of displaying it on the console screen.

cubrid createdb -o db_output testdb

Verbose output (-v)

The -v option is used to output all information on the database creation operation onto the screen. Like the -o option,

this option is useful in checking information related to the creation of a specific database. Therefore, if you specify the -

v option together with the -o option, you can save the output messages in the file given as a parameter; the messages

contain the operation information about the cubrid createdb utility and database creation process.

The following example shows creating a database named testdb and outputting detailed information on the operation

onto the screen.

cubrid createdb -v testdb

Adding Database Volume

Syntax

cubrid addvoldb options database_name

options :

[--db-volume-size=size] [{-n |--volume_name=}name] [{-F |--file-path=}path] [--

comment=comment] [-p|--purpose] [-S|--SA-mode|-C|--CS-mode]

• cubrid : An integrated utility for CUBRID service and database management.

• addvoldb : A command that adds a specified number of pages of the new volume to a specified database.

• options : A short option starts with a single dash (-) while a full name option starts with a double dash (--).

• database_name : Specifies the name of the database to which a volume is to be added without including the path

name to the directory where the database is to be created.

CUBRID 2008 R4.0 Help

422

Option

The following table shows options that can be used with cubrid addvoldb utility.

Option Description

--db-volume-size Specifies the database volume size in bytes.

Default value : A value of db_volume_size, the system parameter

-n

--volume-name

Specifies the name of the database volume to be added.

Default value : A value in the format of dbname_number, configured by the system

-F

--file-path

Specifies the directory path where the database volume to be added will be created.

Default value : A value of volume_extension_path, the system parameter

--comment Inserts a comment about the database volume to be added.

-p

--purpose

Specifies the purpose of the database volume to be added.

Default value : Generic volume

-S

--SA-mode

Adds the database volume in standalone mode.

-C

--CS-mode

Adds the database volume in client/server mode.

Size of the extended volume (--db-volume-size)

--db-volume-size is an option that specifies the size of the volume to be added to a specified database. If the --db-

volume-size option is omitted, the value of the system parameter db_volume_size is used by default. You can set units

as K, M, G and T, which stand for KB(kilobytes), MB(megabytes), GB(gigabytes) and TB(terabytes), respectively. If

you omit the unit, bytes will be applied.

The following example shows adding a volume for which 256MB are assigned to the testdb database.

cubrid addvoldb -p data --db-volume-size=256M testdb

Name of the extended volume (-n)

-n is an option that specifies the name of the volume to be added to a specified database. The volume name must follow

the file name protocol of the operating system and be a simple one without including the directory path or spaces. If the

-n option is omitted, the name of the volume to be added is configured by the system automatically as "database

name_volume identifier." For example, if the database name is testdb, the volume name testdb_x001 is automatically

configured.

The following example shows adding a volume for which 1000 pages are assigned to the testdb database in standalone

mode. The volume name testdb_v1 will be created.

cubrid addvoldb -S -n testdb_v1 testdb 1000

Path of the extended volume (-F)

The -F option is used to specify the directory path where the volume to be added will be stored. If the -F option is

omitted, the value of the system parameter volume_extension_path is used by default.

The following example shows adding a volume for which 1000 pages are assigned to the testdb database in standalone

mode. The added volume is created in the /dbtemp/addvol directory. Because the -n option is not specified for the

volume name, the volume name testdb_x001 will be created.

cubrid addvoldb -S -F /dbtemp/addvol/ testdb 1000

Comment about the added volume (--comment)

The --comment option is used to facilitate to retrieve information on the added volume by adding such information in

the form of comments. It is recommended that the contents of a comment include the name of DBA who adds the

volume, or the purpose of adding the volume. The comment must be enclosed in double quotes.

Administrator's Guide

423

The following example shows adding a volume for which 1000 pages are assigned to the testdb database in standalone

mode and inserts a comment about the volume.

cubrid addvoldb -S --comment "data volume added_cheolsoo kim" testdb 1000

Purpose of the volume (-p)

The -p option is used to specify the purpose of the volume to be added. The reason for specifying the purpose of the

volume is to improve the I/O performance by storing volumes separately on different disk drives according to their

purpose. Parameter values that can be used for the -p option are data, index, temp and generic. The default value is

generic. For the purpose of each volume, see "Database Volume Structure."

The following example shows adding a volume for which 1000 pages are assigned to the testdb database in standalone

mode.

cubrid addvoldb -S -p index testdb 1000

Standalone mode (-S)

The -S option is used to access the database in standalone mode without running the server process. This option has no

parameter. If the -S option is not specified, the system assumes to be in client/server mode.

cubrid addvoldb -S testdb 1000

Client/server mode (-C)

The -C option is used to access the database in client/server mode by running the server and the client separately. There

is no parameter. Even when the -C option is not specified, the system assumes to be in client/server mode by default. If

the -S or -C option is not specified and the environment variable CUBRID_MODE is not defined, the system assumes

to be in client/server mode.

cubrid addvoldb -C -testdb 1000

Deleting Database

Description

The cubrid deletedb utility is used to delete a database. You must use the cubrid deletedb utility to delete a database,

instead of using the file deletion commands of the operating system; a database consists of a few interdependent files.

The cubrid deletedb utility also deletes the information on the database from the database location file (databases.txt).

The cubrid deletedb utility must be run offline, that is, in standalone mode when nobody is using the database.

Syntax

cubrid deletedb options database_name

options : [{-o|--output-file=} file] [-d|--delete-backup]

• cubrid : An integrated utility for the CUBRID service and database management.

• deletedb : A command to delete a database, its related data, logs and all backup files. It can be executed

successfully only when the database is in a stopped state.

• options : -o and -d options are provided.

• database_name : Specifies the name of the database to be deleted without including the path name.

Option

Saving output messages (-o or --output-file)

The following example shows deleting testdb and writes output messages to the file specified by using the -o option.

cubrid deletedb -o deleted_db.out testdb

The cubrid deletedb utility also deletes the database information contained in the database location file (databases.txt).

The following message appears if you enter a utility that tries to delete a non-existing database.

cubrid deletedb testdb

CUBRID 2008 R4.0 Help

424

Database "testdb" is unknown, or the file "databases.txt" cannot be accessed.

Deleting backup files simultaneously (-d or --delete-backup)

The following example shows deleting testdb and its backup volumes and backup information files simultaneously by

using the -d option. If the -d option is not specified, backup volume and backup information files are not deleted.

cubrid deletedb -d testdb

Renaming Database

Description

The cubrid renamedb utility renames a database. The names of information volumes, log volumes and control files are

also renamed to conform to the new database one.

The cubrid alterdbhost utility configures or changes the host name of the specified database. It changes the host name

configuration in the databases.txt file.

Syntax

cubrid renamedb options src_database_name dest_database_name

options : [{-E | --extended-volumn-path=}path] [{-i | --control-file=} file] [-d | --

delete-backup]

• cubrid : An integrated utility for the CUBRID service and database management.

• renamedb : A command that changes the existing name of a database to a new one. It executes successfully only

when the database is in a stopped state. The names of related information volumes, log volumes and control files

are also changed to new ones accordingly.

• options : The -E, -i and -d options are supported. For details about each option, see its description and the examples.

• src_database_name : The name of the existing database to be renamed. The path name to the directory where the

database is to be created must not be included.

• dest_database_name : The new name of the database. It must not be the same as that of an existing database. The

path name to the directory where the database is to be created must not be included.

Option

Saving the renamed extended volume to a new directory (-E or --extended-volume-path)

The following example shows renaming an extended volume created in a specific directory path (e.g. /dbtemp/addvol/)

with a -E option, and then moves the volume to a new directory. The -E option is used to specify a new directory path

(e.g. /dbtemp/newaddvols/) where the renamed extended volume will be moved. If the -E option is not specified, the

extended volume is only renamed in the existing path without being moved. If a directory path outside the disk partition

of the existing database volume or an invalid one is specified, the rename operation is not executed. This option cannot

be used together with the -i option.

cubrid renamedb -E /dbtemp/newaddvols/ testdb testdb_1

Specifying the input file where the directory information is stored (-i or --control-file)

The following example shows specifying an input file which saves directory information with an -i option, to assign

different directories as well as to change database names for each volume and file at once. The -i option cannot be used

together with the -E option.

cubrid renamedb -i rename_path testdb testdb_1

The followings are the syntax and example of a file that contains the name of each volume, the current directory path

and the directory path where renamed volumes will be saved.

volid source_fullvolname dest_fullvolname

• volid : An integer that is used to identify each volume. It can be checked in the database volume control file

(database_name_vinf).

• source_fullvolname : The current directory path to each volume.

Administrator's Guide

425

• dest_fullvolname : The target directory path where renamed volumes will be moved. If the target directory path is

invalid, the database rename operation is not executed.

 -5 /home1/user/testdb_vinf /home1/CUBRID/databases/testdb_1_vinf

 -4 /home1/user/testdb_lginf /home1/CUBRID/databases/testdb_1_lginf

 -3 /home1/user/testdb_bkvinf /home1/CUBRID/databases/testdb_1_bkvinf

 -2 /home1/user/testdb_lgat /home1/CUBRID/databases/testdb_1_lgat

 0 /home1/user/testdb /home1/CUBRID/databases/testdb_1

 1 /home1/user/backup/testdb_x001/home1/CUBRID/databases/backup/testdb_1_x001

Deleting and renaming backup files simultaneously (-d or --delete-backup)

By using the -d option, the following example shows renaming the testdb database and at the same time forcefully

deletes all backup volumes and backup information files that are in the same location as testdb. Note that you cannot use

the backup files with the old names once the database is renamed. If the -d option is not specified, backup volumes and

backup information files are not deleted.

cubrid renamedb -d testdb testdb_1

Copying/Moving Database

Description

The cubrid copydb utility copy or move a database to another location. As arguments, source and target name of

database must be given. A target database name must be different from a source database name. Wh the target name

argument is specified, the location of target database name is registered in the databases.txt file. The cubrid copydb

utility can be executed only offline (that is, state of a source database stop).

Syntax

cubrid copydb [OPTION] src-database-name dest-database-name

options : [{--server-name=}host] [{-F | --file-path=} database_path] [{-L | --log-path=}

log_path] [{-B | --lob-base-path=} lob_file_path] [{-E | --extended-volume-path=}

path][{-i, --control-file=}FILE] [-r | --replace] [-d | --delete-source] [--copy-

lob-path]

• cubrid : An integrated utility for the CUBRID service and database management.

• copyd : A command that copy or move a database from one to another location.

• options : For details about each option, see its description and the examples. If options are omitted, a target

database is copied into the same directory of a source database.

• src_database_name : The names of source and target databases to be copied or moved.

• dest_database_name : A new (target) database name.

Option

Registering the host name (--server-name)

The following example shows specifying a host name of new database. The host name is registered in the databases.txt

file. If this option is omitted, a local host is registered.

cubrid copydb --server-name=cub_server1 demodb new_demodb

Storing a new database volume in a specific directory (-F or --file-path)

The following example shows specifying a specific directory path where a new database volume is stored with an -F

option. It represents specifying an absolute path. If the specified directory does not exist, an error is outputted. If this

option is omitted, a new database volume is created in the current working directory. And this information is specified

in vol-path of the databases.txt file.

cubrid copydb -F /home/usr/CUBRID/databases demodb new_demodb

Storing a new database log volume in a specific directory (-L or --log-path)

CUBRID 2008 R4.0 Help

426

The following example shows specifying a specific directory path where a new database volume is stored with an -L

option. It represents specifying an absolute path. If the specified directory does not exist, an error is outputted. If this

option is omitted, a new database volume is created in the current working directory. And this information is specified

in log-path of the databases.txt file.

cubrid copydb -L /home/usr/CUBRID/databases/logs demodb new_demodb

Storing a new database extended volume in a specific directory (-E or --extended-volume-path)

The following example shows specifying a specific directory path where a new database extended volume is stored with

an -E. If this option is omitted, a new database extended volume is created in the location of a new database volume or

in the registered path of controlling file. The -i option cannot be used with this option.

cubrid copydb -E home/usr/CUBRID/databases/extvols demodb new_demodb

Specifying an input file where directory path information is stored (-i or --control file)

The following example shows specifying an input file where a new directory path information and a source volume are

stored to copy or move multiple volumes into a different directory, respectively. The -i option cannot be used with the -

E option. An input file named copy_path is specified in the example below.

cubrid copydb -i copy_path demodb new_demodb

The following is an exmaple of input file that contains each volume name, current directory path, and new directory and

volume names.

volid source_fullvolname dest_fullvolname

0 /usr/databases/demodb /drive1/usr/databases/new_demodb

1 /usr/databases/demodb_data1 /drive1/usr/databases/new_demodb new_data1

2 /usr/databases/ext/demodb index1 /drive2//usr/databases/new_demodb new_index1

3 /usr/ databases/ext/demodb index2 /drive2/usr/databases/new_demodb new_index2

• volid : An integer that is used to identify each volume. It can be checked in the database volume control file

(database_name_vinf).

• source_fullvolname : The current directory path to each source database volume.

• dest_fullvolname : The target directory path where new volumes will be stored. You should specify a vaild path.

Overwriting if same database exists (-r or --replace)

If the -r option is specified, a new database name overwrites the existing database name if it is identical, insteading

outputting an error.

cubrid copydb -r -F /home/usr/CUBRID/databases demodb new_demodb

Deleting a source database if is is copied (-d or --delete-source)

If the -d option is specified, a source database is deleted after the database is copied. This execution brings the same the

result as executing cubrid deletedb utility after copying a database. Note that if a source database contains LOB data,

LOB file directory path of a source database is copied into a new database and it is registered in the lob-base-path of

the databases.txt file.

cubrid copydb -d -copyhome/usr/CUBRID/databases demodb new_demodb

Copying LOB file directory (--copy-lob-path)

If the --copy-lob-path option is specified, a new directory path for LOB files is created and a source database is copied

into a new directory path. If this option is omitted, the directory path is not created. Therefore, the lob-base-path of the

databases.txt file should be modified separately. This option cannot be used with the -B option.

cubrid copydb --copy-lob-path demodb new_demodb

Copying LOB file directory simultaneously with specifying it (-B or --delete-backup)

If the -B option is specified, a specified directory is specified as for LOB files of a new database and a source database

is copied. This option cannot be used with the --copy-lob-path option.

cubrid copydb -B /home/usr/CUBRID/databases/new_lob demodb new_demodb

Administrator's Guide

427

Installing Database

Description

The cubrid installdb utility is used to register the information of a newly installed database to databases.txt, which

stores database location information. The execution of this utility does not affect the operation of the database to be

registered.

Syntax

cubrid installdb options database_name

options : [{--server-name=} host] [{-F|--file-path=} database_path] [-L| --log-path=}

log_path]

• cubrid : An integrated utility for the CUBRID service and database management.

• installdb : A command that registers the information of a moved or copied database to databases.txt.

• options : --server-name, -F, -L options are available. For more information on each option, see the option

description and example. If no option is used with a command, the command must be executed in the directory

where the corresponding database exists.

• database_name : The name of database to be registered to databases.txt.

Option

Registering the host name (--server-name)

The following example shows registering the server host information of a database to databases.txt with a specific host

name. If this option is not specified, the current host information is registered.

cubrid installdb --server-name=cub_server1 testdb

Registering the directory path of a database volume (-F or ?file-path)

The following example shows registering the directory path of a database volume to databases.txt with an -F option. If

this option is not specified, the path of a current directory is registered as default.

cubrid installdb ?F /home/cubrid/CUBRID/databases/testdb testdb

Registering the directory path of a database log volume (-L or ?log-path)

The following example shows registering the directory path of a database log volume to databases.txt with an -L

option. If this option is not specified, the directory path of a volume is registered.

cubrid installdb ?L /home/cubrid/CUBRID/databases/logs/testdb testdb

Checking Used Space

Description

The cubrid spacedb utility is used to check how much space of database volumes is being used. It shows a brief

description of all permanent data volumes in the database. Information returned by the cubrid spacedb utility includes

the ID, name, purpose and total/free space of each volume. You can also check the total number of volumes and

used/unused database pages.

Syntax

cubrid spacedb options database_name

options : [{-o|--output-file=}file] [-S|--SA-mode|-C|--CS-mode] [--size-unit=PAGE|M|G|T|H]

[-s|--summarize]

• cubrid : An integrated utility for the CUBRID service and database management.

• spacedb : A command that checks the space in the database. It executes successfully only when the database is in a

stopped state.

CUBRID 2008 R4.0 Help

428

• options : The -o, -S, -C --size-unit, and -s options are supported. For details about each option, refer to its

description and the examples.

• database_name : The name of the database whose space is to be checked. The path-name to the directory where the

database is to be created must not be included.

Option

Saving output messages to a file (-o)

The above example shows saving the result of checking the space information of testdb to a file named db_output.

cubrid spacedb -o db_output testdb

Executing in stand-alone mode (-S or --SA-mode)

The -S option is used to access a database in standalone, which means it works without processing server; it does not

have an argument. If -S is not specified, the system recognizes that a database is running in client/server mode.

cubrid spacedb --SA-mode testdb

Executing in client/server mode (-C or --CS-mode)

The -C option is used to access a database in client/server mode, which means it works in client/server process

respectively; it does not have an argument. If -C is not specified, the system recognize that a database is running in

client/server mode by default.

cubrid spacedb --CS-mode testdb

Outputing in specified size unit (--size-unit)

The --size-unit option is used to specify the size unit of the space information of the database to be one of PAGE,

M(MB), G(GB), T(TB), H(print-friendly). The default value is H. If you set the value to H, the unit is automatically

determined as follows: M if 1MB = DB size < 1024MB, G if 1GB = DB size < 1024GB.

cubrid spacedb --size_unit=M testdb

cubrid spacedb --size_unit=H testdb

Outputs total pages, used pages, free pages by volume usage (-s or --summarize)

Aggregates total_pages, used_pages and free_pages by DATA, INDEX, GENERIC, TEMP and TEMP TEMP, and

outputs it.

cubrid spacedb –s testdb

Compacting Used Space

Description

The cubrid compactdb utility is used to secure unused space of the database volume. In case the database server is not

running (offline), you can perform the job in stand-alone mode. In case the database server is running, you can perform

it in client-server mode.

The cubrid compactdb utility secures the space being taken by OIDs of deleted objects and by class changes. When an

object is deleted, the space taken by its OID is not immediately freed because there might be other objects that refer to

the deleted one. Reference to the object deleted during compacting is displayed as NULL, which means this can be

reused by OIDs.

Syntax

cubrid compactdb options database_name [class_name], class_name2,...]

options : [-v | --verbose] [-S|--SA-mode | -C| --CS-mode]

• cubrid : An integrated utility for the CUBRID service and database management.

• compactdb : A command that compacts the space of the database so that OIDs assigned to deleted data can be

reused.

Administrator's Guide

429

• options : The -v , -S, and -C options are supported. Options (-I, -i, -c, -d, -p) that is applied in client/server mode

only.

• database_name : The name of the database whose space is to be compacted. The path name to the directory where

the database is to be created must not be included.

• class_name_list : You can specify the list of tables names that you want to compact space after a database name;

the -i option cannot be used together. It is used in client/server mode only.

Option

Outputting detailed messages during execution (-v)

You can output messages that shows which class is currently being compacted and how many instances have been

processed for the class by using the -v option.

cubrid compactdb -v testdb

Executing in stand-alone mode (-S or --SA mode)

The -S option is specified to compact used space in stand-alone mode while database server is not running; no arugment

is specified. If the -S option is not specified, system recognizes that the job is executed in client/server mode.

cubrid compactdb --SA-mode testdb

Executing in client/server mode (C or --CS mode)

The -C option is specified to compact used space in client/server mode while database server is running; no argument is

specified. Even though this option is omitted, system recognizes that the job is executed in client/server mode. The

following options can be used in client/server mode only.

• - i, --input-class-file=FILE

You can specify an input file name that contains the table table name with this option. Write one table name in a

single line; invalid table name is ignored. Note that you cannot specify the list of the table names after a database
name in case of you use this option.

• -p, --page-commited-once = NUMBER

You can specify the number of maximum pages that can be commited once with this option. The default value is 10,

the minimum value is 1, and the maximum value is 10. The less option value is specified, the more concurrency is

enhanced because the value for class/instance lock is small; however, it causes slowdown on operation, and vice
versa.

• -d, --delete-old-repr

You can delete an existing table representation from catalog with this option.

• -I, --Instance-lock-timeout

You can specify a value of instance lock timeout with this option. The default value is 2(second), the minimum

value is 1, and the maximum value is 10. The less option value is specified, the more operation speeds up. However,
the number of instances that can be processed becomes smaller, and vice versa.

• -c, --class-lock-timeout

You can specify a value of instance lock timeout with this option. The default value is 10(second), the minimum

value is 1, and the maximum value is 10. The less option value is specified, the more operation speeds up. However,
the number of tables that can be processed becomes smaller, and vice versa.

cubrid compactdb --CS-mode -p 10 testdb tbl1, tbl2, tbl5

Updating Statistics

Description

Updates statistical information such as the number of objects, the number of pages to access, and the distribution of

attribute values.

CUBRID 2008 R4.0 Help

430

Syntax

cubrid optimizedb options database_name

options : [{-n|--class-name=} name]

• cubrid : An integrated utility for the CUBRID service and database management.

• optimizedb : Updates the statistics information, which is used for cost-based query optimization of the database. If

the option is specified, only the information of the specified class is updated.

• options : The -n option is supported.

• database_name : The name of the database whose cost-based query optimization statistics are to be updated.

Option

Updating the query statistics of the target database

The following example shows updating the query statistics information of all classes in the database.

cubrid optimizedb testdb

Updating the query statistics of a specific class in the database (-n or --class-name)

The following example shows updating the query statistics information of the given class by using the -n option.

cubrid optimizedb -n event_table testdb

Outputting Statistics Information of Server

Description

The cubrid statdump utility checks statistics information processed by the CUBRID database server. The statistics

information mainly consists of the followings: File I/O, Page buffer, Logs, Transactions, Concurrency/Lock, Index, and

Network request

Note that you must specify the parameter communication_histogram to yes in the cubrid.conf before executing the

utility. You can also check statistics information of server with session commands (;.h on) in the CSQL.

Syntax

cubrid statdump options database_name

options :

[{-o |--ouput-file=}file_name] [{-i |--interval=}secs] [-c|--cumulative] [{-s |-

substr=}sub_string]

• cubrid : An integrated utility for the CUBRID service and database management.

• installdb : A command that dumps the statistics information on the database server execution.

• options : --o, -i, -c, and -s options are available.

• database_name : The name of database which has the statistics data to be dumped.

Option

Outputting statistics information periodically (-i or --interval)

cubrid statdump -i 5 testdb

Thu April 07 23:10:08 KST 2011

 *** SERVER EXECUTION STATISTICS ***

Num_file_creates = 0

Num_file_removes = 0

Num_file_ioreads = 0

Num_file_iowrites = 0

Num_file_iosynches = 0

Num_data_page_fetches = 0

Num_data_page_dirties = 0

Num_data_page_ioreads = 0

Num_data_page_iowrites = 0

Administrator's Guide

431

Num_data_page_victims = 0

Num_data_page_iowrites_for_replacement = 0

Num_log_page_ioreads = 0

Num_log_page_iowrites = 0

Num_log_append_records = 0

Num_log_archives = 0

Num_log_checkpoints = 0

Num_log_wals = 0

Num_page_locks_acquired = 0

Num_object_locks_acquired = 0

Num_page_locks_converted = 0

Num_object_locks_converted = 0

Num_page_locks_re-requested = 0

Num_object_locks_re-requested = 0

Num_page_locks_waits = 0

Num_object_locks_waits = 0

Num_tran_commits = 0

Num_tran_rollbacks = 0

Num_tran_savepoints = 0

Num_tran_start_topops = 0

Num_tran_end_topops = 0

Num_tran_interrupts = 0

Num_btree_inserts = 0

Num_btree_deletes = 0

Num_btree_updates = 0

Num_btree_covered = 0

Num_btree_noncovered = 0

Num_btree_resumes = 0

Num_query_selects = 0

Num_query_inserts = 0

Num_query_deletes = 0

Num_query_updates = 0

Num_query_sscans = 0

Num_query_iscans = 0

Num_query_lscans = 0

Num_query_setscans = 0

Num_query_methscans = 0

Num_query_nljoins = 0

Num_query_mjoins = 0

Num_query_objfetches = 0

Num_network_requests = 1

Num_adaptive_flush_pages = 0

Num_adaptive_flush_log_pages = 0

Num_adaptive_flush_max_pages = 900

 *** OTHER STATISTICS ***

Data_page_buffer_hit_ratio = 0.00

Category of Statistics Information

Category Item Description

File I/O Num_file_removes The number of files removed

Num_file_creates The number of files created

Num_file_ioreads The number of files read

Num_file_iowrites The number of files saved

Num_file_iosynches The number of file synchronization

Page buffer Num_data_page_fetches The number of pages fetched

Num_data_page_dirties The number of duty pages

Num_data_page_ioreads The number of pages read

Num_data_page_iowrites The number of pages saved

Num_data_page_victims The number specifying the victim

data to be flushed from the data page

to the disk

CUBRID 2008 R4.0 Help

432

Num_data_page_iowrites_for_replacement The number of the written data pages

specified as victim

Num_adaptive_flush_pages The number of data pages flushed

from the data buffer to the disk

Num_adaptive_flush_log_pages The number of log pages flushed from

the log buffer to the disk

Num_adaptive_flush_max_pages The maximum number of pages

allowed to flush from data and the log

buffer to the disk

Logs Num_log_page_ioreads The number of log pages read

Num_log_page_iowrites The number of log pages saved

Num_log_append_records The number of log records appended

Num_log_archives The number of logs archived

Num_log_checkpoints The number of checkpoints

Num_log_wals Not used

Transactions Num_tran_commits The number of commits

Num_tran_rollbacks The number of rollbacks

Num_tran_savepoints The number of savepoints

Num_tran_start_topops The number of top operations started

Num_tran_end_topops The number of top perations stopped

Num_tran_interrupts The number of interruptions

Concurrency/lock Num_page_locks_acquired The number of locked pages acquired

Num_object_locks_acquired The number of locked objects

acquired

Num_page_locks_converted The number of locked pages

converted

Num_object_locks_converted The number of locked objects

converted

Num_page_locks_re-requested The number of locked pages

requested

Num_object_locks_re-requested The number of locked objects

requested

Num_page_locks_waits The number of locked pages waited

Num_object_locks_waits The number of locked objects waited

Index Num_btree_inserts The number of nodes inserted

Num_btree_deletes The number of nodes deleted

Num_btree_updates The number of nodes updated

Num_btree_covered The number of cases in which an

index includes all data upon query

execution

Administrator's Guide

433

Num_btree_noncovered The number of cases in which an

index includes some or no data upon

query execution

Num_btree_resumes The exceeding number of index scan

specified in

index_scan_oid_buffer_pages

Query

(Servuce

Workload)

Num_query_selects The number of SELECT requested

Num_query_inserts The number of INSERT queries

Num_query_deletes The number of DELETE queries

Num_query_updates The number of UPDATE queries

Num_query_sscans The number of sequential scans (full

scan)

Num_query_iscans The number of index scans

Num_query_lscans The number of LIST scans

Num_query_setscans The number of SET scans

Num_query_methscans The number of METHOD scans

Num_query_nljoins The number of nested loop joins

Num_query_mjoins The number of parallel joins

Num_query_objfetches The number of fetch objects

Network request Num_network_requests The number of networks requested

 Data_page_buffer_hit_ratio Hit Ratio of page buffers

(Num_data_page_fetches -

Num_data_page_ioreads)*100 /

Num_data_page_fetches

Saving statistics information to a file (-o or --output-file)

The -o options is used to save statistics information of server processing for the database to a specified file.

cubrid statdump -o statdump.log testdb

Displays the accumulated operation statistics information (-c or --cumulative)

You can display the accumulated operation statistics information of the target database server by using the -c option. By

combining this with the ?i option, you can check the operation statistics information at a specified interval.

cubrid statdump ?i 5 ?c testdb

Displays statistics that includes specified string (-s or --substr)

You can display statistics about items of which name include the specified string by using -s option.

The following examples displays statistics about items of which name include "data".

cubrid statdump –s data testdb

*** SERVER EXECUTION STATISTICS ***

Num_data_page_fetches = 135

Num_data_page_dirties = 0

Num_data_page_ioreads = 0

Num_data_page_iowrites = 0

Num_data_page_victims = 0

Num_data_page_iowrites_for_replacement = 0

 *** OTHER STATISTICS ***

Data_page_buffer_hit_ratio = 100.00

CUBRID 2008 R4.0 Help

434

Note Each status information consists of 64-bit INTEGER data and the corresponding statistics information can be lost

if the accumulated value exceeds the limit.

Checking Lock Status

Description

The cubrid lockdb utility is used to check the information on the lock being used by the current transaction in the

database.

Syntax

cubrid lockdb options database_name

options : [{-o|--output-file=} file]

• cubrid : An integrated utility for the CUBRID service and database management.

• lockdb : A command used to check the information on the lock being used by the current transaction in the

database.

• options : The -o option is supported.

• database_name : The name of the database where lock information of the current transaction is to be checked.

Option

Displaying the lock information on the screen

The following example shows displaying lock information of the testdb database on a screen without any option.

cubrid lockdb testdb

Displaying the lock information to the specified file (-o)

The following example shows displaying lock information of the testdb database as a output.txt by using the -o option.

cubrid lockdb -o output.txt testdb

Checking Database Consistency

Description

The cubrid checkdb utility is used to check the consistency of a database. You can use cubrid checkdb to identify data

structures that are different from indexes by checking the internal physical consistency of the data and log volumes. If

the cubrid checkdb utility reveals any inconsistencies, you must try automatic repair by using the --repair option.

Syntax

cubrid checkdb options database_name [class_name1 class_name2 ...]

options : [-S|--SA-mode | -C|--CS-mode] [-r | --repair] | [-i table_list.txt|--input-

class-file]

• cubrid : An integrated utility for CUBRID service and database management.

• checkdb : A utility that checks the data consistency of a specific database.

• options : -S, -C, -r, and -i options are supported.

• database_name : The name of the database whose consistency status will be either checked or repaired.

table_list.txt : A file name to save the list of the tables for consistency check or

recovery

class_name1 class_name2 : List the table names for consistency check or recovery

Option

Checking the database consistency in standalone mode (-S or --SA-mode)

Administrator's Guide

435

The -S option is used to access a database in standalone, which means it works without processing server; it does not

have an argument. If -S is not specified, the system recognizes that a database is running in client/server mode.

cubrid checkdb -S testdb

Checking the database consistency in client/server mode (-C or --CS-mode)

The -C option is used to access a database in client/server mode, which means it works in client/server process

respectively; it does not have an argument. If -C is not specified, the system recognize that a database is running in

client/server mode by default.

cubrid checkdb -C testdb

Repairing in case of a database consistency problem (-r or --repair)

The -r option is used to repair an issue if a consistency error occurs in a database.

cubrid checkdb -r testdb

Limit to the tables specifying the target for consistency check or recovery of database (-i, --input-class-file or

tables)

You can limit the target for consistency check or recovery as in the table list file after -i table_list.txt option or the tables

specified after the database name. They can be used together and if the target is not specified, full database consistency

check or recovery will be executed.

cubrid checkdb testdb tbl1 tbl2

cubrid checkdb -r testdb tbl1 tbl2

cubrid checkdb -r -i tbl_list.txt testdb tbl1 tbl2

Empty string, tab, carriage return and comma are separators among table names in the table list file specified by -i

option. The following is an example of a table list file and recognizes all from t1 to t10 as tables for consistency check

or recovery.

t1 t2 t3,t4 t5

t6, t7 t8 t9

 t10

Killing Database Transactions

Description

The cubrid killtran is used to check transactions or abort specific transaction. Only a DBA can execute this utility.

Syntax

cubrid killtran options database_name

options :

[{-i|--kill-transaction-index=}index] [--kill-user-name=id] [--kill-host-name=host] [--

kill-program-name=program_name] [{-p|--dba-password=}password] [-d|--display-information]

[-f|--force]

• cubrid : An integrated utility for the CUBRID service and database management

• killtran : A utility that manages transactions for a specified database

• options : Some options refer to killing specified transactions; others refer to outputting active transactions. If no

option is specified, -d is specified by default so all transactions are outputted on the screen. -p A value followed by

the -p option is a password of the DBA, and should be entered in the prompt.

• database_name : The name of database whose transactions are to be killed

Option

Outputting all transactions (no option)

cubrid killtran testdb

CUBRID 2008 R4.0 Help

436

Tran index User name Host name Process id Program name

 1(+) dba myhost 664 cub_cas

 2(+) dba myhost 6700 csql

 3(+) dba myhost 2188 cub_cas

 4(+) dba myhost 696 csql

 5(+) public myhost 6944 csql

Killing transactions in a specified index (-i or --kill-transation-index)

cubrid killtran -i 1 testdb

Ready to kill the following transactions:

Tran index User name Host name Process id Program name

 1(+) dba myhost 4760 csql

Do you wish to proceed ? (Y/N)y

Killing transaction associated with transaction index 1

Outputting all transactions (-d or --display)

cubrid killtran -d testdb

Tran index User name Host name Process id Program name

 2(+) dba myhost 6700 csql

 3(+) dba myhost 2188 cub_cas

 4(+) dba myhost 696 csql

 5(+) public myhost 6944 csql

Killing transactions for a specified OS user ID (--kill-user-name)

cubrid killtran --kill-user-name=os_user_id testdb

Killing transactions for a specified client host (--kill- host-name)

cubrid killtran --kill-host-name=myhost testdb

Killing transactions for a specified program (--kill-program-name)

cubrid killtran --kill-program-name=cub_cas testdb

Omitting a prompt to check transactions to be stopped (-f or --force)

cubrid killtran -f -i 1 testdb

Checking the Query Plan Cache

Description

The cubrid plandump utility is used to display information on the query plans saved (cached) on the server.

Syntax

cubrid plandump options database_name

options : [-d|--drop] [{-o|--output-file=} file]

• cubrid : An integrated utility for the CUBRID service and database management.

• plandump : A utility that displays the query plans saved in the current cache of a specific database.

• options : The -d and -o options are supported.

• database_name : The name of the database where the query plans are to be checked or dropped from its sever cache.

Option

Checking the query plans saved in the cache

Administrator's Guide

437

cubrid plandump testdb

Dropping the query plans saved in the cache (-d or --drop)

cubrid plandump -d testdb

Saving the results of the query plans saved in the cache to a file (-o or --output)

cubrid plandump -o output.txt testdb

Outputting Internal Database Information

Description

You can check various pieces of internal information on the database with the cubrid diagdb utility. Information

provided by cubrid diagdb is helpful in diagnosing the current status of the database or figuring out a problem.

Syntax

cubrid diagdb options database_name

options : [{-d | --dump-type=} type]

• cubrid : An integrated utility for the CUBRID service and database management.

• diagdb : A command that is used to check the current storage state of the database by outputting the information

contained in the binary file managed by CUBRID in text format. It normally executes only when the database is in

a stopped state. You can check the whole database or the file table, file size, heap size, class name or disk bitmap

selectively by using the provided option.

• options : The -d option is provided.

• database_name : The name of the database to be diagnosed.

Option

Specifying the output range (-d or --dump-type)

The following example displays the information of all files in the testdb database. If any option is not specified, the

default value of 1 is used.

cubrid diagdb -d 1 myhost testdb

The utility has 9 types of -d options as follows:

Type Description

-1 Outputs all database information.

1 Outputs file table information.

2 Outputs file capacity information.

3 Outputs heap capacity information.

4 Outputs index capacity information.

5 Outputs class name information.

6 Outputs disk bitmap information.

7 Outputs catalog information.

8 Outputs log information.

9 Outputs hip information.

Backup and Restore

DBA must perform regular backups of the database so that it can be restored successfully to a state at a certain point in

time in case of system failure. For more information, see Database Backup.

CUBRID 2008 R4.0 Help

438

Export and Import

To use a newer version of CUBRID database, the existing version must be migrated to a new one. For this purpose, you

can use "Export to a ASCII text file" and "Import from a ASCII text file" features provided by CUBRID. For more

information on export and import, see Migrating Database.

Outputting Parameters Used in Server/Client

Description

The cubrid paramdump utility outputs parameter information used in the server/client process.

Syntax

cubrid paramdump options database_name

options : [{-o|--output-file=}filename] [{-b|--both}] [{-S|--SA-mode}] [{-C|--CS-mode}]

• cubrid : An integrated utility for the CUBRID service and database management

• paramdump : A utility that outputs parameter information used in the server/client process

• options : A short name option starts with a single dash (-) while a full name option starts with a double dash (--). -o,

-b, -S and -C options are provided.

• database_name : The name of the database in which parameter information is to be outputted

Option

Saving the output information to a file (-o)

The -o option is used to save information of the parameters used in the server/client process of the database into a

specified file. The file is created in the current directory. If the -o option is not specified, messages are displayed on the

console screen.

cubrid paramdump -o db_output testdb

Outputting information of the server/client parameters (-b)

The -b option is used to output parameter information used in server/client process into a console screen. If the -b

option is not specified, only server-side information is outputted.

cubrid paramdump -b testdb

Outputting parameter information of the server process in standalone mode (-S or --SA-mode)

cubrid paramdump -S testdb

Outputting parameter information of the server process in client/server mode (-C or --CS-mode)

cubrid paramdump -C testdb

Administrator's Guide

439

Database Migration

Migrating Database

To use a newer version of CUBRID database, you might migrate an existing data to a new one. For this purpose, you

can use the "Export to a ASCII text file" and "Import from a ASCII text file" features provided by CUBRID. The

following section explains migration steps using the cubrid unloaddb and cubrid loaddb utilities.

Recommended scenario and procedures

The following is an explanation of a migration scenario that can be applied while the existing version of CUBRID is

running. For database migration, the cubrid unloaddb and cubrid loaddb utilities are used. For more information, see

Unloading Database and Loading Database.

1. Back up the existing database

Back up the existing version of the database by using the cubrid backupdb utility. The purpose of this step is to

safeguard against failures that might occur during the database unload/load operations. For more information on the

database backup, see Database Backup.

2. Unload the existing database

Unload the database created for the existing version of CUBRID by using the cubrid unloaddb utility. For more

information on the database unload, see Unloading Database.

3. Storing the existing CUBRIDG configuration files

Save configurations files such as cubrid.conf, cubrid_broker.conf and cm.conf located in the CUBRID/conf

directory. The purpose of this step is to conveniently apply parameter values for the existing CUBRID database
environment to the new one.

4. Install a new version of CUBRID

Once backing up and unloading of the data created by the existing version of CUBRID have been completed, delete

the existing version of CUBRID and its databases and then install the new version of CUBRID. For more

information on installing CUBRID, see Installing and Running on Linux in "Getting Started."

5. Configure the new CUBRID

You can configure the new version of CUBRID by referring to configuration files of the existing database saved in

the step 3, "Save configuration files of the existing version of CUBRID." For more information on configuration,
see Installing and Running on Windows in "Getting Started."

6. Load the new database

Create a database by using the cubrid createdb utility and then use the cubrid loaddb utility to load into the new

database the data which had previously been unloaded. For more information on creating a database, see Creating

Database in "Administrator's Guide." For more information on database loading, see Loading Database.

7. Back up the new database

Once the data has been successfully loaded into the new database, back up the database created for the new version

of CUBRID by using the cubrid backupdb utility. The reason for this step is because you cannot restore the data

backed up in the existing version of CUBRID when using the new version. For more information on backing up the
database, see Database Backup.

Unloading Database

Description

The purposes of unloading/loading a database are as follows:

• To reconstruct the database by rebuilding the database volume

• To perform migration to a different system environment

• To perform migration to a different version of the DBMS

CUBRID 2008 R4.0 Help

440

Syntax

cubrid unloaddb [options] database_name

[options]

-i | -O | -s | -d | -v | -S | -C |

--input-class-file | --output-path | --schema-only | --data-only | --verbose | --SA-mode |

--CS-mode | --include-reference | --input-class-only | --lo-count | --estimated-size | --

cached-pages | --output-prefix | --hash-file | --datafile-per-class

• cubrid : An integrated utility for the CUBRID service and database management.

• unloaddb : A utility that creates ASCII files from a database. It is used together with the cubrid loaddb utility for

replacing system, upgrading product version or reorganizing database volumes. It can be used both in standalone

and client/server modes. Data can be unloaded even when the database is running.

• options : A short option starts with a single dash (-) while a full name option starts with a double dash (--). Note

that options are case sensitive.

• database_name : Specifies the name of the database to be unloaded.

Return value

Return values of cubrid unloaddb utility are as follows:

• 0 : Success

• Non-zero : Failure

Generated Files

• Schema file (database-name_schema) : A file that contains information on the schema defined in the database.

• Object file (database-name_objects) : A file that contains information on the records in the database.

• Index file (database-name_indexes) : A file that contains information on the indexes defined in the database.

• Trigger file (database-name_trigger) : A file that contains information on the triggers defined in the database. If

you don't want triggers to be running while loading the data, load the trigger definitions after the data loading has

completed.

Schema, object, index and trigger files are created in the same directory.

Option

The following table shows options that can be used with cubrid unloaddb utility. Options are case sensitive.

Option Description

-i

--input-class-

file

Unloads the database class into the input file specified in an argument.

-O

--output-path

Specifies the directory in which to create schema and object files. If the option is not

specified, files are created in the current directory.

-s

--schema-only

Creates only the schema file, not the data file.

-d

--data-only

Creates only the data file, not the schema file.

-v

--verbose

Displays detailed information on the database being unloaded.

-S

--SA-mode

Unloads the database in standalone mode.

-C

--CS-mode

Unloads the database in client/server mode.

--include-

reference

Unloads the object reference as well when the specified database class is unloaded with

the -i option.

--input-class-

only

Is used with the -i option. Creates only the schema files which are related to tables

included in the input file.

Administrator's Guide

441

--lo-count Specifies the number of large object (LO) data files to be created in a single directory.

Default value : 0

--estimated-

size

Specifies the number of records expected.

--cached-pages Configures the number of object tables to be cached in the memory.

Default value : 100

--output-prefix Specifies the prefix for schema and object file names.

--hash-file Specifies the name of the hash file.

--datafile-per-

class

Generates a data file per each table.

Input file with the list of tables to be unloaded (-i or --input-class-file)

The following is an example of a input file (table_list.txt).

table_1

table_2

..

table_n

The -i option specifies the input file where the list of tables to be unloaded is stored so that only specified part of the

database can be unloaded.

cubrid unloaddb -i table_list.txt demodb

The -i option can be used together with the --input-class-only option that creates the schema file related to only those

tables included in the input file.

cubrid unloaddb --input-class-only -i table_list.txt demodb

The -i option can be used together with the --include-reference option that creates the object reference as well.

cubrid unloaddb --include-reference -i table_list.txt demodb

Specifying the directory where files created will be saved (-O or --output-path)

The -O option specifies the directory where the output files generated by the unload operation is saved. If the -O option

is not specified, output files are created in the current working directory.

cubrid unloaddb -O ./CUBRID/Databases/demodb demodb

If the specified directory does not exist, the following error message will be displayed.

unloaddb: No such file or directory.

Creating the schema file only (-s or --schema-only)

The -s option specifies that only the schema file will be created from amongst all the output files which can be created

by the unload operation.

cubrid unloaddb -s demodb

Creating the data file only (-d or -data-only)

The -d option specifies that only the data file will be created from amongst all of the output files which can be created

by the unload operation.

cubrid unloaddb -d demodb

Creates data files by table (--datafile-per-class)

--datafile-per-class is the option specifying that the output file generated through unload operation creates a data file

per each table. The file name is generated as <Database Name>_<Table Name>_objects for each table. However, all

column values in object types are unloaded as NULL and %id class_name class_id part is not written in the unloaded

file (see How to Write a File to Load Database).

cubrid unloaddb -d demodb

CUBRID 2008 R4.0 Help

442

Displaying the unload status information (-v or --verbose)

The -v option displays detailed information on the database tables and records being unloaded while the unload

operation is under way.

cubrid unloaddb -v demodb

Standalone mode (-S or --SA-mode)

The -S option performs the unload operation by accessing the database in standalone mode.

cubrid unloaddb -S demodb

Client/server mode (-C or --CS-mode)

The -C option performs the unload operation by accessing the database in client/server mode.

cubrid unloaddb -C demodb

Number of estimated records (--estimated-size)

The --estimated-size option allows you to assign hash memory to save records of the database to be unloaded. If the --

estimated-size option is not specified, the number of records of the database is determined based on recent statistics

information. This option can be used if the recent statistics information has not been updated or if a large amount of

hash memory needs to be assigned. Therefore, if the number given as the argument for the option is too small, the

unload performance deteriorates due to hash conflicts.

cubrid unloaddb --estimated-size 1000 demodb

Number of pages to be cached (--cached-pages)

The --cached-pages option specifies the number of pages of tables to be cached in the memory. Each page is 4,096

bytes. The administrator can configure the number of pages taking into account the memory size and speed. If this

option is not specified, the default value is 100 pages.

cubrid unloaddb --cached-pages 500 demodb

Specifying the prefix for the name of the file to be created (--output-prefix)

The --output-prefix option specifies the prefix for the names of schema and object files created by the unload operation.

Once the example is executed, the schema file name becomes abcd_schema and the object file name becomes

abcd_objects. If the --output-prefix option is not specified, the name of the database to be unloaded is used as the

prefix.

cubrid unloaddb --output-prefix abcd demodb

Loading Database

Description

You can load a database by using the cubrid loaddb utility in the following scenarios:

• When migrating a previous CUBRID database version to a new version

• When migrating a database of third-party DBMS to a CUBRID database

• When entering mass data faster than executing the INSERT statement

Generally, the cubrid loaddb utility uses files created by the cubrid unloaddb utility (schema definition file, object

input file and index definition file).

Syntax

cubrid loaddb [options] database_name

[options]

-u | -p | -l | -v | -c | -s | -i | -d |

--user | --password | --load-only | --verbose | --periodic-commit | --schema-file | --

index-file | --data-file | --data-file-check-only | --estimated-size | --no-oid | --no-

statistics | --ignore-class-file |--error-control-file |

Administrator's Guide

443

• cubrid : An integrated utility for the CUBRID service and database management.

• loaddb : A utility loads files which is generated by the unload operation and then creates a new database. It is also

used to enter mass data into a database faster than ever by loading the input file written by a user. Database loading

is performed in standalone mode with DBA authorization.

• options : A short name option starts with a single dash (-) while a full name option starts with a double dash (--).

The options are case sensitive.

• database_name : Specifies the name of the database to be created.

Return value

Return values of cubrid loaddb utility are as follows:

• 0 : Success

• Non-zero : Failure

Input file

• Schema file (database-name_schema) : A file generated by the unload operation; it contains schema information

defined in the database.

• Object file (database-name_objects) : A file created by an unload operation. It contains information on the records

in the database.

• Index file (database-name_indexes) : A file created by an unload operation. It contains information on the indexes

defined in the database.

• Trigger file (database-name_trigger) : A file created by an unload operation. It contains information on the triggers

defined in the database.

• User-defined object file (user_defined_object_file) : A file in table format written by the user to enter mass data.

Option

The following table shows options that can be used with cubrid loaddb utility. The options are case sensitive.

Option Description

-u

--user

Enters the database user's account. The default value is PUBLIC.

-p

--password

Enters the database user's password.

-l

--load-only

Skips checking statements and types included in the object file and loads records.

-v

--verbose

Displays detailed information on the data loading status on the screen.

-c

--periodic-commit

Commits the transaction whenever a specified number of records has been

entered.

-s

--schema-file

Specifies the schema file created by the unload operation and performs schema

loading.

-i

--index-file

Specifies the index file created by the unload operation and loads indexes.

-d

--data-file

Specifies the data file created by the unload operation and loads records.

--data-file-check-

only

Performs checking only for statements and types included in the data file, but does

not load records.

--estimated-size Specifies the number of records expected.

--no-oid Ignores the OID reference relationship included in the data file and loads records.

--no-statistics Loads records without updating database statistics information.

--ignore-class-file Specifies the ignoring classes.

CUBRID 2008 R4.0 Help

444

--error-control-file Specifies the file that describes how to handle specific errors occurring during data

loading.

Entering a user account (-u or --user)

The -u option specifies the user account of a database where records are loaded. If the option is not specified, the default

value is PUBLIC.

cubrid loaddb -u admin -d demodb_objects newdb

Entering the password (-p or --password)

The -p option specifies the password of a database user who will load records. If the option is not specified, you will be

prompted to enter the password.

cubrid loaddb -p admin -d demodb_objects newdb

Loading records without checking syntax (-l or --load-only)

The -l option loads data directly without checking the syntax for the data to be loaded. The following example is a

statement that loads data included in demodb_objects to newdb.

If the -l option is used, loading speed increases because data is loaded without checking the syntax included in

demodb_objects, but an error might occur.

cubrid loaddb -l -d demodb_objects newdb

Displaying the loading status information (-v or --verbose)

The following is a statement that outputs detailed information on the tables and records of the database being loaded

while the database loading operation is performed. You can check the detailed information such as the progress level,

the class being loaded and the number of records entered by using the -v option.

cubrid loaddb -v -d demodb_objects newdb

Configuring the commit interval (-c or --periodic-commit)

The following command performs commit regularly every time 100 records are entered into the newdb by using the -c

option. If the -c option is not specified, all records included in demodb_objects are loaded to newdb before the

transaction is committed. If the -c option is used together with the -s or -i option, commit is performed regularly every

time 100 DDL statements are loaded. The recommended commit interval varies depending on the data to be loaded. It is

recommended that the parameter of the -c option be configured to 50 for schema loading, 1,000 for record loading, and

1 for index loading.

cubrid loaddb -c 100 -d demodb_objects newdb

Schema loading (-s or --schema-file)

The following statement loads the schema information defined in demodb into the newly created newdb database.

demodb_schema is a file created by the unload operation and contains the schema information of the unloaded database.

You can load the actual records after loading the schema information first by using the -s option.

cubrid loaddb -u dba -s demodb_schema newdb

Start schema loading.

Total 86 statements executed.

Schema loading from demodb_schema finished.

Statistics for Catalog classes have been updated.

Index loading (-i or --index-file)

The following command loads the index information defined in demodb into the newly created newdb database.

demo_indexes is a file created by the unload operation and contains the index information of the unloaded database.

You can create indexes after loading records by using the -i option together with the -d option.

cubrid loaddb -u dba -i demodb_indexes newdb

Administrator's Guide

445

Data loading (-d or -data-file)

The following command loads the record information into newdb by specifying the data file or the user-defined object

file with the -d option. demodb_objects is either an object file created by the unload operation or a user-defined object

file written by the user for mass data loading.

cubrid loaddb -u dba -d demodb_objects newdb

Checking the syntax for the data to be loaded only (--data-file-check-only)

The following is a command that checks the statements for the data contained in demodb_objects by using the --data-

file-check-only option. Therefore, the execution of the command below does not load records.

cubrid loaddb --data-file-check-only -d demodb_objects newdb

Number of expected records (--estimated-size)

The --estimated-size option can be used to improve loading performance when the number of records to be unloaded

exceeds the default value of 5,000. That is, you can improve the load performance by assigning large hash memory for

record storage with this option.

cubrid loaddb --estimated-size 8000 -d demodb_objects newdb

Loading records while ignoring the reference relationship (--no-oid)

The following is a command that loads records into newdb ignoring the OIDs in demodb_objects.

cubrid loaddb --no-oid -d demodb_objects newdb

Loading records without updating statistics information (--no-statistics)

The following is a command that does not update the statistics information of newdb after loading demodb_objects. It is

useful especially when small data is loaded to a relatively big database; you can improve the load performance by using

this command.

cubrid loaddb --no-statistics -d demodb_objects newdb

Specifying the ignoring classes (--ignore-class-file)

You can specify a file that lists classes to be ignored during loading records. All records of classes except ones specified

in the file will be loaded.

cubrid loaddb --ignore-class-file=skip_class_list -d demodb_objects newdb

Specifying the error information file (--error-control-file)

This option specifies the file describing how to handle specific errors occurring during database loading.

cubrid loaddb --error-control-file=error_test -d demodb_objects newdb

How to Write Files to Load Database

You can add mass data to the database more rapidly by writing the object input file used in the cubrid loaddb utility.

An object input file is a text file in simple table form that consists of comments and command/data lines.

Comment

In CUBRID, a comment is represented by two hyphens (--).

-- This is a comment!

Command Line

A command line begins with a percent character (%) and consists of %class and %id commands; the former defines

classes, and the latter defines aliases and identifiers used for class identification.

CUBRID 2008 R4.0 Help

446

Assigning an identifier to a class

You can assign an identifier to class reference relationships by using the %id command.

Syntax

%id class_name class_id

class_name:

 identifier

class_id:

 integer

The class_name specified by the %id command is the class name defined in the database, and class_id is the numeric

identifier which is assigned for object reference.

Example 1

%id employee 2

%id office 22

%id project 23

%id phone 24

Specifying the class and attribute

You can specify the classes (tables) and attributes (columns) upon loading data by using the %class command. The data

line should be written based on the order of attributes specified.

Syntax

%class class_name (attr_name [{ attr_name }_]

The schema must be pre-defined in the database to be loaded.

The class_name specified by the %class command is the class name defined in the database and the attr_name is the

name of the attribute defined.

Example 2

The following is an example that specifies a class and three attributes by using the %class command to enter data into a

class named employee. Three pieces of data should be entered on the data lines after the %class command. For this, see

Example 3 in the "Configuring a reference relationship" section.

%class employee (name age department)

Data Line

A data line comes after the %class command line. Data loaded must have the same type as the class attributes specified

by the %class command. The data loading operation stops if these two types are different.

Data for each attribute must be separated by at least one space and be basically written as a single line. However, if the

data to be loaded takes more than one line, you should specify the plus sign (+) at the end of the first data line to enter

data continuously on the following line. Note that no space is allowed between the last character of the data and the plus

sign.

Loading an instance

As shown below, you can load an instance that has the same type as the specified class attribute. Each piece of data is

separated by at least one space.

Example 1

%class employee (name)

'jordan'

'james'

'garnett'

'malone'

Administrator's Guide

447

Assigning an instance number

You can assign a number to a given instance at the beginning of the data line. An instance number is a unique positive

number in the specified class. Spaces are not allowed between the number and the colon (:). Assigning an instance

number is used to configure the reference relationship for later.

Example 2

%class employee (name)

1: 'jordan'

2: 'james'

3: 'garnett'

4: 'malone'

Configuring a reference relationship

You can configure the object reference relationship by specifying the reference class after an "at sign (@)" and the

instance number after the "vertical line (|)."

Syntax

@class_ref | instance_no

class_ref:

 class_name

 class_id

Specify a class name or a class id after the @ sign, and an instance number after a vertical line (|). Spaces are not

allowed before and after a vertical line (|).

Example 3

The following is an example that loads class instances into the paycheck class. The name attribute references an instance

of the employee class. As in the last line, data is loaded as NULL if you configure the reference relationship by using an

instance number not specified earlier.

%class paycheck(name department salary)

@employee|1 'planning' 8000000

@employee|2 'planning' 6000000

@employee|3 'sales' 5000000

@employee|4 'development' 4000000

@employee|5 'development' 5000000

Example 4

Since the id 21 was assigned to the employee class by using the %id command in the Assigning an identifier to a class

section, Example 3 can be written as follows:

%class paycheck(name department salary)

@21|1 'planning' 8000000

@21|2 'planning' 6000000

@21|3 'sales' 5000000

@21|4 'development' 4000000

@21|5 'development' 5000000

CUBRID 2008 R4.0 Help

448

Database Backup and Restore

Database Backup

A database backup is the procedure of storing CUBRID database volumes, control files and log files, and it is executed

by using the cubrid backupdb utility or the CUBRID Manager. DBA must regularly back up the database so that the

database can be properly restored in the case of storage media or file errors. The restore environment must have the

same operating system and the same version of CUBRID as the backup environment. For such a reason, you must

perform a backup in a new environment immediately after migrating a database to a new version.

To recover all database pages, control files and the database to the state at the time of backup, the cubrid backupdb

utility copies all necessary log records.

Syntax

cubrid backupdb [options] database_name

[options]

-D | -r | -l | -o | -S | -C | -t | -z | -e |

--destination-path | --remove-archive | --level | --output-file | --SA-mode | --CS-mode |

--thread-count | --compress | --except-active-log | --no-check

• cubrid : An integrated utility for the CUBRID service and database management.

• backupdb : A utility for database backup. Performs an online, offline, compressed or parallel backup depending on

the option used. This utility can only be executed by a user who has the backup authorization (e.g. DBA).

• options : A short option starts with a single dash (-) while a full name option starts with a double dash (--). Options

are case sensitive.

• database_name : Specifies the name of the database to be backed up.

Return Value

• 0 : Success

• Non-zero : Failure

Option

The following table shows options that can be used with cubrid backupdb utility. Note that options are case sensitive.

Option Description

-D

--destination-path

Specifies the directory path name or device name where backup

volumes are to be created.

The default value is the location of log_path specified in the database

location file (databases.txt) which was generated upon database

creation.

-r

--remove-archive

Removes unnecessary archive logs after the backup is complete.

-l

--level

Configures the backup level to 0, 1 or 2.

The default value is a full backup (0).

-o

--output-file

Specifies the name of the file where progress information is to be

outputted.

-S

--SA-mode

Performs a backup in standalone mode.

The default value is the one specified by the system parameter

CUBRID_MODE.

-C

--CS-mode

Performs a backup in client/server mode.

The default value is the one specified by the system parameter

CUBRID_MODE.

-t Specifies the maximum number of threads allowed for a parallel

Administrator's Guide

449

--thread-count backup.

The default value is the number of CPUs in the system.

-z

--compress

Performs a compressed backup.

-e

--except-active-log

Configures that active log volumes are not included in the backup.

--no-check Does not perform a consistency check on a database before making a

backup.

Performing a backup by specifying the directory in which backup files are to be stored (-D or --destination-path)

The following is an example that uses the -D option to store backup files in the specified directory. The backup file

directory must be specified before performing this job. If the -D option is not specified, backup files are stored in the

directory specified in the databases.txt file which stores database location information.

cubrid backupdb -D /home/cubrid/backup demodb

The following example stores backup files in the current directory by using the -D option. If you enter a period (.)

following the -D option as an argument, the current directory is specified.

cubrid backupdb -D . demodb

Removing archive logs after a backup (-r or --remove-archive)

If the system parameter media_failure_support is configured to 1, when the active logs are full, they are written to a

new archive log file. If a backup is performed in such a situation and backup volumes are created, backup logs created

before the backup will not be used in subsequent backups. The -r option is used to remove archive log files that will not

be used any more in subsequent backups after the current one is complete.

cubrid backupdb -r demodb

The -r option does not affect the restore because it removes only unnecessary archive logs before the backup, but full

restore may not be possible if the administrator removes archive logs created after the backup as well; when you remove

archive logs, you must check if those logs would be required in any subsequent restore.

If you perform an incremental backup (backup level 1 or 2) with the -r option, there is the risk that normal recovery of

the database will be impossible later on. Therefore, it is recommended that the -r option only be used when a full

backup is performed.

Performing a backup with the backup level specified (-l or --level)

The following example performs an incremental backup of the level specified by using the -l option. If the -l option is

not specified, a full backup is performed. For more information on backup levels, see Incremental Backup.

cubrid backupdb -l 1 demodb

Saving backup progress information in the specified file (-o or --output-file)

The following example writes the progress of the database backup to the info_backup file by using the -o option.

cubrid backupdb -o info_backup demodb

The following is an example of showing the contents of the info_backup file. You can check the information on the

number of threads, compression method, backup start time, the number of permanent volumes, backup progress and

backup end time.

[Database(demodb) Full Backup start]

- num-threads: 1

- compression method: NONE

- backup start time: Mon Jul 21 16:51:51 2008

- number of permanent volumes: 1

- backup progress status

 volume name | # of pages | backup progress status | done

 demodb_vinf | 1 | ######################### | done

CUBRID 2008 R4.0 Help

450

 demodb | 25000 | ######################### | done

 demodb_lginf | 1 | ######################### | done

 demodb_lgat | 25000 | ######################### | done

backup end time: Mon Jul 21 16:51:53 2008

[Database(demodb) Full Backup end]

Performing a backup in standalone mode (-S or --SA-mode)

The following example performs a backup in standalone by using the -S option. The demodb database is backed up

offline. If the -S option is not specified, the backup is performed in the mode specified by the CUBRID_MODE

environment variable.

cubrid backupdb -S demodb

Performing a backup in client/server mode (-C or --CS-mode)

The following example performs a backup in client/server mode by using the -C option. The demodb database is backed

up online. If the -C option is not specified, a backup is performed in the mode specified by the CUBRID_MODE

environment variable.

cubrid backupdb -C demodb

Parallel backup (-t or --thread-count)

The following example performs a parallel backup with the number of threads specified by the administrator by using

the -t option. Even when the argument of the -t option is not specified, a parallel backup is performed by automatically

assigning as many threads as CPUs in the system.

cubrid backupdb -t 4 demodb

Compressed backup (-z or --compress)

The following example compresses the database and stores it in the backup file by using the -z option. The size of the

backup file and the time required for backup can be reduced by using the -z option.

cubrid backupdb -z demodb

Enabling to exclude active log volumes (-e or --except-active-log)

The following example performs a backup, excluding active logs of the database by using the -e option. You can reduce

the time required for backup by using the -e option. However, extra caution is required because active logs needed for

completing a restore to the state of a certain point from the backup point are not included in the backup file, which may

lead to an unsuccessful restore.

cubrid backupdb -e demodb

Disabling a database consistency check (--no-check)

The following example performs a backup without checking the consistency of the database by using the --no-check

option.

cubrid backupdb --no-check demodb

Backup Strategy and Method

The following must be considered before performing a backup:

• Selecting the data to be backed up

• Determine whether it is valid data worth being preserved.

• Determine whether to back up the entire database or only part of it.

• Check whether there are other files to be backed up along with the database.

• Choosing a backup method

• Choose the backup method from one of incremental and online backups. Also, specify whether to use compression

backup, parallel backup, and mode.

Administrator's Guide

451

• Prepare backup tools and devices available.

• Determining backup time

• Identify the time when the least usage in the database occur.

• Check the size of the archive logs.

• Check the number of clients using the database to be backed up.

Online Backup

An online backup (or a hot backup) is a method of backing up a currently running database. It provides a snapshot of the

database image at a certain point in time. Because the backup target is a currently running database, it is likely that

uncommitted data will be saved and the backup may affect the operation of other databases.

To perform an online backup, use the cubrid backupdb -C command.

Offline Backup

An offline backup (or a cold backup) is a method of backing up a stopped database. It provides a snapshot of the

database image at a certain point in time.

To perform an offline backup, use the cubrid backupdb -S command.

Incremental Backup

An incremental backup, which is dependent upon a full backup, is a method of only backing up data that have changed

since the last backup. This type of backup has an advantage of requiring less volume and time than a full backup.

CUBRID supports backup levels 0, 1 and 2. A higher level backup can be performed sequentially only after a lower

lever backup is complete.

To perform an incremental backup, use the cubrid backupdb -l <level> command.

The following is an example of an incremental backup. With this example, we will examine backup levels in detail.

• Full backup (backup level 0) : Backup level 0 is a full backup that includes all database pages.

The level of a backup which is attempted first on the database naturally becomes a 0 level. DBA must perform full

backups regularly to prepare for restore situations. In the example, full backups were performed on December 31st
and January 5th.

• First incremental backup (backup level 1) : Backup level 1 is an incremental backup that only saves changes

since the level 0 full backup, and is called a "first incremental backup."

Note that the first incremental backups are attempted sequentially such as <1-1>, <1-2> and <1-3> in the example,

but they are always performed based on the level 0 full backup.

CUBRID 2008 R4.0 Help

452

Suppose that backup files are created in the same directory. If the first incremental backup <1-1> is performed on

January 1st and then the first incremental backup <1-2> is attempted again on January 2nd, the incremental backup

file created in <1-1> is overwritten. The final incremental backup file is created on January 3rd because the first

incremental backup is performed again on that day.

Since there can be a possibility that the database needs to be restored the state of January 1st or January 2nd, it is

recommended for DBA to save the incremental backup files <1-1> and <1-2> separately in storage media before
overwriting with the final incremental file.

• Second incremental backup (backup level 2) : Backup level 2 is an incremental backup that only saves data that

have changed since the first incremental backup, and is called a "second incremental backup."

A second incremental backup can be performed only after the first incremental backup. Therefore, the second

incremental backup attempted on January fourth succeeds; the one attempted on January sixth fails.

Backup files created for backup levels 0, 1 and 2 may all be required for database restore. To restore the database to

its state on January fourth, for example, you need the second incremental backup generated at <2-1>, the first

incremental backup file generated at <1-3>, and the full backup file generated at <0-1>. That is, for a full restore,
backup files from the most recent incremental backup file to the earliest created full backup file are required.

Compress Backup

A compress backup is a method of backing up the database by compressing it. This type of backup reduces disk I/O

costs and saves disk space because it requires less backup volume.

To perform a compress backup, use the cubrid backupdb -z|--compress command.

Parallel Backup Mode

A parallel or multi-thread backup is a method of performing as many backups as the number of threads specified. In this

way, it reduces backup time significantly. Basically, threads are given as many as the number of CPUs in the system.

To perform a parallel backup, use the cubrid backupdb -t|--thread-count command.

Managing Backup Files

One or more backup files can be created in sequence based on the size of the database to be backed up. A unit number is

given sequentially (000, 001-0xx) to the extension of each backup file based in the order of creation.

Managing Disk Capacity during the Backup

During the backup process, if there is not enough space on the disk to save the backup files, a message saying that the

backup cannot continue appears on the screen. This message contains the name and path of the database to be backed up,

the backup file name, the unit number of backup files and the backup level. To continue the backup process, the

administrator can choose one of the following options:

• Option 0 : An administrator enters 0 to discontinue the backup.

• Option 1 : An administrator inserts a new disk into the current device and enters 1 to continue the backup.

• Option 2 : An administrator changes the device or the path to the directory where backup files are saved and enters

2 to continue the backup.

**

Backup destination is full, a new destination is required to continue:

Database Name: /local1/testing/demodb

 Volume Name: /dev/rst1

 Unit Num: 1

 Backup Level: 0 (FULL LEVEL)

Enter one of the following options:

Type

 - 0 to quit.

 - 1 to continue after the volume is mounted/loaded. (retry)

 - 2 to continue after changing the volume's directory or device.

**

Administrator's Guide

453

Database Restore

A database restore is the procedure of restoring the database to its state at a certain point in time by using the backup

files, active logs and archive logs which have been created in an environment of the same CUBRID version. To perform

a database restore, use the cubrid restoredb utility or the CUBRID Manager.

The cubrid restoredb utility (restordb.exe in Windows) recovers the database from the database backup by using the

information written to all the active and archive logs since the execution of the last backup.

Syntax

cubrid restoredb [options] database_name

[options]

-d | -B | -l | -p | -o | -u |

--up-to-date | --backup-file-path | --level | --partial-recovery | --output-file | --use-

database-location-path | --list

• cubrid : An integrated utility for the CUBRID service and database management.

• restoredb : A command for recovery of the specified database. For a successful recovery, you must prepare backup

files, active log files and archive log files. This command can be performed only in standalone mode.

• options : A short name option starts with a single dash (-) while a full name option starts with a double dash (--).

This option is case sensitive.

• database_name : Specifies the name of the database to be recovered.

Return Value

• 0 : Success

• Non-zero : Failure

Option

The following table shows options that can be used with cubrid restoredb. Options are case sensitive.

Option Description

-d

--up-to-date

Directly sets the time to backup the database or specifies the

backuptime keyword.

-B

--backup-file-path

Specifies the directory pathname or device name where backup files

are to be located.

-l

--level

Sets the recovery level to 0, 1 or 2.

The default value is a full recovery (0).

-p

--partial-recovery

Performs a partial recovery.

-o

--output-file

Specifies the name of the file where recovery information is to be

displayed.

-u

--use-database-location-path

Recovers the database to the path specified in the database location

file (databases.txt).

--list Displays information on backup volumes of the database on the

screen.

Performing a recovery by specifying a recovery point (-d or --up-to-date)

The following command recovers demodb. If no option is specified, demodb is recovered to the point of the last commit

by default. If no active/archive log files are required to recover to the point of the last commit, the database is recovered

only to the point of the last backup.

cubrid restoredb demodb

demodb can be recovered to the given point by using the -d option and the syntax which specifies the date and time of

the recovery. The user can specify the recovery point manually in the dd-mm-yyyy:hh:mm:ss (e.g. 14-10-2008:14:10:00)

CUBRID 2008 R4.0 Help

454

format. If no active log/archive log files are required to recover to the point specified, the database is recovered only to

the point of the last backup.

cubrid restoredb -d 14-10-2008:14:10:00 demodb

The following syntax specifies the recovery point by using the -d option and the backuptime keyword and recovers

demodb to the point of the last backup.

cubrid restoredb -d backuptime demodb

Performing a recovery by specifying the directory path to the backup files (-B or --backup-file-path)

You can specify the directory where backup files are to be located by using the -B option. If this option is not specified,

the system retrieves the backup information file (dbname_bkvinf) generated upon a database backup; the backup

information file in located in the log_path directory specified in the database location information file (databases.txt).

And then it searches the backup files in the directory path specified in the backup information file. However, if the

backup information file has been damaged or the location information of the backup files has been deleted, the system

will not be able to find the backup files. Therefore, the administrator must manually specify the directory where the

backup files are located by using the -B option.

cubrid restoredb -B /home/cubrid/backup demodb

If the backup files of demodb is in the current directory, the administrator can specify the directory where the backup

files are located by using the -B option.

cubrid restoredb -B . demodb

Performing a recovery by specifying the backup level (-l or --level)

You can perform a restoration by specifying the backup level of the database to 0, 1, or 2. For more information on

backup levels, see Increment Backup.

cubrid restoredb -l 1 demodb

Performing a partial recovery (-p or --partial-recovery)

The following command performs a partial recovery without requesting for the user's response by using the -p option. If

active or archive logs written after the backup point are not complete, by default the system displays a request message

informing that log files are needed and prompting the user to enter an execution option. A partial recovery can be

performed directly without such a request message by using the -p option. Therefore, if the -p option is used when

performing a recovery, data is always recovered to the point of the last backup.

cubrid restoredb -p demodb

When the -p option is not specified, the message requesting the user to select the execution option is as follows:

Log Archive /home/cubrid/test/log/demodb_lgar002

 is needed to continue normal execution.

 Type

 - 0 to quit.

 - 1 to continue without present archive. (Partial recovery)

 - 2 to continue after the archive is mounted/loaded.

 - 3 to continue after changing location/name of archive.

• Option 0 : An administrator enters 0 to stop the recovery.

• Option 1 : An administrator enters 1 to perform a partial recovery without log files.

• Option 2 : An administrator enters 2 to perform a recovery after moving archive logs to the current device.

• Option 3 : An administrator enters 3 after changing a log location to resume a restoration.

Storing recovery progress information in the specified file (-o or --output-file)

The following command writes the recovery progress of the database to the info_restore file by using the -o option.

cubrid restoredb -o info_restore demodb

Recovering data to the directory specified in the database location file (-u or --use-database-location-path)

Administrator's Guide

455

The following syntax recovers the database to the path specified in the database location file (databases.txt) by using

the -u option. The -u option is useful when you perform a backup on server A and recover the backup files on server B.

cubrid restoredb -u demodb

Checking the backup information of the database (--list)

The following syntax displays the information on backup files of the database by using the --list option; it does not

perform recovery.

cubrid restoredb --list demodb

The following is an example of backup information displayed as a result of using the --list option. You can identify the

path to which backup files of the database are originally stored as well as backup levels.

*** BACKUP HEADER INFORMATION ***

Database Name: /local1/testing/demodb

 DB Creation Time: Mon Oct 1 17:27:40 2008

 Pagesize: 4096

Backup Level: 1 (INCREMENTAL LEVEL 1)

 Start_lsa: 513|3688

 Last_lsa: 513|3688

Backup Time: Mon Oct 1 17:32:50 2008

 Backup Unit Num: 0

Release: 8.1.0

 Disk Version: 8

Backup Pagesize: 4096

Zip Method: 0 (NONE)

 Zip Level: 0 (NONE)

Previous Backup level: 0 Time: Mon Oct 1 17:31:40 2008

(start_lsa was -1|-1)

Database Volume name: /local1/testing/demodb_vinf

 Volume Identifier: -5, Size: 308 bytes (1 pages)

Database Volume name: /local1/testing/demodb

 Volume Identifier: 0, Size: 2048000 bytes (500 pages)

Database Volume name: /local1/testing/demodb_lginf

 Volume Identifier: -4, Size: 165 bytes (1 pages)

Database Volume name: /local1/testing/demodb_bkvinf

 Volume Identifier: -3, Size: 132 bytes (1 pages)

With the backup information displayed by using the --list option, you can check that backup files have been created at

the backup level 1 as well as the point where the full backup of backup level 0 has been performed. Therefore, to

recover the database in the example, you must prepare backup files for backup levels 0 and 1.

Restore Strategy and Procedure

The following must be considered before performing a database restore:

• Preparing a backup file

• Identify the directory where the backup and log files are to be stored.

• If the database has been incrementally backed up, check whether an appropriate backup file for each backup level

exists.

• Check whether the backed-up CUBRID database and the CUBRID database to be backed up are the same version.

• Choosing a restore method

• Determine whether to perform a partial or full restore.

• Determine whether or not to perform a restore using incremental backup files.

• Prepare restore tools and devices available.

• Determining restore time

• Identify the point in time when the database server was terminated.

• Identify the point in time when the last backup was performed before database failure.

• Identify the point in time when the last commit was made before database failure.

Database Restore Procedure

The following is an example of a backup and restore process described in the order of time.

CUBRID 2008 R4.0 Help

456

• Performs a full backup of demodb which stopped running at 2008/8/14 04:30.

• Performs the first incremental backup of demodb running at 2008/8/14 10:00.

• Performs the first incremental backup of demodb running at 2008/8/14 15:00. Overwrites the first incremental

backup file in step 2.

• A system failure occurs at 2008/8/14 15:30, and the system administrator prepares the restore of demodb. Sets the

restore time as 15:25, which is the time when the last commit was made before database failure

• The system administrator prepares the full backup file created in Step 1 and the first incremental backup file created

in Step 3, restores the demodb database up to the point of 15:00, and then prepares the active and archive logs to

restore the database up to the point of 15:25.

Time Command Description

2008/8/14

04:25

cubrid server stop demodb Shuts down demodb.

2008/8/14

04:30

cubrid backupdb -S -D

/home/backup -l 0

demodb

Performs a full backup of demodb in offline mode and creates

backup files in the specified directory.

2008/8/14

05:00

cubrid server start demodb Starts demodb.

2008/8/14

10:00

cubrid backupdb -C -D

/home/backup -l 1

demodb

Performs the first incremental backup of demodb online and

creates backup files in the specified directory.

2008/8/14

15:00

cubrid backupdb -C -D

/home/backup -l 1

demodb

Performs the first incremental backup of demodb online and

creates backup files in the specified directory. Overwrites the

first incremental backup file created at 10:00.

2008/8/14

15:30

 A system failure occurs.

2008/8/14

15:40

cubrid restoredb -l 1 -d

08/14/2008:15:25:00

demodb

Restores demodb based on the full backup file, first incremental

backup file, active logs and archive logs. The database is

restored to the point of 15:25 by the full and first incremental

backup files, the active and archive logs.

Restoring Database to Different Server

The following shows how to back up demodb on server A and restore it on server B with the backed up files.

Backup and Restore Environments

Suppose that demodb is backed up in the /home/cubrid/db/demodb directory on server A and restored into

/home/cubrid/data/demodb on server B.

Administrator's Guide

457

1. Backing up on server A

Back up demodb on server A. If a backup has been performed earlier, you can perform an incremental backup for

data only that have changed since the last backup. The directory where the backup files are created, if not specified

in the -D option, is created by default in the location where the log volume is stored. The following is a backup

command with recommended options. For more information on the options, see Database Backup.

cubrid backupdb -z -t demodb

2. Editing the database location file on Server B

Unlike a general scenario where a backup and restore are performed on the same server, in a scenario where backup

files are restored using a different server, you need to add the location information on database restore in the

database location file (databases.txt) on server B. In the diagram above, it is supposed that demodb is restored in

the /home/cubrid/data/demodb directory on server B (hostname: pmlinux); edit the location information file

accordingly and create the directory on server B.

Put the database location information in one single line. Separate each item with a space. The line should be written

in [database name]. [data volume path] [host name] [log volume path] format; that is, write the location information

of demodb as follows:

demodb /home/cubrid/data/demodb pmlinux /home/cubrid/data/demodb

3. Transferring backup/log files to server B

For a restore, you must prepare a backup file (e.g. demodb_bk0v000) and a backup information file (e.g.

demodb_bkvinf) of the database to be backed up. To restore the entire data up to the point of the last commit, you

must prepare an active log (e.g. demodb_lgat) and an archive log (e.g. demodb_lgar000). Then, transfer the backup

information, active log, and archive log files created on server A to server B. That is, the backup information, active
log and archive log files must be located in a directory (e.g. /home/cubrid/temp) on server B.

4. Restoring the database on server B

Perform database restore by calling the cubrid restoredb utility from the directory into which the backup, backup

information, active log and archive log files which were transferred to server B had been stored. With the -u option,

demodb is restored in the directory path from the databases.txt file.

cubrid restoredb -u demodb

To call the cubrid restoredb utility from a different path, specify the directory path to the backup file by using the -
B option as follows:

cubrid restoredb -u -B /home/cubrid/temp demodb

CUBRID 2008 R4.0 Help

458

5. Backing up the restored database on server B

Once the restore of the target database is complete, run the database to check if it has been properly restored. For

stable management of the restored database, it is recommended to restore the database again on the server B
environment.

Administrator's Guide

459

CUBRID HA

Overview

CUBRID HA

High Availability (HA) refers to a feature to provide uninterrupted service in the event of hardware, software, or

network failure. This ability is a critical element in the network computing area where services should be provided 24/7.

An HA system consists of more than two server systems, each of which provides uninterrupted services, even when a

failure occurs in one of them.

CUBRID HA is an implementation of High Availability. The CUBRID HA feature ensures database synchronization

among multiple servers when providing service. When an unexpected failure occurs in the system which is operating

services, this feature minimizes the service down time by allowing the other system to carry out the service

automatically.

The CUBRID HA feature is in a shared-nothing structure. To synchronize data from an active server to a standby server,

the CUBRID HA feature executes the following two steps.

• Transaction log multiplexing: Replicates the transaction logs created by an active server to another node in real

time.

• Transaction log reflection: Analyzes replicated transaction logs in real time and reflects the data to a standby server.

The CUBRID HA feature executes the steps described above in order to always maintain data synchronization between

an active server and a standby server. For this reason, if an active server is not working properly because of a failure

occurring in the master node that had been providing service, the standby server of the slave node provides service

instead of the failed server. The CUBRID HA feature monitors the status of the system and CUBRID in real time. It

uses heartbeat messages to execute an automatic failover when a failure occurs.

CUBRID 2008 R4.0 Help

460

CUBRID HA Concept

Groups and Nodes

A node is a logical unit that makes up CUBRID HA. It can become one of the following nodes according to its status:

master node, slave node, or replica node.

• Master node : A node to be replicated. It provides all services which are read, write, etc. using an active server.

• Slave node : A node that has the same information as a master node. Changes made in the master node are

automatically reflected to the slave node. It provides the read service using a standby server, and a failover will

occur when the master node fails.

• Replica node : A node that has the same information as a master node. Changes made in the master node are

automatically reflected to the replica node. It provides the read service using a standby server, and no failover will

occur when the master node fails.

The CUBRID HA group consists of the nodes described above. You can configure the members of this group by using

the ha_node_list and ha_replica_list in the cubrid.conf file. Nodes in a group have the same information. They

exchange status checking messages periodically and a failover will occurs when the master node fails.

A node includes the master process (cub_master), the database server process (cub_server), the replication log copy

process (copylogdb), the replication log reflection process (applylogdb), etc.

Processes

A CUBRID HA node consists of one master process (cub_master), one or more database server processes (cub_server),

one or more replication log copy processes (copylogdb), and one or more replication log reflection processes

Administrator's Guide

461

(applylogdb). When a database is configured, database server processes, replication log copy processes, and replication

log reflection processes will start. Because copy and reflection of a replication log are executed by different processes,

the delay in replicating reflections does not affect the transaction that is being executed.

• Master process (cub_master) : Exchanges heartbeat messages to control the internal management processes of

CUBRID HA.

• Database server process (cub_server) : Provides services such as read or write to the user. For more information,

see Server.

• Replication log copy process (copylogdb) : Copies all transaction logs in a group. When the replication log copy

process requests a transaction log from the database server process of the target node, the database server process

returns the corresponding log. The location of copied transaction logs can be configured in the

REPL_LOG_HOME of cubrid-ha. Use cubrid applyinfo utility to verify the information of copied replication

logs. The replication log copy process has following three modes: SYNC, SEMISYNC, and ASYNC. You can

configure it with the LW_SYNC_MODE of cubrid-ha. For more information on these modes, see Multiplexing

Logs.

• Replication log reflection process (applylogdb) : Reflects the log that has been copied by the replication log copy

process to a node. The information of reflected replications is stored in the internal catalog (db_ha_apply_info).

You can use the cubrid applyinfo utility to verify this information.

CUBRID 2008 R4.0 Help

462

Servers

Here, the word "server" is a logical representation of database server processes. Depending on its status, a server can be

either an active server or a standby server.

• Active server : A server that belongs to a master node; the status is active. An active server provides all services,

including read, write, etc. to the user.

• Standby server: A standby server that belongs to a non-master node; the status is standby. A standby server

provides only the read service to the user.

The server status changes based on the status of the node. You can use the cubrid changemode utility to verify server

status. The maintenance mode exists for operational convenience and you can change it by using the cubrid

changemode utility.

• active : The status of servers that run on a master node is usually active. In this status, all services including read,

write, etc. are provided.

• standby : The status of servers that run on a slave node or a replica node is standby. In this status, only the read

service is provided.

• maintenanc : The status of servers can be manually changed for operational convenience is maintenance. In this

status, only a csql can access and no service is provided to the user.

Administrator's Guide

463

• to-be-active : The status in which a standby server will become active for reasons such as failover, etc. is to-be-

active. In this status, servers prepare to become active by reflecting transaction logs from the existing master node

to its own server.

• Other : This status internally used.

heartbeat Message

As a core element to provide the HA feature, it is a message exchanged among master, slave, and replica nodes to

monitor the status of other nodes. A master process periodically exchanges heartbeat messages with all other master

processes in the group. A heartbeat message is exchanged through the UDP port configured in the ha_port_id

parameter of cubrid.conf. The exchange interval of heartbeat messages is determined by an internally configured value.

When the master node fails, a failover occurs to a slave node.

Failover and Failback

A failover means that the highest priority slave node automatically becomes a new master node when the original

master node fails to provide services due to a failure. A master process calculates scores for all nodes in the CUBRID

HA group based on the collected information, promotes slave nodes to master modes when it is necessary, and then

notifies the management process of the changes it has made.

A failback means that the previously failed master node automatically becomes a master node back after the failure

node is restored. The CUBRID HA does not currently support this functionality.

If a heartbeat message fails to deliver, a failover will occur. For this reason, servers with unstable connection may

experience frequent failovers even though no actual failures occur. To prevent a failover from occurring in the situation

described above, configure ha_ping_ports. Configuring ha_ping_ports will send a ping message to a node specified in

CUBRID 2008 R4.0 Help

464

ha_ping_ports in order to verify whether the network is stable or not when a heartbeat message fails to deliver. For

more information on configuring ha_ping_ports, see cubrid_ha.conf.

Broker Mode

A broker can access a server with one of the following modes: Read Write, Read Only, Slave Only, or Preferred

Host Read Only. This configuration value is determined by a user.

A broker finds and connects to a suitable server by trying to establish a connection in the order of server connections;

this is, if it fails to establish a connection, it tries another connection to the next server defined until it reaches the last

server. If no connection is made even after trying all servers, the broker fails to connect to a server.

For more information on how to configure broker mode, see cubrid_broker.conf.

Read Write

A broker that provides read and write services. This broker is usually connected to an active server. If no active servers

exist, this broker will be connected to a standby server. For this reason, a Read Write broker can be temporarily

connected to a standby server.

When the broker temporarily establishes a connection to a standby server, it will disconnect itself from the standby

server at the end of every transaction so that it can attempt to find an active server at the beginning of the next

transaction. When it is connected to the standby server, only read service is available. Any write requests will result in a

server error.

The order of server connection is described below:

• The broker tries to establish a connection to an existing server connected (if exsits). The active status of the server

means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence. The active

status of the server means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence and connects

to the first available host.

Administrator's Guide

465

Read Only

A broker that provides the read service. This broker is connected to a standby server if possible. For this reason, a Read

Only broker can be connected to an active server temporarily.

Once it establishes a connection with an active server, it will maintain that connection even if a standby server exists. To

disconnect from the active server and reconnect to a standby server, you should execute the cubrid_broker reset

command. An error will occur when a Read Only broker receives a write request; therefore, only the read service will be

available even if it is connected to an active server.

The order of server connection is described below:

• The broker tries to establish a connection to an existing server connected (if exsits). The standby status of the server

means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence. The standby

status of the server means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence and connects

to the first available host.

CUBRID 2008 R4.0 Help

466

Slave Only

A broker that provides the read service. This broker can only be connected to a standby server. If no standby server

exists, no service will be provided.

The order of server connection is described below:

• The broker tries to establish a connection to an existing server connected (if exists). The standby status of the server

means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence. The standby

status of the server means the connection is complete.

Administrator's Guide

467

Preferred Host Read Only

A broker that provides the read service. This works in the same manner as the Read Only broker except for its server

connection order and server selecting criteria. The server connection order and server selecting criteria can be

configured in PREFERRED_HOSTS. For more information on configuring these, see cubrid_broker.conf.

The order of server connection is described below:

• The broker tries to establish a connection to the hosts specified in PREFERRED_HOSTS in a sequence and

connects to the first available host.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence. The standby

status of the server means the connection is complete.

• The broker tries to establish a connection to the hosts specified in the databases.txt file in a sequence and connects

to the first available host.

CUBRID HA Feature

Server Duplexing

Duplexing servers is building a system by configuring duplicate hardware equipment to provide the CUBRID HA

feature. This method will prevent any interruptions in a server in case of occurring a hardware failure.

Server failover

A broker defines server connection order and connects to a server according to the defined order. If the connected server

fails, the broker connects to the server with the next highest priority. This requires no processing in the application side.

CUBRID 2008 R4.0 Help

468

The actions taken when the broker connects to another server may differ according to the current mode of the broker.

For more information on the server connection order and configuring broker mode, see cubrid_broker.conf.

Broker Duplexing

As a 3-tier DBMS, CUBRID has middleware called the broker which relays applications and database servers. To

provide the HA feature, the broker also requires duplicate hardware equipment. This method will prevent any

interruptions in a broker in case of occurring a hardware failure.

Administrator's Guide

469

To use this feature, you must define multiple-broker connections in the connection URL of JDBC. For more information,

see JDBC Configuration.

Broker failover

JDBC tries to connect to a broker that has the highest priority in the connection URL. If a failure occurs, it tries to

connect to the next broker defined in the order of priority of the connection URL. This requires no processing in the

application side as it is processed within the JDBC driver.

Broker failback

If the failed broker is recovered after a failover, the connection to the existing broker is terminated and a new connection

is established with the recovered broker which has the highest priority. This requires no processing in the application

side as it is processed within the JDBC driver. Exeuction time of failback depends on the value configured in JDBC

connection URL. For more information, see JDBC Configuration.

Log Multiplexing

CUBRID HA keeps every node in the CUBRID HA group with the identical structure by copying and reflecting

transaction logs to all nodes included in the CUBRID HA group. As the log copy structure of CUBRID HA is a mutual

copy between the master and the slave nodes, it has a disadvantage of increasing the size of a log volume. However, it

has an advantage of flexibility in terms of configuration and failure handling, comparing to the chain-type copy

structure.

CUBRID 2008 R4.0 Help

470

The transaction log copy modes include SYNC, SEMISYNC, and ASYNC. This value can be configured by the user in

cubrid_ha.conf file.

SYNC Mode

When transactions are committed, the created transaction logs are copied to the slave node and stored as a file. The

transaction commit is complete after receiving a notice on its success. Although the time it takes to execute commit in

this mode may be longer than that in other modes, this is the safest method because the copied transaction logs are

always guaranteed to be reflected to the standby server even if a failover occurs.

SEMISYNC Mode

When transactions are committed, the created transaction logs are copied to the slave node and stored as a file according

to the internally optimized interval. The transaction commit is complete after receiving a notice of its success. The

committed transactions in this mode are guaranteed to be reflected to the slave node sometime in the future.

Because SEMISYNC mode does not always store replication logs as a file, the execution time of commit can decrease,

comparing to the SYNC mode. However, data synchronization between nodes may be delayed because replication logs

are not reflected until it is stored as a file.

ASYNC Mode

When transactions are committed, the created transaction logs are sent to the slave node and complete. Because whether

or not logs being stored in a slave node are not verified in this mode, it is not guaranteed that the committed transactions

are reflected to the slave node.

Although ASYNC mode provides a better performance as it has almost no delay when executing commit, there may be

data inconsistency in its nodes.

Administrator's Guide

471

Quick Start

Preparation

Structure Diagram

The diagram below aims to help users who are new to CUBRID HA, by explaining a simple procedure of the CUBRID

HA configuration.

Specifications

Linux and CUBRID 2008 version R2.2 or higher must be installed on the equipment to be used as the master and the

slave nodes.

Specifications of Configuring the CUBRID HA Equipment

 CUBRID Version OS

For master nodes CUBRID 2008 R2.2 or higher Linux

For slave nodes CUBRID 2008 R2.2 or higher Linux

Creating Databases and Configuring Servers

Creating Databases

Create databases to be included in CUBRID HA at each node of the CUBRID HA in the same manner. Modify the

options for database creation as needed.

[master]$ cd $CUBRID_DATABASES

[master]$ mkdir demodb

[master]$ cd demodb

[master]$ mkdir log

[master]$ cubrid createdb -L ./log demodb

Creating database with 5000 pages.

CUBRID 2008 R4.0

[master]$

Configuring cubrid.conf

Ensure ha_mode of $CUBRID/conf/cubrid.conf in every CUBRID HA node has the same value.

Enable CUBRID HA

ha_mode=on

CUBRID 2008 R4.0 Help

472

Configuring cubrid_ha.conf

Ensure ha_port_id, ha_node_list, and ha_db_list of $CUBRID/conf/cubrid_ha.conf in every

CUBRID HA node have the same value.

ha_port_id=12345

ha_node_list=cubrid@nodeA:nodeB

ha_db_list=testdb1:testdb2

Starting and Verifying CUBRID HA

Starting CUBRID HA

Execute the cubrid heartbeat start at each node in the CUBRID HA group. Note that the node executing cubrid

heartbeat start first will become a master node.

• Master node

[master]$ cubrid heartbeat start

• Slave node

[slave]$ cubrid heartbeat start

Verifying CUBRID HA Status

Execute cubrid heartbeat status at each node in the CUBRID HA group to verify its configuration status.

[master]$ cubrid heartbeat status

@ cubrid heartbeat list

 HA-Node Info (current master-node-name, state master)

 Node slave-node-name (priority 2, state slave)

 Node master-node-name (priority 1, state master)

 HA-Process Info (master 9289, state master)

 Applylogdb demodb@localhost:/home1/cubrid1/DB/demodb_slave.cub (pid 9423, state

registered)

 Copylogdb demodb@slave-node-name:/home1/cubrid1/DB/demodb_slave.cub (pid 9418, state

registered)

 Server demodb (pid 9306, state registered_and_active)

[master]$

Use the cubrid changemode utility at each node in the CUBRID HA group to verify the status of the server.

• Master node

[master]$ cubrid changemode demodb@localhost

The current HA running mode of the server 'demodb@localhost' is active.

• Slave node

[slave]$ cubrid changemode demodb@localhost

The current HA running mode of the server 'demodb@localhost' is standby.

Verifying the CUBRID HA Operation

Ensure the change has been correctly reflected to the standby server of the slave node after writing the active server of

the master node. Note that a primary key must exist when creating a table.

• Master node

[master]$ csql -u dba demodb@localhost -c "create table abc(a int, b int, c int,

primary key(a));"

[master]$ csql -u dba demodb@localhost -c "insert into abc values (1,1,1);"

[master]$

• Slave node

[slave]$ csql -u dba demodb@localhost -l -c "select * from abc;"

=== <Result of SELECT Command in Line 1> ===

<00001> a: 1

 b: 1

 c: 1

[slave]$

Administrator's Guide

473

Configuring and Starting Broker, and Verifying the Broker Status

Configuring the Broker

To provide normal service during a server failover, it is necessary to configure an available node in the db-host of

databases.txt. If the user does not specify it, the ACCESS_MODE of the broker will be configured to Read Write

mode by default.

#db-name vol-path db-host log-path

demodb /home1/cubrid1/DB/demodb nodeA:nodeB /home1/cubrid1/DB/demodb/log

Starting Broker and Verifying its Status

Because the broker is for the JDBC or CCI application to access, you do not need to start the broker for a simple

CUBRID HA test. You can start the broker with cubrid broker start and stop it with cubrid broker stop.

The following is an example of executing the broker from the master node.

[master]$ cubrid broker start

@ cubrid broker start

++ cubrid broker start: success

[master]$ cubrid broker status

@ cubrid broker status

% query_editor OFF

% demodb - cub_cas [9531,33000] /home1/cubrid1/CUBRID/log/broker//demodb.access

/home1/cubrid1/CUBRID/log/broker//demodb.err

 JOB QUEUE:0, AUTO_ADD_APPL_SERVER:ON, SQL_LOG_MODE:ALL:100000

 LONG_TRANSACTION_TIME:60.00, LONG_QUERY_TIME:60.00, SESSION_TIMEOUT:300

 KEEP_CONNECTION:AUTO, ACCESS_MODE:RW

ID PID QPS LQS PSIZE STATUS

 1 9532 0 0 48120 IDLE

Environment Configuration

cubrid.conf

The cubrid.conf file that has general information on configuring CUBRID is located in the $CUBRID/conf directory.

This section explains the cubrid.conf parameters used by CUBRID HA.

ha_mode

A parameter used to configure whether to use CUBRID HA feature. The default value is off.

• off : CUBIRD HA feature is not used.

• on : CUBRID HA feature is used. Failover is supported for its node.

• replica : CUBRID HA feature is used. Failover is not supported for its node.

The ha_mode parameter can be re-configured in the [@<database>] section; however, only off can be entered in the

case. An error will be outputted if a value other than off is entered in the [@<database>] section.

If ha_mode is on, the CUBRID HA values are configured by reading cubrid_ha.conf.

This parameter cannot be modified dynamically. To modify the value of this parameter, you must restart the

corresponding node.

log_max_archives

This parameter configures the minimum number of archive log files to be archived when the value of

media_failure_support is yes. The minimum value is 0, and the default is INT_MAX. The performance of the

parameter is affected by force_remove_log_archives.

CUBRID 2008 R4.0 Help

474

The existing archive log files to which the activated transaction refers or the archive log files of the master node not

reflected to the slave node in HA environment will not be deleted. For more information, see the following

force_remove_log_archives.

For more information about log_max_archives, see Logging-related Parameters.

force_remove_log_archives

It is recommended to always maintain the archive logs needed to perform the HA related process by setting a value for

force_remove_log_archives to no in order to implement the HA environment by setting a value for ha_mode to on.

If you set for force_remove_log_archives to yes, the archive log files which will be used in the HA related process can

be deleted, and this may lead to an inconsistency between replicated databases. If you want to maintain free disk space

even with this risk, set for force_remove_log_archives to yes.

For more information about force_remove_log_archives, see Logging-related Parameters.

max_clients

A parameter used to specify the maximum number of clients to be connected to a database server simultaneously. The

default is 50.

Because the replication log copy process and the replication log reflection process are started by default if CUBRID HA

feature is used, you must configure the value to twice the number of all nodes in the CUBRID HA group, except the

corresponding node. Furthermore, you must consider the case in which a client that was connected to another node at

the time of failover attempts to connect to that node.

Example

The following is an example of configuring cubrid.conf:

max_clients=200

ha_mode=on

log_max_archives=100

cubrid_ha.conf

The cubrid_ha.conf file that has generation information on CUBRID HA is located in the $CUBRID/conf directory.

ha_node_list

A parameter used to specify the group name to be used in the CUBRID HA group and the host name of member nodes

in which failover is supported. You can separate names of group and their member nodes by using an "at" mark (@).

The default is localhost@localhost.

The followings must be registered in /etc/hosts: 1) the host names of member nodes specified in this parameter, 2) the

host name of a node to be configured.

A node in which the ha_mode value is set to on must be specified in ha_node_list. The value of the ha_node_list of all

nodes in the CUBRID HA group must be identical. When a failover occurs, a master node is determined in the order

specified in the parameter.

This parameter can be modified dynamically. If you modify the value of this parameter, you must execute cubrid

heartbeat reload to apply the changes.

ha_replica_list

A parameter used to specify the group name to be used in the CUBRID HA group and the host name of member nodes

in which failover is not supported. You can separate names of group and their member nodes by using an "at" mark (@).

The default is NULL.

The group name must be identical to the name specified in ha_node_list.

Administrator's Guide

475

The followings must be registered in /etc/hosts: 1) the host names of member nodes specified in this parameter, 2) the

host name of a node to be configured.

A node in which the ha_mode value is set to replica must be specified in ha_replica_list. The ha_node_list values of

all nodes in the CUBRID HA group must be identical.

This parameter can be modified dynamically. If you modify the value of this parameter, you must execute cubrid

heartbeat reload to apply the changes.

ha_port_id

A parameter used to specify the UDP port number; the UDP port is used to detect failure when exchanging heartbeat

messages. The default is 59901.

If a firewall exists in the service environment, the firewall must be configured to allow the configured port to pass

through it.

ha_ping_hosts

A parameter used to specify the host which verifies whether or not a failover occurs due to unstable network when a

failover has started in a slave node. The default is NULL.

Configuring this parameter can prevent failovers from occurring due to network instability. You can specify multiple

hosts by using a colon (:).

ha_copy_sync_mode

A parameter used to specify the mode of storing the transaction log copy. The default is SYNC.

The value can be one of the followings: SYNC, SEMISYNC, or ASYNC. The number of values must be the same as

the number of nodes specified in ha_node_list. They must be ordered by the specified value. You can specify multiple

nodes by using a colon (:)

For more information, see Multiplexing Logs.

ha_copy_log_base

A parameter used to specify the location of storing the transaction log copy. The default is $CUBRID_DATABASES.

For more information, see Multiplexing Logs.

ha_db_list

A parameter used to specify the name of the database that will run in CUBRID HA mode. The default is NULL. You

can specify multiple databases by using a colon (:).

ha_apply_max_mem_size

A parameter to used to specify the value of maximum memory that the replication log reflection process of CUBRID

HA can use. The default is 500.

Example

The following is an example of configuring cubrid_ha.conf:

[common]

ha_node_list=foo@apple:banana

ha_db_list=testdb

ha_copy_sync_mode=sync:semisync

ha_apply_max_mem_size=1000

cubrid_broker.conf

The cubrid_broker.conf file that has general information on configuring CUBRID broker is located in the

$CUBRID/conf directory. This section explains the parameters of cubrid_broker.conf that are used by CUBRID HA.

CUBRID 2008 R4.0 Help

476

ACCESS_MODE

A parameter used to specify the mode of a broker. The default is RW.

Its value can be one of the followings: RW (Read Write), RO (Read Only), SO (Slave Only), or PHRO (Preferred Host

Read Only). For more information, see Broker mode.

PREFERRED_HOSTS

A parameter used in order to configure the broker mode to Preferred Host Read Only. The default is NULL.

You can specify multiple nodes by using a colon (:).

Example

The following is an example of configuring cubrid_broker.conf.

[%testdb_broker]

SERVICE =ON

BROKER_PORT =33000

MIN_NUM_APPL_SERVER =5

MAX_NUM_APPL_SERVER =40

APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =ON

TIME_TO_KILL =120

SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO

ACCESS_MODE =RW

PREFERRED_HOSTS =nodeA:nodeB:nodeC

databases.txt

The databases.txt file that has information on servers to be connected by a broker and their order is located in the

$CUBRID_DATABASES directory; the information can be configured by using db_hosts. You can specify multiple

nodes by using a colon (:).

The following is an example of configuring databases.txt:

#db-name vol-path db-host log-path

tdb01 /home/cubrid/DB/tdb01 masterdb.cub:slavedb.cub /home/cubrid/DB/tdb01/log

tdb02 /home/cubrid/DB/tdb02 masterdb.cub:slavedb.cub /home/cubrid/DB/tdb02/log

JDBC Configuration

To use the CUBRID HA feature in JDBC, you must specify the connection information of another broker to be

connected when a failure occurs in the connection URL. The attributes specified for CUBRID HA include althosts

which is the information of more than one broker node to be connected when a failure occurs and rctime which is the

reconnection interval after the recovery of a failed broker. For more information, see Configuring Connection.

The following is an example of configuring JDBC:

Connection connection =

DriverManager.getConnection("jdbc:cubrid:primary_broker:33000:testdb01:::?charset=utf-

8&althosts=secondary_broker:45011&rctime=30", "dba", "");

CCI Configuration

To use the CUBRID HA feature in CCI, you must connect it to the broker by using cci_connect_with_url, which is used

to specify the connection information of the failover broker in the connection URL. The attributes specified for

CUBRID HA include althosts which is the information of more than one broker node to be connected when a failure

occurs and rctime which is the reconnection interval after the recovery of a failed broker.

The following is an example of configuring CCI.

Administrator's Guide

477

con = cci_connect_with_url

("cci:cubrid:primary_broker:33000:tdb01:::?althosts=secondary_broker:45011&rctime=30",

"dba", NULL);

if (con < 0)

{

 printf ("cannot connect to database\n");

 return 1;

}

Running and Monitoring

Utilities of cubrid heartbeat

start

This utility is used to start all components of CUBRID HA in the node (database server process, replication log copy

process, replication log reflection process).

Note that a master node or a slave node is determined based on the execution order of cubrid heartbeat start.

How to execute the command is as shown below.

$ cubrid heartbeat start

$

cubrid server start only starts cub_server process of the database, regardless of HA mode configuration. If you want to

start all HA related processes, you can execute cubrid heartbeat start.

stop

This utility is used to stop all components of CUBRID HA in the node (database server process, replication log copy

process, replication log reflection process). The node that executes this command stops and a failover occurs to the next

slave node according to the CUBRID HA configuration.

How to use this utility is as shown below.

$ cubrid heartbeat stop

$

cubrid server stop only starts cub_server process of the database, regardless of HA mode configuration. The database

does not restart, and failover does not occur. If you want to stop all HA related processes, you can execute cubrid

heartbeat stop.

reload

This utility is used to retrieve the CUBRID HA information again, and it starts or stops the CUBRID HA components

according to new CUBRID HA configuration. You can modify the information of ha_node_list and ha_replica_list. If

an error occurs during the command execution, the node will stop.

How to use this utility is as shown below.

$ cubrid heartbeat reload

$

deact

This utility is used to exclude the node from the CUBRID HA group. A node in which deact is executed will be

excluded from the CUBRID HA group and the CUBRID HA components will stop. The status of this node is outputted

as unknown when you verify it by using cubrid heartbeat status. You can include the node to the CUBRID HA group

back by executing act.

It is recommended that this command be used only when it is unavoidable.

How to use this utility is as shown below.

$ cubrid heartbeat deact

$

CUBRID 2008 R4.0 Help

478

act

This utility is used to includes nodes back in the CUBRID HA group, and it starts the CUBRID HA components.

It is recommended that this command only be used when it is unavoidable.

How to use this utility is as shown below.

$ cubrid heartbeat act

$

status

This utility is used to output the information of CUBRID HA group and CUBRID HA components.

How to use this utility is as shown below.

$ cubrid heartbeat status

@ cubrid heartbeat list

 HA-Node Info (current slaved.cub, state slave)

 Node slavedb.cub (priority 2, state slave)

 Node masterdb.cub (priority 1, state master)

 HA-Process Info (master 2143, state slave)

 Applylogdb tdb01@localhost:/home/cubrid/DB/tdb01_slavedb.cub (pid 2510, state

registered)

 Copylogdb tdb01@masterdb.cub:/home/cubrid/DB/tdb01_masterdb.cub (pid 2505, state

registered)

 Server tdb01 (pid 2393, state registered)

$

Utilities of cubrid service

If you register heartbeat to CUBRID service, you can use the utilities of cubrid service to start, stop or check all the

related processes at once. The processes specified by service parameter in [service] section in cubrid.conf file are

registered to CUBRID service. If this parameter includes heartbeat, you can start/stop all the service processes and the

HA related processes by using cubrid service start/stop command.

How to configure cubrid.conf file is shown below.

cubrid.conf

...

[service]

...

service=broker,heartbeat

...

[common]

...

ha_mode=on

cubrid applyinfo

Description

This utility is used to monitor the replication status of CUBRID HA.

Syntax

cubrid applyinfo [option] <database-name>

• database-name : Specifies the name of a server to monitor. A node name is not included.

Option

Option Default Description

-r none Configures the name of a target node in which transaction logs are copied. Using

Administrator's Guide

479

this option will output the information of active logs (Active Info.) of a target node.

-a Outputs the information of replication reflection of a node executing cubrid

applyinfo. The -L option is required to use this option.

-L none Configures the location of transaction logs copied from the other node. Using this

option will output the information of transaction logs copied (Copied Active Info.)

from the other node.

-p 0 Outputs the information of a specific page in the copied logs. This is available only

when the -L option is enabled.

-v Outputs detailed information.

Example

$ cubrid applyinfo -L /home/cubrid/DB/tdb01_masterdb.cub -r master_node_name -a tdb01

 *** Applied Info. ***

Committed page : 1913 | 2904

Insert count : 645

Update count : 0

Delete count : 0

Schema count : 60

Commit count : 15

Fail count : 0

 *** Copied Active Info. ***

DB name : tdb01

DB creation time : 11:28:00.000 AM 12/17/2010 (1292552880)

EOF LSA : 1913 | 2976

Append LSA : 1913 | 2976

HA server state : active

 *** Active Info. ***

DB name : tdb01

DB creation time : 11:28:00.000 AM 12/17/2010 (1292552880)

EOF LSA : 1913 | 2976

Append LSA : 1913 | 2976

HA server state : active

$

• Applied Info.

• Committed page : The information of committed pageid and offset of a transaction reflected last through replication

log reflection process. This information is internally used; which means that replication reflection will be delayed if

a big difference exists between the EOF LSA value of "Copied Active Info." and this value.

• Insert Count : The number of Insert queries reflected through replication log reflection process.

• Update Count : The number of Update queries reflected through replication log reflection process.

• Delete Count : The number of Delete queries reflected through replication log reflection process.

• Schema Count : The number of DDL statements reflected through replication log reflection process.

• Commit Count : The number of commits reflected through replication log reflection process.

• Fail Count : The number of DML and DDL statements in which log reflection through replication log reflection

process fails.

• Copied Active Info.

• DB name : Database name of a database server process to which replication log copy process copies replication

logs

• DB creation time : The creation time of a database copied through replication log copy process

• EOF LSA : The last information of pageid and offset of a database server process replication log copied through

replication log copy process. There will be a delay in replication log copy process as much as difference with the

EOF LSA value of "Active Info." and with the Append LSA value of "Copied Active Info."

• Append LSA : The last information of pageid and offset of a log received from the database server process through

replication log copy process. This value can be less than or equal to EOF LSA. There will be a delay in replication

log copy process as much as difference between the EOF LSA value of "Copied Active Info." and this value.

• HA server state : Status of a database server process which replication log copy process receives replication logs

from. For more information on status, see Server.

CUBRID 2008 R4.0 Help

480

• Active Info.

• DB name : Database name of a database server process of a node that is configured in the -r option.

• DB creation time : Database creation time of a node that is configured in the -r option.

• EOF LSA : The last information of pageid and offset of a database server process replication log of a node that is

configured in the -r option. There will be a delay in replication log copy process as much as difference between the

EOF LSA value of "Copied Active Info." and this value.

• Append LSA : The last information of pageid and offset of a replication log which is written in a database server

process of a node that is configured in the -r option.

• HA server state : Status of a database server process of a node that is configured in the -r option.

cubrid changemode

Description

This utility is used to check and change the server status of CUBRID HA.

Syntax

cubrid changemode [option] <database-name>

• database-name : Specifies the name of a server to monitor and the node name; separate them by using @.

Option

Option Default Description

-m none Changes the server status. You can enter one of the followings: standby,

maintenance, or active.

-f Configures whether or not to forcibly change the server status. This option must be

configured if you want to change the server status from to-be-active to active. If it

is not configured, the status will not be changed to active.

Forcibly change may cause replication inconsistency; so it is not

recommended.

Status Changeable Map

This table shows changeable modes depending on current status. However, replication inconsistency may occur if the

status of the current server is changed from to-be-active to active. Therefore, it is recommended that only a user who is

familiar with this condition uses this option.

 Future Status

active standby maintenance

Current

Status

standby X O O

to-be-standby X X X

active O X X

to-be-active O X X

maintenance X O O

Note When the server status is to-be-active, forcibly change may cause replication inconsistency. It is not

recommended if you are not skilled enough.

Example

The following is an example of changing the testdb01 server status in a localhost node to maintenance.

$ cubrid changemode -m maintenance tdb01@localhost

Administrator's Guide

481

The server `tdb01@localhost''s current HA running mode is maintenance.

$

The following is an example of retrieving the testdb01 server status in the a localhost node.

$ cubrid changemode tdb01@localhost

The server `tdb01@localhost''s current HA running mode is active.

$

Monitoring CUBRID Manager HA

CUBRID Manager is a dedicated CUBRID database management tool that provides the CUBRID database management

and query features in a GUI environment. CUBRID Manager provides the HA dashboard, which shows the relationship

diagram for the CUBRID HA group and server status. For more information, see CUBRID Manager manual.

Configuration

Overview

There are four possible structures for CUBRID HA: HA basic structure, multiple-slave node structure, load balancing

structure, and multiple-standby server structure. In the table below, M stands for a master node, S for a slave node, and

R for a replica node.

Structure Node structure (M:S:R) Characteristic

Basic Structure 1:1:0 The most basic structure of CUBRID HA consists of one

master node and one slave node and provides availability

which is a unique feature of CUBRID HA.

Multiple-Slave

Node Structure

1:N:0 This is a structure in which availability is increased by

several slave nodes. However, note that there may be a

situation in which data is inconsistent in the CUBRID HA

group when multiple failures occur.

Load

Balancing

Structure

1:1:N Several replica nodes are added in the basic structure. Read

service load can be distributed, and the HA load is reduced,

comparing to a multiple-slave node structure.

Note that replica nodes do not failover.

Multiple-

Standby Server

Structure

1:1:0 Basically, this structure is the same as the basic structure.

However, several slave nodes are installed on a single

physical server.

Basic Structure

The most basic structure of CUBRID HA consists of one master node and one slave node.

As the basic structure focusing on the unique feature of CUBRID HA that provides an uninterrupted service during a

failover, this structure requires a small amount of resources on a small scale service. Because there are only one master

node and one slave node for service, the read load may be concentrated to these two nodes during read-heavy operations.

CUBRID 2008 R4.0 Help

482

An Example of Node Configuration

You can configure each node in the basic structure of HA as shown below:

• nodeA (master node)

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=12345

ha_node_list=cubrid@nodeA:nodeB

ha_db_list=testdb1:testdb2

• nodeB (slave node): Configure this node in the same manner as nodeA.

For the databases.txt file of a broker node, it is necessary to configure the list of hosts configured as HA in db-host

according to their priority. The following is an example of the databases.txt file:

#db-name vol-path db-host log-path

testdb1 /home/cubrid/DB/testdb1 nodeA:nodeB /home/cubrid/DB/testdb1/log

Multiple-Slave Node Structure

In multiple-slave node structure, there is one master node and several slave nodes to improve the service availability of

CUBRID.

Because replication log copy process and replication log reflection process are running at all nodes in the CUBRID HA

group, a load of copying replication log occurs. Therefore, all nodes in the CUBRID HA group have high network and

disk usage.

Administrator's Guide

483

Because there are many nodes with HA enabled, read and write services never fail as long as a single node is alive.

In the multiple-slave node structure, the node becoming a master node when failover occurs is determined by the order

specified in ha_node_list. If the value of ha_node_list is node1:node2:node3 and the master node is node1, node2 will

become a new master node when node1 fails.

An Example of Node Configuration

You can configure each node in the basic structure of HA as shown below:

• node A (master node)

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=12345

ha_node_list=cubrid@nodeA:nodeB:nodeC

ha_db_list=testdb1:testdb2

• node B (slave node): Configure this node in the same manner as nodeA.

• node C (slave node): Configure this node in the same manner as nodeA.

For the databases.txt file of a broker node, it is necessary to configure the list of hosts configured as HA in db-host

according to their priority. The following is an example of the databases.txt file:

#db-name vol-path db-host log-path

testdb1 /home/cubrid/DB/testdb1 nodeA:nodeB:nodeC /home/cubrid/DB/testdb1/log

Caution

The data in the CUBRID HA group may lose integrity when there are multiple failures in this structure.

• In a situation where a failover occurs in the first slave node while replication in the second slave node is being

delayed due to restart

• In a situation where a failover re-occurs before replication reflection of a new master node is not complete due to

frequent failover

CUBRID 2008 R4.0 Help

484

In addition, if the mode of replication log copy process is ASYNC, the data in the CUBRID HA group may lose

integrity.

If the data in the CUBRID HA group loses integrity for any of the reasons above, you can fix it by using Rebuilding

Replications.

Load Balancing Structure

The load balancing structure increases the availability of the CUBRID servie by placing several nodes in the HA

configuration (one master node and one slave node) and distributes read-load.

Because the replica nodes receive replication logs from the nodes in the HA configuration and maintain the same data,

and because the nodes in the HA configuration do not receive replication logs from the replica nodes, its network and

disk usage rate is lower than that of the multiple-slave structure.

Because replica nodes are not included in the HA structure, they provide read service without failover, even when all

other nodes in the HA structure fail.

An Example of Node Configuration

You can configure each node in the basic structure of HA as shown below:

• node A (master node)

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=12345

ha_node_list=cubrid@nodeA:nodeB

ha_replica_list=cubrid@nodeC:nodeD

ha_db_list=testdb1:testdb2

Administrator's Guide

485

• node B (slave node): Configure this node in the same manner as nodeA.

• node C (replica node)

• Configure the ha_mode of the cubrid.conf file to replica.

ha_mode=replica

• You can configure the cubrid_ha.conf file in the same manner as nodeA.

• node D (replica node): Configure this node in the same manner as nodeC.

You must enter the list of DB server hosts in the order so that each broker can be connected appropriate HA or load

balancing server in the databases.txt file of a broker node. The following is an example of the databases.txt file:

#db-name vol-path db-host log-path

testdb1 /home/cubrid/DB/testdb1 nodeA:nodeB /home/cubrid/DB/testdb1/log

testdb2 /home/cubrid/DB/testdb2 nodeC:nodeD /home/cubrid/DB/testdb2/log

Caution

The data in the CUBRID HA group may lose integrity when there are multiple failures in this structure.

• In a situation where a failover occurs in the first slave node while replication in the second slave node is being

delayed due to restart

• In a situation where a failover re-occurs before replication reflection of a new master node is not complete due to

frequent failover

In addition, if the mode of replication log copy process is ASYNC, the data in the CUBRID HA group may lose

integrity.

If the data in the CUBRID HA group loses integrity for any of the reasons above, you can fix it by using Rebuilding

Replications.

Multiple-Standby Server Structure

Although its node structure has a single master node and a single slave node, many slave nodes from different services

are physically configured in a single server.

This structure is for very small services in which the read load of slave nodes are light. It is strictly for the availability of

the CUBRID service. For this reason, when a master node that failed after a failover has been restored, the load must be

moved back to the original master node to minimize the load of the server with multiple-slave nodes.

CUBRID 2008 R4.0 Help

486

An Example of Node Configuration

You can configure each node in the basic structure of HA as shown below:

• node AM, node AS: Configure node AM and node AS in the same manner.

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=10000

ha_node_list=cubridA@Host1:Host5

ha_db_list=testdbA1:testdbA2

• node BM, node BS: Configure node BM and node BS in the same manner.

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=10001

ha_node_list=cubridB@Host2:Host5

ha_db_list=testdbB1:testdbB2

• node CM, node CS: Configure node CM and node CS in the same manner.

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=10002

Administrator's Guide

487

ha_node_list=cubridC@Host3:Host5

ha_db_list=testdbC1:testdbC2

• node DM, node DS: Configure node DM and node DS in the same manner.

• Configure the ha_mode of the cubrid.conf file to on.

ha_mode=on

• The following is an example of configuring cubrid_ha.conf:

ha_port_id=10003

ha_node_list=cubridD@Host4:Host5

ha_db_list=testdbD1:testdbD2

Constraints

Supported Platform

Currently, CUBRID HA feature is supported only by Linux. All nodes within a CUBRID HA group must be configured

with the same platform.

Table Primary Key

CUBRID HA synchronizes data among nodes with the following method (as known as transaction log shipping): First,

it replicates the primary key-based replication logs generated from the server of a master node to a slave node. Second,

it reflects the replication logs.

If data of the specific table within a CUBRID HA group is not synchronized, you should check whether the appropriate

primary key has specified for the table.

Table Trigger and Java Stored Procedure

Using triggers and java stored procedures in CUBRID HA can cause duplicate execution because triggers and java

stored procedures executed in a master node will be executed in a slave node again. This may cause data inconsistency

among nodes within a CUBRID HA group.

It is not recommended to use triggers and java stored procedures in CUBRID HA.

Method and CUBRID Manager

CUBRID HA synchronizes data among nodes within a CUBRID HA group based on replication logs. Therefore, using

method that does not generate replication logs or configuring NOT NULL through CUBRID Manager may cause data

inconsistency among nodes within a CUBRID HA group.

Stand-Alone Mode

The replication logs are not generated as for tasks performed in stand-alone mode. For this reason, data inconsistency

among nodes in a CUBRID HA group may occur when performing tasks in stand-alone mode.

Serial Cache

To enhance performance, a serial cache does not access Heap and does not generate replication logs when retrieving or

updating serial information. Therefore, if you use a serial cache, the current values of serial caches will be inconsistent

among the nodes in a CUBRID HA group.

cubrid backupdb -r

This command is used to back up a specified database. If the –r option is used, logs that are not required for recovery

will be deleted. This deletion may result in data inconsistency among nodes in a HA group. Therefore, you must not use

the -r option.

CUBRID 2008 R4.0 Help

488

INCR/DECR functions

The click counter functions INCR/DECR should not be used in slave nodes of HA. If you use these functions in slave

nodes, data inconsistency may occur between slave nodes and master nodes.

Error Messages

Replication Log Copy Process

The error messages from the replication log copy process are stored in $CUBRID/log/db-name@remote-node-

name_copylogdb.err. The severity of error messages found in the replication log copy process are as follows: fatal,

error, and notification. The default severity is error. Therefore, to store notification error messages, it is necessary to

change the value of error_log_level in cubrid.conf. For more information, see Error Message-Related Parameters.

Initialization Error Message

The error messages that may be stored in the initialization stage of replication log copy process are as follows:

Error Code Error Name Severity Description Solution

10 ER_IO_MOUNT_FAIL error Opening a

replication log

file has failed.

Check if there is a

replication log. For the

location of replicated logs,

see Default Environment

Configuration.

78 ER_LOG_READ fatal Reading a

replication log

has failed.

Check the replication log by

using the cubrid applyinfo

utility.

81 ER_LOG_PAGE_CORRUPTED fatal A replication log

page error, in

which the

replication log

copy process has

been copied from

the connected

database server

process.

Check the error log of the

database server process to

which the replication log

copy process is connected.

This error log can be found

in $CUBRID/log/server.

1039 ER_HA_LW_STARTED error The replication

log copy process

has been

successfully

initialized and

started.

No action is required,

because this error message

has been stored to display

the starting information of

the replication log copy

process.

Error messages that have

been displayed after the start

of the replication log copy

process and before this error

message is displayed can be

ignored, as they can be

displayed in normal

conditions.

Replication Log Request and Reception Error Messages

The replication log copy process requests a replication log from the connected database server, and receives the

corresponding replication log. The error messages that may occur during this process are as follows:

Error Code Error Name Severity Description Solution

89 ER_LOG_DOESNT_CORRESPOND_TO_DATABASE error The

previously

Check the

information

Administrator's Guide

489

replicated

log and the

log to be

replicated

do not

match.

of the

database

server/host

to which the

replication

log copy

process is

connected.

If you need

to change

the database

server/host

information,

reinitialize

it by

deleting the

existing

replication

log, and

then

restarting.

186 ER_NET_SERVER_DATA_RECEIVE error Incorrect

information

has been

received

from the

database

server to

which the

replication

log copy

process is

connected.

This is

recovered

internally.

199 ER_NET_SERVER_CRASHED error The

connection

to the

database

server has

been

terminated.

This is

recovered

internally.

Replication Log Writing Error Messages

The replication log copy process copies the replication log (ha_copy_base) that was received from the connected

database server process to the location specified in cubrid_ha.conf. The error messages that may occur during this

process are as follows:

Error Code Error Name Severity Description Solution

10 ER_IO_MOUNT_FAIL error Opening a replication

log file has failed.

Check if the

replication log

exists.

79 ER_LOG_WRITE fatal Writing a replication

log has failed.

This is recovered

internally.

80 ER_IO_WRITE_OUT_OF_SPACE fatal Writing a replication

log has failed due to

insufficient file system

space.

Check if there is

sufficient space left

in the disk

partition.

CUBRID 2008 R4.0 Help

490

Replication Log Archive Error Messages

The replication log copy process periodically archives the replication log that has been received from the connected

database server process. The error messages that may occur during this process are as follows:

Error Code Error Name Severity Description Solution

78 ER_LOG_READ fatal Reading a

replication log

has failed

during

archiving.

Check the

replication log by

using the cubrid

applyinfo utility.

79 ER_LOG_WRITE fatal Writing the

archive log

has failed.

This is recovered

internally.

81 ER_LOG_PAGE_CORRUPTED fatal A replication

log error has

been found

during

archiving.

Check the

replication log by

using the cubrid

applyinfo utility.

98 ER_LOG_CREATE_LOGARCHIVE_FAIL fatal Creating the

archive log

file has failed.

Check if there is

sufficient space

left in the disk

partition.

974 ER_LOG_ARCHIVE_CREATED notification Archive log

file

information

No action is

required, because

this error

message is

recorded for the

log information

of the newly

created archive.

Stop and Restart Error Message

The error messages that may occur at the beginning and the end of the replication log copy process are as follows:

Error Code Error Name Severity Description Solution

1037 ER_HA_LW_STOPPED_BY_SIGNAL error The copylogdb process

has been terminated by a

specific signal.

This is

recovered

internally.

Replication Log Reflection Process

The error messages from the replication log reflection process are stored in $CUBRID/log/db-name@local-node-

name_applylogdb_db-name_remote-node-name.err. The severity of error messages found in the replication log

reflection process can be as follows: fatal, error, and notification. The default severity is error. Therefore, to store

notification error messages, it is necessary to change the value of error_log_level in cubrid.conf. For more information,

see Error Message-Related Parameters.

Initialization Error Message

The error messages that may be stored in the initialization stage of the replication log reflection process are as follows:

Error Code Error Name Severity Description Solution

10 ER_IO_MOUNT_FAIL error An applylogdb that is

trying to reflect the

same replica log is

Check if there is a applylogdb

process that is trying to reflect

the same replication log.

Administrator's Guide

491

already running.

1038 ER_HA_LA_STARTED error Starts normally once

the initialization of

applylogdb is

successful.

No action is required, because

this error message has been

stored to display the starting

information of the replication

log reflection process.

Log Analysis Error Message

The replication log reflection process reads, analyzes, and reflects the replication logs that have been copied by the

replication log copy process. The error messages that may occur during a replication log analysis are as follows:

Error Code Error Name Severity Description Solution

13 ER_IO_READ error Reading the

log page to be

reflected has

failed.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

17 ER_PB_BAD_PAGEID fatal Trying to read

a log page that

does not exist

in the

replication log

Check the

replication

log by

using the

cubrid

applyinfo

utility.

81 ER_LOG_PAGE_CORRUPTED fatal There is an

inconsistency

between an old

log under

replication

reflection and

the current log,

or there is a

replication log

record error.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

82 ER_LOG_MOUNT_FAIL error No replication

log file

Check if

there is a

replication

log.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

97 ER_LOG_NOTIN_ARCHIVE error The log page

does not exist

in the

replication log.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

897 ER_IO_LZO_DECOMPRESS_FAIL error Decompressing

the log record

has failed.

Check the

replication

log by

using the

CUBRID 2008 R4.0 Help

492

cubrid

applyinfo

utility.

1028 ER_HA_LA_UNEXPECTED_EOF_IN_ARCHIVE_LOG error An incorrect

log record

exists in the

archive log.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

1029 ER_HA_LA_INVALID_REPL_LOG_PAGEID_OFFSET error An incorrect

log record has

been included.

Check the

replication

log by

using the

cubrid

applyinfo

utility.

1030 ER_HA_LA_INVALID_REPL_LOG_RECORD error A log record

header error

Check the

replication

log by

using the

cubrid

applyinfo

utility.

Replication Log Reflection Error Message

The replication log reflection process reads, analyzes, and reflects the replication logs that have been copied by the

replication log copy process. The error messages that may occur when reflecting a replication log analysis are as follows:

Error Code Error Name Severity Description Solution

72 ER_LK_UNILATERALLY_ABORTED error Replication

reflection

has been

failed due

to deadlock,

etc.

This is

recovered

internally.

111 ER_TM_SERVER_DOWN_UNILATERALLY_ABORTED error Replication

reflection is

failed

because the

database

server

process for

replication

reflection

has been

terminated,

or its mode

has been

changed.

This is

recovered

internally.

191 ER_NET_CANT_CONNECT_SERVER error The

connection

to the

database

server

process for

replication

reflection

has been

This is

recovered

internally.

Administrator's Guide

493

terminated.

195 ER_NET_SERVER_COMM_ERROR error The

connection

to the

database

server

process for

replication

reflection

has been

terminated.

This is

recovered

internally.

224 ER_OBJ_NO_CONNECT error The

connection

to the

database

server

process for

replication

reflection

has been

terminated.

This is

recovered

internally.

1027 ER_HA_LA_FAILED_TO_CHANGE_STATE error The status

change of

replication

reflection

has been

failed.

This is

recovered

internally.

1031 ER_HA_LA_FAILED_TO_APPLY_SCHEMA error SCHEMA

replication

reflection

has been

failed.

Check the

consistency

of the

replica. If it

is

inconsistent,

reconfigure

the HA

replication.

1032 ER_HA_LA_FAILED_TO_APPLY_INSERT error INSERT

replication

reflection

has been

failed.

Check the

consistency

of the

replica. If it

is

inconsistent,

reconfigure

the HA

replication.

1033 ER_HA_LA_FAILED_TO_APPLY_UPDATE error UPDATE

replication

reflection

has been

failed.

Check the

consistency

of the

replica. If it

is

inconsistent,

reconfigure

the HA

replication.

1034 ER_HA_LA_FAILED_TO_APPLY_DELETE error DELETE

replication

reflection

has been

failed.

Check the

consistency

of the

replica. If it

is

CUBRID 2008 R4.0 Help

494

inconsistent,

reconfigure

the HA

replication.

1040 ER_HA_GENERIC_ERROR notification Change the

last record

of the

archive log

or

replication

reflection

status.

No action is

required,

because this

error

message is

stored to

provide

general

information.

Stop and Restart Error Message

The error messages that may occur at the beginning and the end of the replication log reflection process are as follows:

Error Code Error Name Severity Description Solution

1035 ER_HA_LA_EXCEED_MAX_MEM_SIZE error The replication log

reflection process has

been restarted due to

reaching the maximum

memory size limit.

This is

recovered

internally.

1036 ER_HA_LA_STOPPED_BY_SIGNAL error The replication log

reflection process has

been terminated by a

specified signal.

This is

recovered

internally.

Operation Scenario

Rebuilding Replications

Replication rebuilding is required in CUBRID HA when data in the CUBRID HA group is inconsistent because of

multiple failures in multiple-slave node structure, or because of a generic error. Rebuliding replications in CUBRID HA

is done using a script.

For rebuilding replications to happen, the following environment must be the same in the slave node and in the master

node.

• CUBRID version

• Environmental variable ($CUBRID, $CUBRID_DATABASES, $LD_LIBRARY_PATH, $PATH)

• Database volume, log and replication log path

ha_make_slavedb.sh script

To rebuild replications, use the ha_make_slavedb.sh. This script is located in $CUBRID/share/script/ha. Before

rebuilding replications, the following items must be configured for the environment of the user.

• master_host: The host name of the master node during replication rebuilding. It should be registered in /etc/hosts.

• db_name: Specifies the name of the database to be replicated and rebuilt.

• repl_log_home: Specifies the home directory of the replication log of the master node. It is usually the same as

$CUBRID_DATABASES.

The following are optional items:

• dba_password: If the CUBRID dba account is password protected, sets the password.

• backup_dest_path: When executing backupdb at the master node, configures the path in which the backup

volume will be created.

• backup_option: Configures necessary options when executing backupdb at the master node.

Administrator's Guide

495

• restore_option: Configures necessary options when executing a restore at the slave node in which the replication

will be rebuilt.

• scp_option: An option that is used to configure the scp option to copy the backup volume of the master node to the

slave node. Its default value is 16M so it will not cause network overload in the master node.

Once the script has been configured, execute the ha_make_slavedb.sh script at the slave node in which a replication

will be rebuilt. When the script is executed, replication rebuilding occurs in a number of phases. To move to the next

stage, the user must enter an appropriate value. The following are the descriptions of available values.

• yes: Continue.

• no: Do not move forward with any stages from now on.

• skip: Skip to the next stage. This input value is used to ignore a stage that has not necessarily been executed when

retrying the script after it has failed.

Constraints

• Online backup of a master node: Existing backups of master or the slave nodes cannot be used for replication

rebuilding. You must use the online backup of the master node that is automatically created by the script.

• Error while executing the replication rebuilding script: The replication rebuilding script is not automatically

rolled back to its previous stage, even when an error occurs during the execution. This is because the slave node

cannot provide normal service before the replication rebuilding script is executed. To return to the stage in which

the replication rebuilding script had not been executed, you must back up the db_ha_apply_info information,

which is an internal catalog of the master and slave nodes, and the existing replication log, before executing the

replication rebuilding script.

Operation Scenario during Read/Write Service

Because this operation scenario is not affected by service read/write, its impact on service during CUBRID operation is

very limited. Operation scenarios during read/write service are divided into operation scenarios with failover and

operation scenarios without failover.

Operation Scenarios without Failover

You can perform the following task without restarting a node after terminating the node in the CUBRID HA group.

Most common operation task Scenario Considerations

Online Backup Operation task is performed at

each master node and slave node

each during operation.

Note that there may be a delay

in the transaction of master

node due to the operation task.

Schema change (excluding basic key

change), index change, authorization

change

When an operation task occurs at

a master node, it is automatically

replication reflected to a slave

node.

Because replication log is

copied and reflected to a slave

node after an operation task is

completed in a master node,

operation task time is doubled.

If operation task time becomes

an issue, operation task may be

performed in the following

operation scenario where

failover is used.

Add volume, Delete volume Operation task is performed at

each DB regardless of HA

structure.

Note that there may be a delay

in the transaction of master

node due to the operation task.

If operation task time becomes

an issue, operation task may be

performed in the following

operation scenario where

failover is used.

Failure node server replacement It can be replaced without

restarting the CUBRID HA

group when a failure occurs.

The failure node must be

registered in the ha_node_list

of CUBRID HA group, and the

CUBRID 2008 R4.0 Help

496

node name must not be

changed during replacement.

Failure broker server replacement It can be replaced without

restarting the broker when a

failure occurs.

The connection to a broker

replaced at a client can be made

by rctime which is configured

in URL string.

DB server expansion You can execute cubrid heartbeat

reload after configuration change

(ha_node_list, ha_replica_list)

without restarting the previously

configured CUBRID HA group.

Note that all the management

processes of a node are stopped

when cubrid heartbeat reload is

failed.

Broker server expansion Run additional brokers without

restarting existing brokers.

Modify the URL string to

connect to a broker where a

client is added.

Operation Scenario with Failover

Run the following task after completing the operation task following the stopping of a node in CUBRID HA group.

Most common operation task Scenario Considerations

DB server configuration change A node whose configuration is

changed is restarted when the

configuration in cubrid.conf is

changed.

Change broker configuration, add

broker, and delete broker

A broker whose configuration is

changed is restarted when the

configuration in cubrid_broker.conf

is changed.

DBMS version patch Restart nodes and brokers in HA

group after version patch.

Version patch means there is

no change in the internal

protocol, volume, and log of

CUBRID.

Operation Scenario during Read Service

This operation scenario provides only the read service for operation tasks. It is necessary to allow only the read service,

or to dynamically change the mode of the broker to Read Only. The operation scenario during the read service can be

divided into two groups: operation scenarios with failover, and operation scenarios without failover.

Operation Scenario without Failover

The following task can be performed without terminating and restarting nodes in the CUBRID HA group.

Most common operation tasks Scenario Considerations

Schema change (primary key

change)

When an operation

task is performed at

the master node, it is

automatically reflected

to the slave node.

In order to change the primary key, the

existing key must be deleted and a new one

added. For this reason, replication reflection

may not occur due to the HA internal structure

which reflects primary key-based replication

logs. Therefore, operation tasks must be

performed during the read service.

Operation Scenario with Failover

The following tasks must be started once all nodes in the CUBRID HA group are terminated and all operation tasks are

complete.

Most common operation tasks Scenario Considerations

Administrator's Guide

497

DBMS version upgrade Restart each node

and broker in the

CUBRID HA

group after they

are upgraded.

A version upgrade means that there have been

changes in the internal protocol, volume, or log

of CUBRID.

Because there are two different versions of the

protocols, volumes, and logs of a broker and

server during an upgrade, an operation task

must be performed to make sure that each client

and broker (before/after upgrade) are connected

to the corresponding counterpart in the same

version.

Schema change, index change, and

authorization change

Stop the node that

must be changed,

perform an

operation task, and

then execute the

node.

Although this operation task can be executed in

an operation scenario without failover during

the read and write service, it takes a long time

to execute.

Therefore, if operation task time becomes an

issue, change each node while HA is stopped.

Massive data processing (INSERT

/ UPDATE / DELETE)

Stop the node that

must be changed,

perform an

operation task, and

then execute the

node.

This processes massive data that cannot be

segmented.

Operation Scenario after Service Stop

In this operation scenario, you must perform operation task after stopping all the nodes in the CUBRID HA group.

Most common operation tasks Scenario Considerations

Changing the host name and IP of

a DB server

Stop all nodes in the

CUBRID HA group, and

restart them after the

operation task.

When a host name has been changed,

change the databases.txt of each broker

and reset the broker connection with

cubrid broker reset.

499

Performance Tuning

CUBRID 2008 R4.0 Help

500

Performance Tuning

This chapter provides information about configuring system parameters that can affect the system performance. System

parameters determine overall performance and operation of the system. This chapter explains how to use configuration

files for database server and broker as well as a description of each parameter. For CUBRID Manager server

configuration, see CUBRID Manager Manual.

This chapter covers the following topics:

• Configuring the Database server

• Configuring the Broker

Performance Tuning

501

Database Server Configuration

Scope of Database Server Configuration

CUBRID consists of the Database Server, the Broker and the CUBRID Manager. Each component has its configuration

file. The system parameter configuration file for the Database Server is cubrid.conf located in the $CUBRID/conf

directory. System parameters configured in cubrid.conf affect overall performance and operation of the database

system. Therefore, it is very important to understand the Database Server configuration.

The CUBRID Database Server has a client/server architecture. To be more specific, it is divided into a Database Server

process linked to the server library and a Broker process linked to the client library. The server process manages the

database storage structure and provides concurrency and transaction functionalities. The client process prepares for

query execution and manages object/schema.

System parameters for the database server, which can be set in the cubrid.conf file, are classified into a client parameter,

a server parameter and a client/server parameter according to the range to which they are applied. A client parameter is

only applied to client processes such as the broker. A server parameter affects the behaviors of the server processes. A

client/server parameter must be applied to both the server and the client.

Location of cubrid.conf File and How It Works

• A Database Server process refers only to the $CUBRID/conf/cubrid.conf file. Database-specific configurations

are distinguished by sections in the cubrid.conf file.

• A client process (i) refers to the $CUBRID/conf/cubrid.conf file and then (ii) additionally refers to the

cubrid.conf file in the current directory ($PWD). The configuration of the file in the current directory

($PWD/cubrid.conf) overwrites that of the $CUBRID/conf/cubrid.conf file. That is, if the same parameter

configuration exists in $PWD/cubrid.conf and in $CUBRID/conf/cubrid.conf, the configuration in

$PWD/cubrid.conf has the priority.

cubrid.conf Configuration File and Default Parameters

CUBRID consists of the Database Server, the Broker and the CUBRID Manager. The name of the configuration file for

each component is as follows. These files are all located in the $CUBRID/conf directory.

• Database Server configuration file : cubrid.conf

• Broker configuration file : cubrid_broker.conf

• CUBRID Manager server configuration file : cm.conf

cubrid.conf is a configuration file that sets system parameters for the CUBRID Database Server and determines overall

performance and operation of the database system. In the cubrid.conf file, some important parameters needed for

system installation are provided, having their default values.

Database Server System Parameters

The following are Database Server system parameters that can be used in the cubrid.conf configuration file. For the

scope of client and server parameters, see Scope of Database Server Configuration.

You can change the parameters that are capable of dynamically changing the setting value through the SET SYSTEM

PARAMETERS statement or a session command of CSQL interpreter, ;set dynamically. If you are a DBA, you can

change parameters regardless of the applied classification. However, if you are not a DBA, you can only change client

parameters.

Purpose Parameter Name Scope Type Default Value Dynamic

Change

connection-related cubrid_port_id client parameter int 1523

db_hosts client parameter string NULL O

CUBRID 2008 R4.0 Help

502

max_clients server parameter int 100

memory-related data_buffer_size server parameter int 512M

index_scan_oid_buffer_size server parameter int 64K

sort_buffer_size server parameter int 2M

temp_file_memory_size_in_pages server parameter int 4

thread_stack_size server parameter int 102400

garbage_collection client parameter bool no O

disk-related temp_file_max_size_in_pages server parameter int -1

temp_volume_path server parameter string NULL

unfill_factor server parameter float 0.1

volume_extension_path server parameter string NULL

dont_reuse_heap_file server parameter bool no

db_volume_size server parameter int 512M

log_volume_size server parameter int 512M

error message-

related

call_stack_dump_activation_list client/server

parameter

string NULL

call_stack_dump_deactivation_list client/server

parameter

string NULL

call_stack_dump_on_error client/server

parameter

bool no O

error_log client/server

parameter

string cub_client.err,

cub_server.err

error_log_level client/server

parameter

string SYNTAX O

error_log_warning client/server

parameter

bool no O

error_log_size client/server

parameter

int 8000000 O

concurrency/lock-

related

deadlock_detection_interval_in_sec

s

server parameter int 1 O

isolation_level client parameter int 3 O

lock_escalation server parameter int 100000

lock_timeout_in_secs client parameter int -1 O

lock_timeout_message_type server parameter int 0 O

logging-related log_buffer_size server parameter int 2M

media_failure_support server parameter bool yes

log_max_archives server parameter int INT_MAX O

force_remove_log_archives server parameter bool yes O

background_archiving server parameter bool yes O

page_flush_interval_in_msecs server parameter int 0 O

checkpoint_interval_in_mins server parameter int 720 O

checkpoint_every_npages server parameter int 10000

adaptive_flush_control server parameter bool yes O

Performance Tuning

503

max_flush_pages_per_second server parameter int 10000 O

sync_on_nflush server parameter int 200 O

transaction

processing-related

async_commit server parameter bool no

group_commit_interval_in_msecs server parameter int 0 O

statement/type-

related

ansi_quotes client parameter bool yes

block_ddl_statement client parameter bool no O

block_nowhere_statement client parameter bool no O

compat_numeric_division_scale client/server

parameter

bool no O

intl_mbs_support client parameter bool no

oracle_style_empty_string client parameter bool no

only_full_group_by client parameter bool no O

pipes_as_concat client parameter bool yes

add_column_update_hard_default client parameter bool no O

plus_as_concat client parameter bool yes

return_null_on_function_errors client/server

parameter

bool no O

no_backslash_escapes client parameter bool yes

require_like_escape_character client parameter bool no

alter_table_change_type_strict client/server

parameter

bool no O

default_week_format client/server

parameter

int 0 O

group_concat_max_len server parameter int 1024 O

query cache-related max_plan_cache_entries client/server

parameter

int 1000

max_query_cache_entries server parameter int -1

query_cache_mode server parameter int 0

query_cache_size_in_pages server parameter int -1

utility-related compactdb_page_reclaim_only server parameter int 0

csql_history_num client parameter int 50 O

communication_histogram client parameter bool no O

backup_volume_max_size_bytes server parameter int -1

HA-related ha_mode server parameter string off

other service server parameter string

server server parameter string

index_scan_in_oid_order client parameter bool no O

single_byte_compare server parameter bool no

insert_execution_mode client parameter int 1

java_stored_procedure server parameter bool no

pthread_scope_process server parameter bool yes

CUBRID 2008 R4.0 Help

504

auto_restart_server server parameter bool yes O

index_unfill_factor server parameter float 0.05

use_orderby_sort_limit server parameter bool yes O

session_state_timeout server parameter int 21600

multi_range_optimization_limit server parameter int 100 O

access_ip_control server parameter bool no

access_ip_control_file server parameter string

Section by Parameter

Parameters specified in cubrid.conf have the following three sections:

• Used when the CUBRID service starts : [service] section

• Applied commonly to all databases : [common] section

• Applied individually to each database : [@<database>] section

Where <database> is the name of the database to which each parameter applies. If a parameter configured in [common]

is the same as the one configured in [@<database>], the one configured in [@<database>] is applied.

Default Parameters

cubrid.conf, a default database configuration file created during the CUBRID installation, includes some default

Database Server parameters that must be changed. You can change the value of a parameter that is not included as a

default parameter by manually adding or editing one.

The following is the content of the cubrid.conf file.

Copyright (C) 2008 Search Solution Corporation. All rights reserved by Search Solution.

Id

cubrid.conf#

For complete information on parameters, see the CUBRID

Database Administration Guide chapter on System Parameters

Service section - a section for 'cubrid service' command

[service]

The list of processes to be started automatically by 'cubrid service start' command

Any combinations are available with server, broker and manager.

service=server,broker,manager

The list of database servers in all by 'cubrid service start' command.

This property is effective only when the above 'service' property contains 'server'

keyword.

#server=foo,bar

Common section - properties for all databases

This section will be applied before other database specific sections.

[common]

Number of data buffer pages

data_buffer_pages (25,000 pages) * DB page size (4KB) = 100M

data_buffer_pages=25000

Number of sort buffer pages

sort_buffer_pages (16 pages) * DB page size (4KB) * number of threads

sort_buffer_pages=16

Number of log buffer pages.

log_buffer_pages (50 pages) * DB page size (4KB) = 200KB

log_buffer_pages=50

Maximum number of locks acquired on individual instances of a

class before the locks on the instances are escalated to a class lock

lock_escalation=100000

Minimal amount of time to wait for a lock (seconds).

A negative value, indicates to wait indefinitely until the lock is

granted or until the transaction is rolled back as a result of a deadlock.

A value of 0, indicates not to wait for a lock.

lock_timeout_in_secs=-1

Interval between attempts at deadlock detection (seconds).

An approximate interval to attempt to run the deadlock detector.

Performance Tuning

505

deadlock_detection_interval_in_secs=1

Checkpoint when the specified time has passed (minutes).

Checkpoint will be done also when log has grown by specified pages.

checkpoint_interval_in_mins=720

Transaction isolation level.

Six levels of isolation are provided, represented by:

"TRAN_SERIALIZABLE"

"TRAN_REP_CLASS_REP_INSTANCE"

"TRAN_REP_CLASS_COMMIT_INSTANCE"

"TRAN_REP_CLASS_UNCOMMIT_INSTANCE"

"TRAN_COMMIT_CLASS_COMMIT_INSTANCE"

"TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE"

For other aliases, or for more information on the levels, see the

System Parameters chapter in the Database Administration Guide.

isolation_level="TRAN_REP_CLASS_UNCOMMIT_INSTANCE"

TCP port id for the CUBRID programs (used by all clients).

cubrid_port_id=1523

The maximum number of concurrent client connections the server will accept.

This value also means the total # of concurrent transactions.

max_clients=50

Restart the server process automatically

auto_restart_server=yes

Become a master server for replication.

replication=no

Enable Java Stored Procedure

java_stored_procedure=no

Connection-Related Parameters

The following are parameters related to the Database Server. The type and value range for each parameter are as follows:

Parameter Name Type Default Value Min Max

cubrid_port_id int 1523 1

db_hosts string NULL

max_clients int 100 10 1024

cubrid_port_id

cubrid_port_id is a parameter that configures the port to be used by the master process. The default value is 1,523. If

the port 1,523 is already being used on the server where CUBRID is installed or it is blocked by a firewall, an error

message, which means the master server is not connected because the master process cannot be running properly, is

outputted. If such port conflict occurs, the administrator must change the value of cubrid_port_id considering the

server environment.

db_hosts

db_hosts is a parameter that specifies a list of Database Server hosts to which clients can connect, and the connection

order. The server host list consists of more than one server host names, and host names are separated by spaces or

colons (:). Duplicate or non-existent names are ignored.

The following is an example that shows the values of the db_hosts parameter. In this example, connections are

attempted in the order of host1 > host2 > host3.

db_hosts="hosts1:hosts2:hosts3"

To connect to the server, the client first tries to connect to the specified server host referring to the database location file

(databases.txt). If the connection fails, the client then tries to connect to the first one of the secondarily specified server

hosts by referring to the value of the db_hosts parameter in the database configuration file (cubrid.conf).

CUBRID 2008 R4.0 Help

506

max_clients

max_clients is a parameter that configures the maximum number of clients (usually Broker processes) which allow

concurrent connections to the database server. The max_clients parameter refers to the number of concurrent

transactions. The default value is 100.

To grantee performance while increasing the number of concurrent users in CUBRID environment, you need to assign

an approviate value to max_clients (cubrid.conf) and MAX_NUM_APPL_SERVER (cubrid_broker.conf)

parameters. That is, you are required to modify the number of concurrent connections allowed by databases with the

max_clients parameter. You should also modify the number of concurrent connections allowed by brokers with the

MAX_NUM_APPL_SERVER parameter.

For example, in the cubrid_broker.conf file, the MAX_NUM_APPL_SERVER value of [%query_editor] is 50 and

the MAX_NUM_APPL_SERVER value of [%BROKER1] is 50, you should specify the max_clients parameter value

as 120 (100 multiplied by 2) in the cubrid.conf file so that it can have more free space.

Memory-Related Parameters

The following are parameters related to the memory used by the Database Server or client. The type and value range for

each parameter are as follows:

Parameter Name Type Default Value Min Max

data_buffer_size int 512M 64K

index_scan_oid_buffer_size int 64K 1K 256K

sort_buffer_size int 2M 64K

temp_file_memory_size_in_pages int 4 0 20

thread_stacksize int 102400 65536

garbage_collection bool no

data_buffer_size

data_buffer_size is a parameter that configures the number of data pages to be cached in the memory by the Database

Server. You can set units as K, M, G and T, which stand for KB (kilobytes), MB (megabytes), GB (gigabytes) and TB

(terabytes), respectively. If you omit the unit, bytes will be applied. The default value is 512M, and the minimum value

is 64K.

The greater the value of the data_buffer_size parameter, the more data pages to be cached in the buffer, thus providing

the advantage of decreased disk I/O cost. However, if this parameter is too large, the buffer pool can be swapped out by

the operating system because the system memory is excessively occupied. It is recommended to configure the

data_buffer_size parameter in a way the required memory size is less than two-thirds of the system memory size.

• Required memory size = the number of buffer size (data_buffer_size)

index_scan_oid_buffer_size

index_scan_oid_buffer_size is a parameter that configures the number of buffer pages where the OID list is to be

temporarily saved during the index scan. You can set units as K, M, G and T, which stand for KB (kilobytes), MB

(megabytes), GB (gigabytes) and TB (terabytes), respectively. If you omit the unit, bytes will be applied. The default

value is 2M, and the minimum value is 64K.

The size of the OID buffer tends to vary in proportion to the value of the index_scan_oid_buffer_size parameter and

the page size set when the database was created. In addition, the bigger the size of such OID buffer, the more the index

scan cost. You can set the value of the index_scan_oid_buffer_size by considering these factors.

Performance Tuning

507

sort_buffer_size

sort_buffer_size is a parameter that configures the number of buffer pages to be used when sorting. You can set units

as K, M, G and T, which stand for KB (kilobytes), MB (megabytes), GB (gigabytes) and TB (terabytes), respectively. If

you omit the unit, bytes will be applied. The default value is 2M, and the minimum value is 64K.

The server assigns one sort buffer for each client request, and releases the assigned buffer memory when sorting is

complete.

temp_file_memory_size_in_pages

temp_file_memory_size_in_pages is a parameter that configures the number of buffer pages to cache temporary result

of a query. The default value is 4 and the maximum value is 20.

• Required memory size = the number of temporary memory buffer pages (temp_file_memory_size_in_pages *

page size)

• The number of temporary memory buffer pages = the value of the temp_file_memory_size_in_pages parameter

• Page size = the value of the page size specified by the -s option of the cubrid createdb utility during the database

creation

thread_stacksize

thread_stacksize is a parameter that configures the stack size of a thread. The default value is 100*1024. The value of

the thread_stacksize parameter must not exceed the stack size allowed by the operating system.

garbage_collection

garbage_collection is a parameter that specifies whether or not to collect garbage memory no longer used by the client.

The default value is no.

Disk-Related Parameters

The following are disk-related parameters for defining database volumes and saving files. The type and value range for

each parameter are as follows:

Parameter Name Type Default Value Min Max

temp_file_max_size_in_pages int -1

temp_volume_path string NULL

unfill_factor float 0.1 0.0 0.3

dont_reuse_heap_file bool no

db_volume_size int 512M 20M 20G

log_volume_size int 512M 20M 4G

temp_file_max_size_in_pages

temp_file_max_size_in_pages is a parameter that configures the maximum number of pages to store temporary

volumes in the disk, which are used for the execution of complex queries or sorting. The default value is -1. If this

parameter is configured to the default value, unlimited number of temporary volumes are created and stored in the

directory specified by the temp_volume_path parameter. If it is configured to 0, the administrator must create

temporary volumes manually by using the cubrid addvoldb utility because temporary volumes are not created

automatically.

CUBRID 2008 R4.0 Help

508

temp_volume_path

temp_volume_path is a parameter that specifies the directory in which to create temporary volumes used for the

execution of complex queries or sorting. The default value is the volume location configured during the database

creation.

volume_extension_path

volume_extension_path is a parameter that specifies the directory in which to create extra volumes if cubrid addvoldb

is used without -F option that specifies the extra volume path. The default value is the volume location configured

during the database creation.

unfill_factor

unfill_factor is a parameter that defines the rate of disk space to be allocated in a heap page for data updates. The

default value is 0.1. That is, the rate of free space is configured to 10%. In principle, data in the table is inserted in

physical order. However, if the size of the data increases due to updates and there is not enough space for storage in the

given page, performance may degrade because updated data must be relocated to another page. To prevent such a

problem, you can configure the rate of space for a heap page by using the unfill_factor parameter. The allowable

maximum value is 0.3 (30%). In a database where data updates rarely occur, you can configure this parameter to 0.0 so

that space will not be allocated in a heap page for data updates. If the value of the unfill_factor parameter is negative or

greater than the maximum value, the default value (0.1) is used.

volume_extension_path

volume_extension_path is a parameter that specifies the directory where automatically extended volumes are to be

created. The default value is the volume location configured during the database creation.

dont_reuse_heap_file

The parameter "dont_reuse_heap_file" specifies whether or not heap files, which are deleted when deleting the table

(DROP TABLE), are to be reused when creating a new table (CREATE TABLE). If this parameter is set to 0, the

deleted heap files can be reused; if it is set to 1, the deleted heap files are not used when creating a new table. The

default value is 0.

db_volume_size

db_volume_size is a parameter that defines the following values. The default value is 512M.

• The default database volume size when cubrid createdb and cubrid addvoldb utility is used without --db-

volume-size option.

• The default size of generic volume that is added automatically when database volume is full.

log_volume_size

log_volume_size is a parameter that defines the default size of log volume file when cubrid createdb utility is used

without --log-volume-size option. You can set units as K, M, G and T, which stand for KB(kilobytes), MB(megabytes),

GB(gigabytes) and TB(terabytes), respectively. If you omit the unit, bytes will be applied. The default value is 512M.

Error Message-Related Parameters

The following are parameters related to processing error messages recorded by CUBRID. The type and value range for

each parameter are as follows:

Parameter Name Type Default Value

call_stack_dump_activation_list string NULL

call_stack_dump_deactivation_list string NULL

Performance Tuning

509

call_stack_dump_on_error bool no

error_log string cub_client.err, cub_server.err

error_log_level string SYNTAX

error_log_warning bool no

error_log_size int 8000000

call_stack_dump_activation_list

call_stack_dump_activation_list is a parameter that specifies a certain error number for which a call stack is to be

dumped as an exception even when you configure that a call stack will not be dumped for any errors. Therefore, the

call_stack_dump_activation_list parameter is effective only when call_stack_dump_on_error=no. The following is

an example that configures the parameter so that call stacks will not be dumped for any errors, except for the ones

whose numbers are -115 and -116.

call_stack_dump_on_error= no

call_stack_dump_activation_list=-115,-116

call_stack_dump_deactivation_list

call_stack_dump_deactivation_list is a parameter that specifies a certain error number for which a call stack is not to

be dumped when you configure that a call stack will be dumped for any errors. Therefore, the

call_stack_dump_deactivation_list parameter is effective only when call_stack_dump_on_error=yes. The following

is an example that configures the parameter so that call stacks will be dumped for any errors, except for the ones whose

numbers are -115 and -116.

call_stack_dump_on_error= yes

call_stack_dump_deactivation_list=-115,-116

call_stack_dump_on_error

call_stack_dump_on_error is a parameter that determines whether or not to dump a call stack when an error occurs in

the Database Server. If this parameter is configured to no, a call stack for any errors is not dumped. If it is configured to

yes, a call stack for all errors is dumped. The default value is no.

error_log

error_log is a server/client parameter that specifies the name of the error log file when an error occurs in the database

server. The name of the error log file must be in the form of <database_name>_<date>_<time>.err. However, the

naming rule of the error log file does not apply to errors for which the system cannot find the Database Server

information. Therefore, error logs are recorded in the cubrid.err file. The error log file cubrid.err is stored in the

$CUBRID/log/server directory.

error_log_level

error_log_level is a server parameter that specifies a error message to be stored based on severity. There are five

different levels which ranges from NOTIFICATION (lowest level), WARNING, SYNTAX, ERROR, and SYNTAX

(highest level). An error message with SYNTAX, ERROR, and FATAL levels are stored in the log file if severity of

error is SYNTAX, default value.

error_log_warning

The server parameter error_log_warning specifies whether or not error messages with a severity level of WARNING

are to be displayed. Its default value is no. Therefore, only error messages with levels other than WARNING will be

saved even when it is set to error_log_level = NOTIFICATION. For this reason, you must set error_log_warning =

yes to save WARNING messages to an error log file.

CUBRID 2008 R4.0 Help

510

error_log_size

error_log_size is a parameter that specifies the maximum number of lines per an error log file. The default value is

8,000,000. If it reaches up the specified number, the <database_name>_<date>_<time>.err.bak file is created.

Concurrency/Lock Parameters

The following are parameters related to concurrency control and locks of the Database Server. The type and value range

for each parameter are as follows:

Parameter Name Type Default Value Min Max

deadlock_detection_interval_in_secs int 1 1

isolation_level int 3 1 6

lock_escalation int 100000 5

lock_timeout_in_secs int -1 -1

lock_timeout_message_type int 0 0 2

deadlock_detection_interval_in_secs

deadlock_detection_interval_in_secs is a parameter that configures the interval (in seconds) in which deadlocks are

detected for stopped transactions. If a deadlock occurs, CUBRID resolves the problem by rolling back one of the

transactions. The default value is 1 second. Note that deadlocks cannot be detected if the detection interval is too long.

isolation_level

isolation_level is a parameter that configures the isolation level of a transaction. The higher the isolation level, the less

concurrency and the less interruption by other concurrent transactions. The isolation_level parameter can be configured

to an integer value from 1 to 6, which represent isolation levels, or character strings. The default value is

TRAN_REP_CLASS_UNCOMMIT_INSTANCE. For details about each isolation level and parameter values, see

Setting Isolation Level and the following table.

Isolation Level isolation_level Parameter Value

SERIALIZABLE "TRAN_SERIALIZABLE" or 6

REPEATABLE READ CLASS

with REPEATABLE READ

INSTANCES

"TRAN_REP_CLASS_REP_INSTANCE" or "TRAN_REP_READ"

or 5

REPEATABLE READ CLASS

with READ COMMITTED

INSTANCES(or CURSOR

STABILITY)

"TRAN_REP_CLASS_COMMIT_INSTANCE" or

"TRAN_READ_COMMITTED" or

"TRAN_CURSOR_STABILITY" or 4

REPEATABLE READ CLASS

with READ UNCOMMITTED

INSTANCES

"TRAN_REP_CLASS_UNCOMMIT_INSTANCE" or

"TRAN_READ_UNCOMMITTED" or 3

READ COMMITTED CLASS

with READ COMMITTED

INSTANCES

"TRAN_COMMIT_CLASS_COMMIT_INSTANCE" or 2

READ COMMITTED CLASS

with READ UNCOMMITTED

INSTANCES

"TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE" or 1

• TRAN_SERIALIZABLE : This isolation level ensures the highest level of consistency. For more information, see

SERIALIZABLE.

• TRAN_REP_CLASS_REP_INSTANCE : This isolation level can occur phantom read. For more information, see

REPEATABLE READ CLASS with REPEATABLE READ INSTANCES.

Performance Tuning

511

• TRAN_REP_CLASS_COMMIT_INSTANCE : This isolation level can occur unrepeatable read. For more

information, see REPEATABLE READ CLASS with READ COMMITTED INSTANCES.

• TRAN_REP_CLASS_UNCOMMIT_INSTANCE : This isolation level can occur dirty read. For more

information, see REPEATABLE READ CLASS with READ UNCOMMITTED INSTANCES.

• TRAN_COMMIT_CLASS_COMMIT_INSTANCE : This isolation level can occur unrepeatable read. It allows

modification of table schema by current transactions while data is being retrieved. For more information, see

READ COMMITTED CLASS with READ COMMITTED INSTANCES.

• TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE : This isolation level can occur dirty read. It allows

modification of table schema by current transactions while data is being retrieved. For more information, see

READ COMMITTED CLASS with READ UNCOMMITTED INSTANCES.

lock_escalation

lock_escalation is a parameter that specifies the maximum number of locks permitted before row level locking is

extended to table level locking. The default value is 100,000. If the value of the lock_escalation parameter is small, the

overhead by memory lock management is small as well; however, the concurrency decreases. On the other hand, if the

configured value is large, the overhead is large as well; however, the concurrency increases.

lock_timeout_in_secs

lock_timeout_in_secs is a client parameter that configures the lock waiting time. If the lock is not permitted within the

specified time period, the given transaction is canceled, and an error message is returned. If the parameter is configured

to -1, which is the default value, the waiting time is infinite until the lock is permitted. If it is configured to 0, there is no

waiting for locks.

lock_timeout_message_type

lock_timeout_message_type is a parameter that configures the level of information that is to be included in the

message returned when a lock timeout occurs. If the parameter is configured to 0, which is the default value, the

information about lock ownership is not included in the message. If it is configured to 1, single lock ownership

information is included. If it is configured to 2, all information about lock ownership is included.

• If lock_timeout_message_type = 0

ERROR: Your transaction (index 3, cub_user@cdbs006.cub|15668) timed out waiting

on X_LOCK lock on instance 0|636|34 of class participant. You are waiting for

user(s) to finish.

• If lock_timeout_message_type = 1

ERROR : Your transaction (index 3, cub_user@cdbs006.cub|15668) timed out waiting

on X_LOCK lock on instance 0|636|34 of class participant. You are waiting for user(s)

cub_user@cdbs006.cub|15615 to finish.

• If lock_timeout_message_type = 2

ERROR: Your transaction (index 3, cub_user@cdbs006.cub|15668) timed out waiting

on X_LOCK lock on instance 0|636|34 of class participant. You are waiting for user(s)

cub_user@cdbs006.cub|15615, cub_user@cdbs006.cub|15596 to finish.

Logging-Related Parameters

The following are parameters related to logs used for database backup and restore. The type and value range for each

parameter are as follows:

Parameter Name Type Default Value Min Max

log_buffer_size int 2M 192K

media_failure_support bool yes

log_max_archives int INT_MAX 0

force_remove_log_archives bool yes

background_archiving bool yes

CUBRID 2008 R4.0 Help

512

page_flush_interval_in_msecs int 0 -1

checkpoint_interval_in_mins int 720 1

checkpoint_every_npages int 10000 10

adaptive_flush_control bool yes

max_flush_pages_per_second int 10000 1 INT_MAX

sync_on_nflush int 200 1 INT_MAX

log_buffer_size

log_buffer_size is a parameter that configures the number of log buffer pages to be cached in the memory. The default

value is 2M. If the value of the log_buffer_size parameter is big, performance can be improved (due to the decrease in

disk I/O) when transactions are long and numerous. It is recommended to configure an appropriate value considering the

memory size and operations of the system where CUBRID is installed.

• Required memory size = the number of log buffer size (log_buffer_size)

media_failure_support

media_failure_support is a parameter that specifies whether or not to store archive logs in case of storage media

failure. If the parameter is configured to yes, which is the default value, all active logs are copied to archive logs when

the active logs are full and the transaction is active. If it is configured to no, archive logs created after the active logs are

full are deleted automatically. Note that archive logs are deleted automatically if the value of the parameter is

configured to no.

If you specify this parameter to no, the backgroud_archiving parameter is deactivated, accordingly.

log_max_archives

log_max_archives is a parameter that sets the maximum number of archive log files to record if

media_failure_support is set to yes. The minimum value is set to zero, and the default is INT_MAX. The operation of

this parameter differs depending on the configuration of force_remove_log_archives.

For example, when log_max_archives is 3 and force_remove_log_archives is yes in cubrid.conf, the most recent three

archive log files are recorded. If a fourth archiving log file is generated, the oldest archive log file is automatically

deleted. The information about the deleted archive log is recorded into the *_login file.

However, if an active transaction still refers to an existing archive log file, the archive log file will not be deleted. That

is, if a transaction starts at the point that the first archive log file is generated, and it is still active until the fifth archive

log is generated, the first archive log file cannot be deleted.

For how to set up the CUBRID HA environment, see cubrid.conf.

force_remove_log_archives

The force_remove_log_archives parameter is used to determine whether to allow the deletion of the files other than the

recent log archive files of which the number is specified by log_max_archives, and the default value is yes.

If you set yes for the parameter, the files will be deleted other than the recent log archive files for which the number is

specified by log_max_archives.

If you set no for the parameter, the log archive files will not be deleted. However, if you set for ha_mode to on, the files

other than the log archive files required for the HA related process and the recent log archive files of which the number

is specified by log_max_archives will be deleted.

If you want to build a CUBRID HA environment, see Configuration.

Performance Tuning

513

background_archiving

background_archiving is a parameter that generate a temporary archive log periodically at a specific time if

media_failure_support is set to yes. This is useful when balancing disk I/O load due to the archive log process. The

default is yes.

checkpoint_interval_in_mins

checkpoint_interval_in_mins is a parameter that sets cycle (in minutes) for checkpoint to be executed. The default

value is 720.

Checkpoint flushes log files(dirty page) remained in data buffers to a disk. It can restore data back to the latest

checkpoint if failure happens. If high volume of log files are stored in a disk due to checkpoint, it may cause disk I/O.

Therefore, you should set the checkpoint cycle properly to prevent database operation failure.

The checkpoint_interval_in_mins and checkpoint_every_npages parameters are related to setting checkpoint cycle.

The checkpoint is periodically executed whenever the time specified in checkpoint_interval_in_mins parameter has

elapsed or the number of log pages specified in checkpoint_every_npages parameter has reached.

checkpoint_every_npages

checkpoint_every_npages is a parameter that sets checkpoint cycle by log page. The default value is 10,000. You can

distribute disk I/O overload at the checkpoint by specifying lower number in the checkpoint_every_npages parameter,

especially in the environment where INSERT/UPDATE are heavily loaded at a specific time.

page_flush_interval_in_msecs

The parameter page_flush_interval_in_msecs specifies the interval in milliseconds (msec) at which dirty pages in a

data buffer are flushed to a disk. Its default value is 0. If this parameter is set to -1 (the minimum value), dirty pages are

flushed to the disk only at the checkpoint, or when pages are swapped.

This is a parameter that is related to I/O load and buffer concurrency. For this reason, you must set its value in

consideration of the workload of the service environment.

adaptive_flush_control

The parameter adaptive_flush_control automatically adjusts the flush capacity at every 50 ms depending on the current

status of the flushing operation. Its default value is yes. That is, this capacity is increased if a large number of INSERT

or UPDATE operations are concentrated at a certain point of time and the number of flushed pages reaches the

max_flush_pages_per_second parameter value; and is decreased otherwise. In the same way, you can distribute the

I/O load by adjusting the flush capacity on a regular basis depending on the workload.

max_flush_pages_per_second

The parameter max_flush_pages_per_second specifies the maximum flush capacity when the flushing operation is

performed from a buffer to a disk. Its default value is 10,000. That is, you can prevent concentration of I/O load at a

certain point of time by setting this parameter to control the maximum flush capacity per second.

If a large number of INSERT or UPDATE operations are concentrated at a certain point of time, and the flush capacity

reaches the maximum capacity set by this parameter, only log pages are flushed to the disk, and data pages are no longer

flushed. Therefore, you must set an appropriate value for this parameter considering the workload of the service

environment.

sync_on_nflush

The parameter sync_on_nflush sets the interval in pages between after data and log pages are flushed from buffer and

before they are synchronized with FILE I/O of operating system. Its default value is 200. That is, the CUBRID Server

performs synchronization with the FILE I/O of the operating system whenever 200 pages have been flushed. This is also

a parameter related to I/O load.

CUBRID 2008 R4.0 Help

514

Transaction Processing-Related Parameters

The following are parameters for improving transaction commit performance. The type and value range for each

parameter are as follows:

Parameter Name Type Default Value Min Max

async_commit bool no

group_commit_interval_in_msecs int 0 0

async_commit

async_commit is a parameter that activates the asynchronous commit functionality. If the parameter is configured to no,

which is the default value, the asynchronous commit is not performed; if it is configured to yes, the asynchronous

commit is executed. The asynchronous commit is a functionality that improves commit performance by completing the

commit for the client before commit logs are flushed on the disk and having the log flush thread (LFT) perform log

flushing in the background. Note that already committed transactions cannot be restored if a failure occurs on the

Database Server before log flushing is performed.

group_commit_interval_in_msecs

group_commit_interval_in_msecs is a parameter that configures the interval (in milliseconds), at which the group

commit is to be performed. If the parameter is configured to 0, which is the default value, the group commit is not

performed. The group commit is a functionality that improves commit performance by combining multiple commits that

occurred in the specified time period into a group so that commit logs are flushed on the disk at the same time.

Statement/Type-Related Parameters

The following are parameters related to SQL statements and data types supported by CUBRID. The type and value

range for each parameter are as follows:

Parameter Name Type Default Value

ansi_quotes bool yes

block_ddl_statement bool no

block_nowhere_statement bool no

compat_numeric_division_scale bool no

intl_mbs_support bool no

oracle_style_empty_string bool no

only_full_group_by bool no

pipes_as_concat bool yes

alter_table_change_type_strict bool no

default_week_format bool yes

group_concat_max_len bool no

ansi_quotes

ansi_quotes is a parameter that enclose symbols and character string to handle identifiers. The default value is yes. If

this parameter value is set to yes, double quotations are handled as identifier symbols and single quotations are handled

as character string symbols. If it is set to no, double quotations are handled as character string symbols.

Performance Tuning

515

block_ddl_statement

block_ddl_statement is a parameter that restricts the execution of DDL (Data Definition Language) statements by the

client. If the parameter is configured to no, the given client is allowed to execute DDL statements. If it is configured to

yes, the client is not permitted to execute DDL statements. The default value is no.

block_nowhere_statement

block_nowhere_statement is a parameter that restricts the execution of UPDATE/DELETE statements without a

condition clause (WHERE) by the client. If the parameter is configured to no, the given client is allowed to execute

UPDATE/DELETE statements without a condition clause. If it is configured to yes, the client is not permitted to

execute UPDATE/DELETE statements without a condition clause. The default value is no.

compact_numeric_division_scale

compat_numeric_division_scale is a parameter that configures the scale to be displayed in the result (quotient) of a

division operation. If the parameter is configured to no, the scale of the quotient is 9 if it is configured to yes, the scale

is determined by that of the operand. The default value is no.

intl_mbs_support

intl_mbs_support is a parameter that specifies whether or not to support multi-byte character set. If the parameter is

configured to no, a multi-byte character set is not allowed if it is configured to yes, a multi-byte character set is allowed.

To improve performance, it is recommended to configure the intl_mbs_support parameter to no and use alphabets for

table and column names because operation cost for supporting multi-byte character set is high.

oracle_style_empty_string

oracle_style_empty_string is a parameter that improves compatibility with other DBMS (Database Management

Systems) and specifies whether or not to process empty strings as NULL as in Oracle DBMS. If the

oracle_style_empty_string parameter is configured to no, the character string is processed as a valid string if it is

configured to yes, the empty string is processed as NULL.

only_full_group_by

only_full_group_by is a parameter that specifies whether extended syntax about using GROUP BY statement is used

or not.

If this parameter value is set to no, an extended syntax is applied thus, a column that is not specified in the GROUP BY

statement can be specified in the SELECT column list. If it is set to yes, a column that is only specified in the GROUP

BY statement can be the SELECT column list.

The default value is no. Therefore, specify the only_full_group_by parameter value to yes to execute queries by SQL

standards. Because the extended syntax is not applied in this case, an error below is displayed.

ERROR: Attributes exposed in aggregate queries must also appear in the group by clause.

pipes_as_concat

pipes_as_concat is a parameter about using a double pipe symbol. The default value is yes. If this parameter value is set

to yes, a double pipe symbol is handled as a concatenation operator if no, it is handled as the OR operator.

add_column_update_hard_default

The add_column_update_hard_default parameter is used to determine whether or not to provide the hard_default

value as the input value for a column when you add a new column to the ALTER TABLE … ADD COLUMN clause.

If a value for this parameter is set to yes, enter a new input value of a column as a hard default value when you have

NOT NULL constraints but no DEFAULT constraints. If the parameter value is set to no, enter NULL, even if NOT

NULL constraints exist. If a value for this parameter is set to yes and there is no hard default value for the column type

CUBRID 2008 R4.0 Help

516

to add, an error message will be displayed and a roll-back occurs. For the hard default for each type, see the CHANGE

Clause of the ALTER TABLE statement.

-- add_column_update_hard_default=no

CREATE TABLE tbl (i INT);

INSERT INTO tbl VALUES (1),(2);

ALTER TABLE tbl ADD COLUMN j INT NOT NULL;

SELECT * FROM TBL;

 i j

========================

 2 NULL

 1 NULL

-- add_column_update_hard_default=yes

CREATE TABLE tbl (i int);

INSERT INTO tbl VALUES (1),(2);

ALTER TABLE tbl ADD COLUMN j INT NOT NULL;

SELECT * FROM tbl;

 i j

=========================

 2 0

 1 0

plus_as_concat

The plus_as_concat parameter is a parameter for the use of the + operator, and the default value is yes. If a value for

this parameter is set to yes, the + operator will be interpreted as a concatenation operator; if it is set to no, the operator

will be interpreted as a numeric operator.

-- plus_as_concat = yes

SELECT '1'+'1';

 '1'+'1'

======================

 '11' SELECT '1'+'a';

 '1'+'a'

======================

 '1a'

-- plus_as_concat = no

SELECT '1'+'1';

 '1'+'1'

==========================

 2.000000000000000e+000

SELECT '1'+'a';

ERROR: Cannot coerce 'a' to type double.

return_null_on_function_errors

The return_null_on_function_errors parameter is used to define actions when errors occur in some SQL functions,

and the default value is no. If a value for this parameter is set to yes, NULL is returned; if it is set to no, an error is

returned when the error occurs in functions, and the related message is displayed.

The following SQL functions are affected by this system parameter.

• YEAR

• MONTH

• DAY

• DAYOFMONTH

• HOUR

Performance Tuning

517

• MINUTE

• SECOND

• QUARTER

• WEEK

• WEEKDAY

• DAYOFWEEK

• DAYOFYEAR

• SEC_TO_TIME

• TIME_TO_SEC

• TO_DAYS

• FROM_DAYS

• MAKEDATE

• MAKETIME

• TIME

• FROM_UNIXTIME

• TIMEDIFF

-- return_null_on_function_errors=no

SELECT HOUR('2010-01-01');

ERROR: Conversion error in time format.

-- return_null_on_function_errors=yes

SELECT HOUR('2010-01-01');

 hour('2010-01-01')

======================

 NULL

no_backslash_escapes

The no_backslash_escapes is used to determine whether or not to use backslash (\) as an escape character, and the

default value is yes. If a value for this parameter is set to no, backslash (\) will be used as an escape character; if it is set

to yes, backslash (\) will be used as a normal character. For more information, see Special Character Escape.

require_like_escape_character

The require_like_escape_character parameter is used to determine whether or not to use an ESCAPE character in the

LIKE clause, and the default value is no. If a value for this parameter is set to yes and a value for

no_backslash_escapes is set to no, backslash (\) will be used as an ESCAPE character in the strings of the LIKE clause,

otherwise you should specify an ESCAPE character by using the LIKE… ESCAPE clause. For more information, see

LIKE Predicate.

alter_table_change_type_strict

The alter_table_change_type_strict parameter is used to determine whether or not to allow the conversion of column

values according to the type change, and the default value is no. If a value for this parameter is set to no, the value may

be changed when you change the column types or when you add NOT NULL constraints; if it is set to yes, the value is

not changed. For more information, see CHANGE Clause in the ALTER TABLE statement.

default_week_format

The default_week_format parameter is used to set the default value for the mode attribute of the WEEK function. The

default value is 0. For more information, see WEEK Function.

CUBRID 2008 R4.0 Help

518

group_concat_max_len

The group_concat_max_len parameter is used to limit the return value size of the GROUP_CONCAT function. The

default value is 1024 bytes, the minimum value is 4 bytes, and the maximum value is 33,554,432 bytes. If the return

value of the GROUP_CONCAT function exceeds the limitation, NULL will be returned.

Query Cache-Related Parameters

The following are parameters related to the query cache functionality that provides execution results cached for the

same SELECT statement. The type and value range for each parameter are as follows:

Parameter Name Type Default Value Min Max

max_plan_cache_entries int 1,000

max_query_cache_entries int -1

query_cache_mode int 0 0 2

query_cache_size_in_pages int -1

max_plan_cache_entries

max_plan_cache_entries is a parameter that configures the maximum number of query plans to be cached in the

memory. If the max_plan_cache_entries parameter is configured to -1 or 0, generated query plans are not stored in the

memory cache; if it is configured to an integer value equal to or greater than 1, a specified number of query plans are

cached in the memory. Also, the value of this parameter must be configured to an integer value equal to or greater than

1 to use the query cache functionality that caches the results of the same query.

max_query_cache_entries

max_query_cache_entries is a parameter that configures the maximum number of query results to be cached. If the

parameter is configured to -1 or 0, the query cache functionality is deactivated; if it is configured to an integer value

equal to or greater than 1, the execution results of a specified number of queries are cached. With the query cache

functionality, you can expect performance improvement in cases where query data does not change, and the same query

is entered repeatedly. Note that the query cache functionality is activated only when the max_plan_cache_entries

parameter, which activates the query plan cache functionality, is configured to an integer value equal to or greater than 1

because the query cache functionality is dependent of the query plan cache functionality.

query_cache_mode

query_cache_mode is a parameter that specifies one of two query cache modes. In the primary query cache mode, all

queries are cached. In the second query cache mode, the query with the hint /*+QUERY_CACHE(1) */ is only cached.

If this parameter is configured to 0, which is the default value, the query cache functionality is deactivated. If it is

configured to 1, the functionality is executed in the primary query cache mode. If it is configured to 2, it is executed in

the secondary query cache mode. To activate the query cache functionality, configure max_plan_cache_entries,

max_query_cache_entries and query_cache_mode parameters equal to or greater than 1 respectively. Note that the

query cache functionality is deactivated if any of these parameters does not satisfy the condition.

// The following is an example of caching up to 1,000 for query plans, caching up to 100

for query results.

max_plan_cache_entries=1000

max_query_cache_entries=100

query_cache_mode=1

// The configured values for the two parameters are invalid because the plan cache

functionality is deactivated.

max_plan_cache_entries=-1

max_query_cache_entries=100

query_cache_mode=1

// The plan cache functionality is executed for up to 1,000 query plans, and the query

cache functionality is deactivated.

max_plan_cache_entries=1000

Performance Tuning

519

max_query_cache_entries=100

query_cache_mode=0

query_cache_size_in_pages

query_cache_size_in_pages is a parameter that specifies the number of pages of query results to be cached. A query is

cached only when its results are within the specified page size. If the parameter is configured to -1, which is the default

value, the query cache functionality is executed for all queries without any constraints for the size of the result page.

Utility-Related Parameters

The following are parameters related to utilities used in CUBRID. The type and value range for each parameter are as

follows:

Parameter Name Type Default Value Min Max

compactdb_page_reclaim_only int 0

csql_history_num int 50 1 200

communication_histogram bool no

backup_volume_max_size_bytes int -1 1024*32

compactdb_page_reclaim_only

compactdb_page_reclaim_only is a parameter related to the compactdb utility, which compacts the storage of already

deleted objects to reuse OIDs of the already assigned storage. Storage optimization with the compactdb utility can be

divided into three steps. The optimization steps can be selected through the compactdb_page_reclaim_only parameter.

If the parameter is configured to 0, which is the default value, step 1, 2 and 3 are all performed, so the storage is

optimized in data, table and file units. If it is configured to 1, step 1 is skipped to have the storage optimized in table and

file units. If it is configured to 2, steps 1 and 2 are skipped to have the storage optimized only in file units.

• Step 1 : Optimizes the storage only in data units.

• Step 2 : Optimizes the storage in table units.

• Step 3 : Optimizes the storage in file (heap file) units.

csql_history_num

csql_history_num is a parameter related to the CSQL Interpreter, and configures the number of SQL statements to be

stored in the history of the CSQL Interpreter. The default value is 50.

communication_histogram

communication_histogram is a parameter related to the cubrid statdump utility. It is related to Session

Commands ;.h of the CSQL Interpreter and the default value is no. For more information, see Outputting Statistics

Information of Server.

backup_volume_max_size_bytes

backup_volume_max_size_bytes is a parameter that configures the size of the backup volume file created by the

cubrid backupdb utility in byte units. If the parameter is configured to -1, which is the default value, the created

backup volume is not partitioned; otherwise, the backup volume is partitioned as much as it is specified size.

there is no limit to the size of the backup volume to be created. If it is not configured, the size of the backup volume is

allowed up to the size limit of the storage media.

HA-Related Parameters

The following are HA-related parameters. The type and value range for each parameter are as follows:

CUBRID 2008 R4.0 Help

520

Parameter Name Type Default Value

ha_mode string off

ha_mode

The ha_mode parameter is used to set CUBRID HA features, and the default value is off.

• off : The CUBRID HA feature is not used.

• on : The CUBRID HA feature is used using the configured node as a node for failover.

• replica : The CUBRID HA feature is used without using the configured node as a node for failover.

To use the CUBRID HA feature, you should set HA related parameters in the cubrid_ha.conf file in addition to the

ha_mode parameter. For more information, see CUBRID HA.

Other Parameters

The following are other parameters. The type and value range for each parameter are as follows:

Parameter Name Type Default Value Min Max

service string

server string

index_scan_in_oid_order bool no

single_byte_compare bool no

insert_execution_mode int 1 1 7

java_stored_procedure bool no

pthread_scope_process bool yes

auto_restart_server bool yes

index_unfill_factor float 0.05 0 0.5

use_orderby_sort_limit bool yes

session_state_timeout int 21600

(6 hours)

60

(1 min.)

31536000

(1 year)

multi_range_optimization_limit int 100 0 100

access_ip_control bool no

access_ip_control_file string

service

service is a parameter that registers a process that starts automatically when the CUBRID service starts. There are four

types of processes: server, broker, manager, and heartbeat. Three processes are usually registered as in

service=server,broker,manager.

• If the parameter is configured to server, the database process specified by the @server parameter gets started.

• If the parameter is configured to broker, the Broker process gets started.

• If the parameter is configured to manager, the manager process gets started.

• If the parameter is configured to heartbeat, the HA-related process gets started.

server

server is a parameter that registers a Database Server process that starts automatically when the CUBRID service starts.

Performance Tuning

521

index_scan_in_oid_order

index_scan_in_oid_order is a parameter that configures the result data to be retrieved in OID order after the index scan.

If the parameter is configured to no, which is the default value, results are retrieved in data order; if it is configured to

yes, they are retrieved in OID order.

single_byte_compare

single_byte_compare is a parameter that determines whether or not to compare strings in single byte units. If the

parameter is configured to no, which is the default value, strings are compared in two byte units; if it is configured to

yes, they are compared in single byte units. That is, you can retrieve/compare strings on data stored as UTF-8.

insert_execution_mode

insert_execution_mode has execution modes ranging from 1 to 7. Queries are usually executed on the server according

to the query plan created by the client, but this parameter is used to directly insert queries on the server side. A selected

execution mode is executed directly on the server, and other execution modes are executed on the client. This parameter

can be used to perform an INSERT operation to the server in an environment in which dirty reading of INSERTed data

is required, or in which the memory capacity of the client is limited.

The following are three types of INSERT statements for execution modes. This parameter can be set through a

combination of integer values corresponding to each execution mode.

• INSERT_SELECT : When using the SELECT statement in the INSERT statement.

INSERT INTO code2(s_name, f_name) SELECT s_name, f_name from code;

• INSERT_VALUES : The common INSERT statement.

INSERT INTO code2(s_name, f_name) VALUES ('S', 'Silver');

• INSERT_DEFAULT : When inserting the default value because a column with the default value is omitted in the

INSERT statement.

CREATE TABLE code2(s_name char(1) DEFAULT '_', f_name varchar(40));

INSERT INTO code2(f_name) DEFAULT VALUES;

• INSERT_REPLACE : For example, when the REPLACE statement is executed, the corresponding integer value

is 8.

CREATE TABLE code2(s_name char(1) NOT NULL UNIQUE, f_name varchar(40));

REPLACE INTO code2 VALUES ('S', 'Silver');

• INSERT_ON_DUP_KEY_UPDATE : In addition, when the ON DUPLICATE KEY UPDATE clause is

specified in the INSERT statement, the corresponding integer value is 16.

CREATE TABLE code2(s_name char(1) NOT NULL UNIQUE, f_name varchar(40));

INSERT INTO code2 VALUES ('S', 'Silver') ON DUPLICATE KEY UPDATE f_name='Silver';

The sum of the execution mode values above is the execution mode to be configured.

• Example 1 : If you want to execute INSERT_SELECT and INSERT_VALUES on the server, the

insert_execution_mode is 3. (1 + 2 = 3)

• Example 2 : If you want to execute INSERT_SELECT, INSERT_DEFAULT, INSERT_REPLACE, an

INSERT_ON_DUP_KEY_UPDATE on the server, the insert_execution_mode is 29(1+4+8+16=29).

java_stored_procedure

java_stored_procedure is a parameter that determines whether or not to use Java stored procedures by running the

Java Virtual Machine (JVM). If the parameter is configured to no, which is the default value, JVM is not executed; if it

is configured to yes, JVM is executed so you can use Java stored procedures. Therefore, configure the parameter to yes

if you plan to use Java stored procedures.

CUBRID 2008 R4.0 Help

522

pthread_scope_process

pthread_scope_process is a parameter that configures the contention scope of threads. It only applies to AIX systems.

If the parameter is configured to no, the contention scope becomes PTHREAD_SCOPE_SYSTEM; if it is configured

to yes, it becomes PTHREAD_SCOPE_PROCESS. The default value is yes.

auto_restart_server

auto_restart_server is a parameter that specifies whether or not to restart the process when it stops due to a fatal error

in the Database Server process. If auto_restart_server is configured to yes, the server process restarts automatically

when it stopped due to abnormal causes other than the normal stop process (STOP command of the CUBRID Server).

index_unfill_factor

If there is no free space because index pages are full when the INSERT or UPDATE operation is executed after the

first index is created, the split of index page nodes occurs. This substantially affects the performance by increasing the

operation time. index_unfill_factor is a parameter that specifies the percent of free space defined for each index page

node when an index is created. The index_unfill_factor value is applied only when an index is created for the first time.

The percent of free space defined for the page is not maintained dynamically. Its value ranges between 0 and 0.35. The

default value is 0.05.

If an index is created without any free space for the index page node (index_unfill_factor=0), the split of index page

nodes occurs every time an additional insertion is made. This may degrade the performance.

If the value of index_unfill_factor is large, a large amount of free space is available when an index is created.

Therefore, better performance can be obtained because the split of index nodes does not occur for a relatively long

period of time until the free space for the nodes is filled after the first index is created.

If this value is small, the amount of free space for the nodes is small when an index is created. Therefore, it is likely that

the index nodes are splitted by INSERT or UPDATE because the free space for the index nodes is filled in a short

period of time.

use_orderby_sort_limit

The use_orderby_sort_limit parameter is used to determine whether or not to keep the intermediate result of sorting

and merging process in the statement including the ORDER BY … LIMIT row_count clause as many as row_count. If

it is set to yes, you can decrease unnecessary comparing and merging processes because as many as intermediate results

will be kept as the value of row_count. The default value is yes.

session_state_timeout

The session_state_timeout parameter is used to define how long the CUBRID session data will be kept. The session

data will be deleted when the driver terminates the connection or the session time is expired. The session time will

expire if a client does not have any requests until the time specified by session_state_timeout.

The default value is 21600 seconds (6 hours).

The following are CUBRID seesion data.

• Custom variables defined by SET.

• PREPARE statements.

• LAST_INSERT_ID

• Number of records affected by the last executed statement(ROW_COUNT)

Custom variables defined by SET and PREPARE statements can be deleted by DROP/DEALLOCATE statements

before session timeout.

Performance Tuning

523

multi_range_optimization_limit

If the number of rows specified by the LIMIT clause in the query, which has multiple ranges (col IN (?, ?, …,?)) and is

available to use an index, is within the number specified by the multi_range_optimization_limit parameter, the

optimization for the way of index sorting will be performed. The default value is 100.

For example, if a value for this parameter is set to 50, LIMIT 10 means that it is within the value specified by this

parameter, so that the values that meet the conditions will be sorted to produce the result. If LIMIT is 60, it means that it

exceeds the parameter configuration value, so that it gets and sorts out all values that meet the conditions.

Depending on the setting value, the differences are made between collecting the result with on-the-fly sorting of the

intermediate values and sorting the result values after collecting them, and the bigger value could make more

unfavorable performance.

access_ip_control

The access_ip_control parameter is used to limit the IP addresses available to access servers. The default value is no.

For more information, see Database Server Access Limitation.

access_ip_control_file

The access_ip_control_file parameter is used to specify a file name in which the list of IPs allowed by servers is stored,

if a value for access_ip_control is set to yes. For more information, see Database Server Access Limitation.

Changing Database Server Configuration

Editing the Configuration File

You can add/delete parameters or change parameter values by manually editing the system parameter configuration file

(cubrid.conf) in the $CUBRID/conf directory.

The following parameter syntax rules are applied when configuring parameters in the configuration file:

• Parameter names are not case-sensitive.

• The name and value of a parameter must be entered in the same line.

• An equal sign (=) can be used to configure the parameter value. Spaces are allowed before and after the equal sign.

• If the value of a parameter is a character string, enter the character string without quotes. However, use quotes if

spaces are included in the character string.

Using SQL Statements

Description

You can configure a parameter value by using SQL statements in the CSQL Interpreter or CUBRID Manager's Query

Editor. Note that you cannot change every parameter. For updatable parameters, see cubrid.conf Configuration File and

Default Parameters.

Syntax

SET SYSTEM PARAMETERS 'parameter_name=value [{; name=value}...]'

parameter_name is the name of a client parameter whose value is editable. In this syntax, value is the value of the given

parameter. You can change multiple parameter values by separating them with semicolons (;). You must take caution

when you apply changes of parameter values.

Example

The following is an example of retrieving the result of an index scan in OID order and configuring the number of

queries to be saved in the history of the CSQL Interpreter to 70.

SET SYSTEM PARAMETERS 'index_scan_in_oid_order=1; csql_history_num=70'

CUBRID 2008 R4.0 Help

524

Using Session Commands of the CSQL Interpreter

Description

You can configure system parameter values by using session commands (;SEt) in the CSQL Interpreter. Note that you

cannot change every parameter. For updatable parameters, see cubrid.conf Configuration File and Default Parameters.

Example

The following is an example of configureing the block_ddl_statement parameter to 1 so that execution of DDL

statements is not allowed.

csql> ;se block_ddl_statement=1

=== Set Param Input ===

block_ddl_statement=1

Performance Tuning

525

Broker Configuration

cubrid_broker.conf Configuration File and Default Parameters

Broker System Parameters

The following are Broker parameters that can be used in the cubrid_broker.conf configuration file. For description of

each parameter, see Parameter Description in Parameter by Broker.

MAX_PREPARED_STMT_COUNT

int

2000 (min. : 1)

ACCESS_CONTROL

bool

no

ACCESS_CONTROL_FILE

string

Parameter Name Type Default Value

MASTER_SHM_ID int 30001

ADMIN_LOG_FILE string log/broker/cubrid_broker.log

SERVICE string ON

BROKER_PORT int 30000 (MAX : 65535)

MIN_NUM_APPL_SERVER int 5

MAX_NUM_APPL_SERVER int 40

APPL_SERVER_SHM_ID int 30000

APPL_SERVER_MAX_SIZE int For Windows : 40 (32 bit), 80 (64 bit)

For Linux : 0

LOG_DIR string log/broker/sql_log

ERROR_LOG_DIR string log/broker/error_log

SQL_LOG string ON

TIME_TO_KILL int 120

SESSION_TIMEOUT int 300

KEEP_CONNECTION string AUTO

ACCESS_LIST string -

ACCESS_LOG string ON

APPL_SERVER_PORT int BROKER_PORT+1

APPL_SERVER string CAS

LOG_BACKUP string OFF

SQL_LOG_MAX_SIZE int 100000

MAX_STRING_LENGTH int -1

CUBRID 2008 R4.0 Help

526

SOURCE_ENV string cubrid.env

STATEMENT_POOLING string ON

CCI_PCONNECT string OFF

SELECT_AUTO_COMMIT string OFF

LONG_QUERY_TIME int 60

LONG_TRANSACTION_TIME int 60

ACCESS_MODE string RW

CCI_DEFAULT_AUTOCOMMIT string OFF

Default Parameters

cubrid_broker.conf, a default broker configuration file created during the CUBRID installation, includes some default

Broker parameters that must be changed. You can change the value of a parameter that is not included as a default

parameter by manually adding or editing one.

The following is the content of the cubrid_broker.conf file that is created by default during the installation.

[broker]

MASTER_SHM_ID =30001

ADMIN_LOG_FILE =log/broker/cubrid_broker.log

[%query_editor]

SERVICE =ON

BROKER_PORT =30000

MIN_NUM_APPL_SERVER =5

MAX_NUM_APPL_SERVER =40

APPL_SERVER_SHM_ID =30000

LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =ON

TIME_TO_KILL =120

SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO

[%BROKER1]

SERVICE =ON

BROKER_PORT =33000

MIN_NUM_APPL_SERVER =5

MAX_NUM_APPL_SERVER =40

APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =ON

TIME_TO_KILL =120

SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO

Environment Variables related to the Broker Configuration File

You can specify the cubrid_broker.conf file location by using the CUBRID_BROKER_CONF_FILE variable to

executing various Brokers with different configuration.

Common Parameters

The following are parameters commonly applied to all Brokers, and they are listed under [broker] section in the

cubrid_broker.conf file.

Performance Tuning

527

MASTER_SHM_ID

MASTER_SHM_ID is a parameter that specifies the identifier of shared memory which is used to manage the

CUBRID Broker. Its value must be unique in the system. The default value is 30001.

ADMIN_LOG_FILE

ADMIN_LOG_FILE is a parameter that specifies the file where the time information related with the CUBRID Broker

running is stored. The default value is log/broker/cubrid_broker.log file.

Parameter by Broker

The following describes parameters to configure the environment variables of Brokers; each parameter is located under

[%broker_name].

SERVICE

SERVICE is a parameter that determines whether to run the given Broker. It can be configured to either ON or OFF.

The default value is ON. The Broker can run only when this parameter is configured to ON.

BROKER_PORT

BROKER_PORT is a parameter that configures the port number of the given Broker. Its value must be unique in the

system and equal to or smaller than 65,535. By default, the broker port for query_editor is configured to 30000, and the

port for broker1 is configured to 33000.

MIN_NUM_APPL_SERVER

MIN_NUM_APPL_SERVER is a parameter that configures the minimum number of application servers (CAS) even

if any request to connect the broker has not been made. The default value is 5.

MAX_NUM_APPL_SERVER

MAX_NUM_APPL_SERVER is a parameter that configures the maximum number of application servers (CAS). The

default value is 40. In an evnironment where connection pool is maintained by using a middleware such as WAS, you

must specify the value of MAX_NUM_APPL_SERVER parameter as same as that of connection pool.

APPL_SERVER_SHM_ID

APPL_SERVER_SHM_ID is a parameter that configures the shared memory ID to be used by application servers

(CAS). Its value must be unique in the system. The default value is the same as the port of the given Broker.

APPL_SERVER_MAX_SIZE

APPL_SERVER_MAX_SIZE is a parameter that specifies the maximum size of the process memory usage provided

by the application server (CAS). The unit is MB. This value should be configured in the consideration of server

operation environment because it affects the policy, CAS restart, in force. Especially, if you configure this value too low,

applications can frequently be restarted. Note that the default value for Windows and Linux is different.

For Windows, the 32-bit CUBRID has 40 (MB) for the APPL_SERVER_MAX_SIZE value by default; 64-bit

CUBRID has 80 (MB). If the current process memory usage exceeds the value of APPL_SERVER_MAX_SIZE, the

Broker restarts the application server. For Linux, 0 is the default value for APPL_SERVER_MAX_SIZE; and it

restarts the application server in the following conditions:

• Zero or negative : In case the current process is twice as large as the initial memory

• Positive : In case a value exceeds the number specified in APPL_SERVER_MAX_SIZE

CUBRID 2008 R4.0 Help

528

LOG_DIR

LOG_DIR is a parameter that specifies the directory where SQL logs are stored. The default value is

log/broker/sql_log. The file name of the SQL logs is broker_name_id.sql.log.

ERROR_LOG_DIR

ERROR_LOG_DIR is a parameter that specifies the directory where error logs for the Broker are stored. The default

value is log/broker/error_log. The name of the error log file for the Broker is broker_ name_id.err.

SQL_LOG

SQL_LOG is a parameter that determines whether to leave logs for SQL statements processed by the application server

(CAS) when an application server handles requests from a client. The default value is ON. When this parameter is

configured to ON, all logs are stored. Log file name becomes broker_name_id.sql.log. The file is created in the

log/broker/sql_log directory under the installation directory. The parameter values are as follows:

• OFF : Does not leave any logs

• ERROR : Leaves logs for queries which occur an error. only queries where an error occurs

• NOTICE : Leaves logs for the long-duration execution queries which exceeds the configured time/transaction, or

leaves logs for queries which occur an error

• TIMEOUT : Leaves logs for the long-duration execution queries which exceeds the configured time/transaction

• ON/ALL : Leaves all logs

TIME_TO_KILL

TIME_TO_KILL is a parameter that configures the time to remove application servers (CAS) in idle state among

application servers added dynamically. The default value is 120 (sec). An idle state is one in which the server is not

involved in any jobs. If this state continues exceeding the value specified in TIME_TO_KILL, the application server

(CAS) is added or removed.

The value configured in this parameter affects only application server added dynamically, so it applies only when the

AUTO_ADD_APPL_SERVER parameter is configured to ON. Note that times to add or remove the application

servers (CAS) will be increased more if the TIME_TO_KILL value is so small.

SESSION_TIMEOUT

SESSION_TIMEOUT is a parameter that configures a timeout value for the session of the given Broker. The default

value is 300 (sec). The given session is terminated if there is no response to the job request for the specified time period.

KEEP_CONNECTION

KEEP_CONNECTION is a parameter that specifies how application servers (CAS) and application clients are

connected. It can be configured to ON, OFF or AUTO. If this parameter is configured to OFF, clients are connected to

an application server in a transaction unit. If it is configured to ON, they are connected in a connection unit. If it is

configured to AUTO, and then the number of application servers is more than that of clients, it will act as if ON; in the

reverse case that clients are more than CASs, it will act as if OFF. The default value is AUTO.

ACCESS_LIST

ACCESS_LIST is a parameter that specifies the name of the file where IP addresses of application client which allows

access of the CUBRID Broker is to be saved. To allow access by IP addresses 210.192.33.* and 210.194.34.*, save

them to a file (ip_lists.txt) and then configure the file name with the value of this parameter.

ACCESS_LOG

ACCESS_LOG is a parameter that specifies whether or not to store access log. The default value is ON. The name of

the access log file for the Broker is broker_name_id.access, and the file is stored in the $CUBRID/log/broker directory.

Performance Tuning

529

LOG_BACKUP

LOG_BACKUP is a parameter that specifies whether or not to back up access and error log files of the Broker. The

default value is OFF. If this parameter is configured to ON, access and error logs are backed up when the CUBRID

Broker terminates. The backup file name for access logs becomes broker_name_id access, and the one for error logs

becomes broker_ name_id. error.

SQL_LOG_MAX_SIZE

SQL_LOG_MAX_SIZE is a parameter that specifies the maximum size of the SQL log file. The default value is

100,000 (KB). If the size of the SQL log file, which is created when the SQL_LOG parameter is configured to ON,

reaches the value configured by the parameter, broker_name_id. sql.log.bak is created.

APPL_SERVER_PORT

APPL_SERVER_PORT, which can be added only in the Windows operating system, is a parameter that specifies the

connection port for the application server (CAS) which communicates with the application client. The default is

configured to add 1 to the specified BROKER_PORT parameter. As the maximum number of application servers is

limited by the MAX_NUM_APPL_SERVER parameter of the cubrid_broker_conf file, the maximum number of

connection ports for the application server (CAS) is also limited by the value of the MAX_NUM_APPL_SERVER

parameter. If there is a firewall in the Windows operating system between application client and the CUBRID Broker,

the connection port specified by BROKER_PORT and APPL_SERVER_PORT must be open.

APPL_SERVER

APPL_SERVER is a parameter that specifies the type of application servers created and managed by the CUBRID

Broker. The default value is CAS.

MAX_STRING_LENGTH

MAX_STRING_LENGTH is a parameter that configures the maximum string length for bit, varbit, char, varchar, nchar,

nchar varying data types. If this parameter is configured to -1, which is the default value, the length defined in the

database is used. If the parameter is configured to 100, the value 100 is applied even when a certain attribute is defined

as varchar(1000).

SOURCE_ENV

SOURCE_ENV is a parameter that specifies the file to independently configure operating system environment

variables for each broker. The extension of the file must be env. All parameters specified in cubrid.conf can also be

configured by environment variables. For example, the lock_timeout_in_secs parameter in cubrid.conf can also be

configured by the CUBRID_LOCK_TIMEOUT_IN_SECS environment variable. As another example, to block

execution of DDL statements on broker1, you can configure CUBRID_BLOCK_DDL_STATEMENT 1 in the file

specified by SOURCE_ENV.

An environment variable, if exists, has priority over cubrid.conf.

The default value is cubrid.env.

STATEMENT_POOLING

STATEMENT_POOLING is a parameter that specifies whether or not to use statement pooling. The default value is

ON.

When a transaction is committed or rolled back, CUBRID closes all the prepared statement handles that exist in the

client session. However, if the parameter is set to STATEMENT_POOLING=ON, the prepared statement handles

remain in the pool, so that the handles can be reused. Therefore, you must maintain the default setting

(STATEMENT_POOLING=ON) in general applications that reuse prepared statements or in environments in which a

library such as DBCP, in which the statement pooling is implemented, is applied.

CUBRID 2008 R4.0 Help

530

When the parameter is set to STATEMENT_POOLING=OFF and the prepared statement is executed after the

transaction is committed or terminated, the following message is displayed.

Caused by: cubrid.jdbc.driver.CUBRIDException: Attempt to access a closed Statement.

CCI_PCONNECT

CCI_PCONNECT is a parameter that specifies whether or not to use the CCI connection pooling. The default value is

OFF. This parameter affects the applications using CCI API or interfaces such as PHP, ODBC, or OLE DB, which are

developed in CCI API.

SELECT_AUTO_COMMIT

SELECT_AUTO_COMMIT is a parameter that sets auto-commit mode for SELECT statements in CCI or PHP. Its

default value is OFF. However, note that auto-commit is performed only at the point at which the result set for all n

query statements is fetched from the server when there are n prepared statements. An example is as follows. For more

information, see cci_end_tran.

SELECT_1 prepare

SELECT_1 execute // AUTO COMMIT O

SELECT_1 prepare

SELECT_2 prepare

SELECT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

SELECT_2 execute // AUTO COMMIT O

SELECT_1 prepare

SELECT_1 execute // AUTO COMMIT O

INSERT_1 prepare

INSERT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

INSERT_1 prepare

INSERT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

SELECT_1 prepare

SELECT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

SELECT_1 prepare

INSERT_1 prepare

SELECT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

INSERT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

INSERT_1 prepare

SELECT_1 prepare

INSERT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

SELECT_1 execute // AUTO COMMIT X -> An EXPLICIT COMMIT needed

LONG_QUERY_TIME

LONG_QUERY_TIME is a parameter that specifies execution time which is evaluated as long-duration queries. The

default value is 60000 in ms. Note that a parameter value is configured to 0, it is not evaluated as a long-duration query.

LONG_TRANSACTION_TIME

LONG_TRANSACTION_TIME is a parameter that specifies execution time which is evaluated as long-duration

transactions. The default value is 60000 in ms. Note that a parameter is configured to 0, it is not evaluated as a long-

duration transaction.

CCI_DEFAULT_AUTO_COMMIT

CCI_DEFAULT_AUTO_COMMIT is a parameter that specifies the automatic commit of applications developed by

CCI API. The default value is OFF.

This parameter affects the applications developed by CCI API or the applications using interfaces (PHP, ODBC, and

OLE DB) developed by CCI; it does not affect the applications developed by JDBC.

Performance Tuning

531

MAX_PREPARED_STMT_COUNT

MAX_PREPARED_STMT_COUNT is a parameter that limits the number of prepared statements by user (application)

access. The default value is 2000 and the minimum value is 1. By making user specify the parameter value, creation of

prepared statement exceeding memory allowed by system can be prohibited.

ACCESS_CONTROL

ACCESS_CONTROL is a parameter that limits the application that access a broker. The default value is OFF. For

more information, see Broker Server Access Limitation.

ACCESS_CONTROL_FILE

ACCESS_CONTROL_FILE is a parameter that specifies database names, database user IDs, and file names including

the list of IPs, which are allowed to access a broker. For more information, see Broker Server Access Limitation.

533

API Reference

CUBRID 2008 R4.0 Help

534

API Reference

This chapter covers the following APIs:

• JDBC API

• ODBC API

• OLE DB API

• PHP API

• CCI API

API Reference

535

JDBC API

JDBC Programming

CUBRID JDBC Driver

The CUBRID JDBC driver (cubrid_jdbc.jar) enables the system to make a connection to the CUBRID database in an

application written in Java. The driver is located in the "location of CUBRID installed/jdbc" directory.

The CUBRID JDBC driver has been developed based on the JDBC 2.0 specification and provides compilation output

generated in JDK version 1.6.

Checking the CUBRID JDBC Driver Version

You can check the JDBC driver version as follows:

% jar -tf cubrid_jdbc.jar

META-INF/ META-INF/MANIFEST.MF

cubrid/ cubrid/jdbc/

cubrid/jdbc/driver/

cubrid/jdbc/jci/

cubrid/sql/

CUBRID-JDBC-8.1.4.1032

cubrid/jdbc/driver/CUBRIDBlob.class

...

Registering the CUBRID JDBC Driver

Use the Class.forName (driver-class-name) command to register the JDBC driver. The following is an example of

loading the cubrid.jdbc.driver.CUBRIDDriver class to register the CUBRID JDBC driver.

import java.sql.*;

import cubrid.jdbc.driver.*;

public class LoadDriver {

 public static void main(String[] Args) {

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 } catch (Exception e) {

 System.err.println("Unable to load driver.");

 e.printStackTrace();

 }

 ...

CUBRID JDBC Interface

The following table shows the JDBC standard and extended interfaces supported by CUBRID JDBC. Note that some

methods are not supported even though they are specified in the JDBC 2.0 specification.

Supported Inferface by CUBRID

JDBC Standard Interface JDBC Extended Interface Supported

java.sql.Blob

java.sql.CallableStatement

java.sql.Clob

java.sql.Connection

java.sql.DatabaseMetaData

java.sql.Driver

java.sql.PreparedStatement

java.sql.ResultSet

java.sql.ResultSetMetaData

java.sql.CUBRIDConnection

java.sql.CUBRIDPreparedStatement

java.sql.CUBRIDResultSet

java.sql.CUBRIDResultSetMetaData

CUBRIDOID

Supported.

java.sql.Statement java.sql.CUBRIDStatement The

getGeneratedKeys()

CUBRID 2008 R4.0 Help

536

method of JDBC

3.0 is supported.

java.sql.DriverManager Supported

Java.sql.SQLException Java.sql.CUBRIDException Supported

java.sql.Array

java.sql.ParameterMetaData

java.sql.Refava.sql.Savepoint

java.sql.SQLData

java.sql.SQLInput

java.sql.Struct

 Not Supported

Connection Configuration

The DriverManager is a basic interface for JDBC driver management and performs functions such as selecting a

database driver and creating a new database connection. If the CUBRID JDBC driver is registered, database connection

is made by calling the DriverManager.getConnection (db-url, user-id, password) function. The getConnection

function returns the Connection object, which is used for query and command executions and transaction commit or

rollback. The parameter db-url, which is for connection configuration, is as follows:

jdbc:cubrid:<host>:<port>:<db-name>:[user-id]:[password]:[?<property> [& <property>]]

<host> ::=

hostname | ip_address

<property> ::=

althosts= <alternative_hosts> | rctime= <second> | charset= <character_set>

<alternative_hosts> :

<standby_broker1_host>:<port> [,<standby_broker2_host>:<port>]

• <host> : IP address or host name where the CUBRID Broker is running

• <port> : Broker port number (default : 33000)

• <db-name> : The name of the database to connect

• [user-id] : The user that will be connected to the database. There are two users in the database by default: DBA and

PUBLIC. If you enter an empty string (" "), you will connect to the database as a PUBLIC user.

• [password] : If there is no password set for the user, enter an empty string (" ").

• althosts : One or more host IP of standby broker and connection port to be failed over in HA environment

• rctime : Interval time (in seconds) to fail over an active server during system failure. For more information, see the

example in the HA-Related JDBC Configuration.

• charset : Character set (charset) of database to be connected

Example 1

--connection URL string when user name and password omitted

URL=jdbc:CUBRID:127.0.0.1:31000:db1:::

--connection URL string when charset property specified

URL=jdbc:CUBRID:127.0.0.1:31000:db1:::?charset=utf-8

--connection URL string when a property(althosts) specified for HA

URL=jdbc:CUBRID:127.0.0.1:31000:db1:::?althosts=127.0.0.2:31000,127.0.0.3:31000

--connection URL string when properties(althosts,rctime) specified for HA

URL=jdbc:CUBRID:127.0.0.1:31000:db1:::?althosts=127.0.0.2:31000,127.0.0.3:31000&rctime=600

--connection URL string when properties(althosts,rctime, charset) specified for HA

URL=jdbc:CUBRID:127.0.0.1:31000:db1:::?althosts=127.0.0.2:31000,127.0.0.3:31000&rctime=600

&charset=utf-8

API Reference

537

Example 2

String url = "jdbc:cubrid:210.216.33.250:43300:demodb:::";

String userid = "";

String password = "";

try {

 Connection conn =

 DriverManager.getConnection(url,userid,password);

 // Do something with the Connection

 ...

 } catch (SQLException e) {

 System.out.println("SQLException:" + e.getMessage());

 System.out.println("SQLState: " + e.getSQLState());

 }

 ...

Note The rollback function, which requests the transaction rollback, exits when the server completes the work.

Verifying Foreign Key Information

Description

You can verify foreign key information by using getImportedKeys, getExportedKeys, and getCrossReference

methods provided by DatabaseMetaData interface. Usage and examples of each method are as follows:

Syntax

getImportedKeys(String catalog, String schema, String table)

getExportedKeys(String catalog, String schema, String table)

getCrossReference(String parentCatalog, String parentSchema, String parentTable, String

foreignCatalog, String foreignSchema, String foreignTable)

• getImportedKeys method : A method that retrieves the information of primary key columns which are referred by

foreign key columns in a given table. The results are sorted by PKTABLE_NAME and KEY_SEQ.

• getExportedKeys method : A method that retrieves the information of all foreign key columns which refer to

primary key columns in a given table. The results are sorted by FKTABLE_NAME and KEY_SEQ.

• getCrossReference method : A method that retroeves the information of primary key columns which are referred

by foreign key columns in a given table. The results are sorted by PKTABLE_NAME and KEY_SEQ.

Return Value

When the methods above are called, the following ResultSet, consisting of 14 columns, is returned.

Name Type Note

PKTABLE_CAT String Always null

PKTABLE_SCHEM String Always null

PKTABLE_NAME String Table name of primary key

PKCOLUMN_NAME String Table name of primary key

FKTABLE_CAT String Always null

FKTABLE_SCHEM String Always null

FKTABLE_NAME String Table name of foreign key

FKCOLUMN_NAME String Column name of foreign key

KEY_SEQ short Sequence of foreign or primary keys (starting from 1)

UPDATE_RULE short A corresponding value to referring action defined as to foreign keys when

primary keys are updated

Cascade=0, Restrict=2, No action=3, Set null=4

CUBRID 2008 R4.0 Help

538

DELETE_RULE short A corresponding value to referring action defined as to foreign keys when

primary keys are deleted

Cascade=0, Restrict=2, No action=3, Set null=4

FK_NAME String Foreign key name

PK_NAME String Primary key name

DEFERRABILITY short Always 6(DatabaseMetaData.importedKeyInitiallyImmediate)

Example

ResultSet rs = null;

 DatabaseMetaData dbmd = conn.getMetaData();

 System.out.println("\n===== Test getImportedKeys");

 System.out.println("=====");

 rs = dbmd.getImportedKeys(null, null, "pk_table");

 Test.printFkInfo(rs);

 rs.close();

 System.out.println("\n===== Test getExportedKeys");

 System.out.println("=====");

 rs = dbmd.getExportedKeys(null, null, "fk_table");

 Test.printFkInfo(rs);

 rs.close();

 System.out.println("\n===== Test getCrossReference");

 System.out.println("=====");

 rs = dbmd.getCrossReference(null, null, "pk_table", null, null,

"fk_table");

 Test.printFkInfo(rs);

 rs.close();

Using OIDs and Collections

In addition to the methods defined in the JDBC specification, the CUBRID JDBC driver provides methods that handle

OIDs and collections (set, multiset and sequence).

To use these methods, you must import cubrid.sql.*; in addition to the CUBRID JDBC driver classes which are

imported by default. In addition, to get the results, you must convert ResultSet to CUBRIDResultSet first. (ResultSet

is provided by the standard JDBC API, by default.)

import cubrid.jdbc.driver.* ;

import cubrid.sql.* ;

...

CUBRIDResultSet urs = (CUBRIDResultSet) stmt.executeQuery(

"SELECT city FROM location");

Caution AUTO COMMIT does not work even though it is configured to TRUE if CUBRID extended APIs are used.

Therefore, you must manually commit open connections. The CUBRID extended APIs are methods that handle OIDs

and collections.

Using OIDs

You must follow the following rules to use OIDs.

• To use CUBRIDOID, you should import cubrid.sql.*;. (a)

• You can retrieve an OID by specifying a class name in the SELECT statement. The name can be used together

with other attributes. (b)

• The ResultSet of a query must be CUBRIDResultSet. (c)

• The method that retrieves the OID from the CUBRIDResultSet is getOID(). (d)

• To retrieve a value from an OID, use the getValues() method. Its result is ResultSet. (e)

• To substitute a value for an OID, use the setValues() method. (f)

• When you use the extended APIs, you must always perform commit() to make connection. (g)

API Reference

539

import java.sql.*;

import cubrid.sql.*; //a

import cubrid.jdbc.driver.*;

/*

CREATE TABLE oid_test(

 id INTEGER,

 name VARCHAR(10),

 age INTEGER

);

INSERT INTO oid_test VALUES(1, 'Laura', 32);

INSERT INTO oid_test VALUES(2, 'Daniel', 39);

INSERT INTO oid_test VALUES(3, 'Stephen', 38);

*/

class OID_Sample

{

 public static void main (String args [])

 {

 // Making a connection

 String url= "jdbc:cubrid:localhost:33000:demodb:::";

 String user = "dba";

 String passwd = "";

 // SQL statement to get OID values

 String sql = "SELECT oid_test from oid_test"; //b

 // columns of the table

 String[] attr = { "id", "name", "age" } ;

 // Declaring variables for Connection and Statement

 Connection con = null;

 Statement stmt = null;

 CUBRIDResultSet rs = null;

 ResultSetMetaData rsmd = null;

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 } catch (ClassNotFoundException e) {

 throw new IllegalStateException("Unable to load Cubrid driver", e);

 }

 try {

 con = DriverManager.getConnection(url, user, passwd);

 stmt = con.createStatement();

 rs = (CUBRIDResultSet)stmt.executeQuery(sql); //c

 rsmd = rs.getMetaData();

 // Printing columns

 int numOfColumn = rsmd.getColumnCount();

 for (int i = 1; i <= numOfColumn; i++) {

 String ColumnName = rsmd.getColumnName(i);

 String JdbcType = rsmd.getColumnTypeName(i);

 System.out.print(ColumnName);

 System.out.print("("+ JdbcType + ")");

 System.out.print(" | ");

 }

 System.out.print("\n");

 // Printing rows

 CUBRIDResultSet rsoid = null;

 int k = 1;

 while (rs.next()) {

 CUBRIDOID oid = rs.getOID(1); //d

 System.out.print("OID");

 System.out.print(" | ");

 rsoid = (CUBRIDResultSet)oid.getValues(attr); //e

 while (rsoid.next()) {

 for(int j=1; j <= attr.length; j++) {

 System.out.print(rsoid.getObject(j));

 System.out.print(" | ");

CUBRID 2008 R4.0 Help

540

 }

 }

 System.out.print("\n");

 // New values of the first row

 Object[] value = { 4, "Yu-ri", 19 };

 if (k == 1) oid.setValues(attr, value); //f

 k = 0;

 }

 con.commit(); //g

 } catch(CUBRIDException e) {

 e.printStackTrace();

 } catch(SQLException ex) {

 ex.printStackTrace();

 } finally {

 if(rs != null) try { rs.close(); } catch(SQLException e) {}

 if(stmt != null) try { stmt.close(); } catch(SQLException e) {}

 if(con != null) try { con.close(); } catch(SQLException e) {}

 }

 }

}

Using Collections

The line marked by 'a' in the example 1 below is where data of a collection type (SET, MULTISET, LIST) is fetched

from the CUBRIDResultSet. The results are returned as array format. Note that this function is supported only when

data types of elements defined in the collection type are same.

Example 1

import java.sql.*;

import java.lang.*;

import cubrid.sql.*;

import cubrid.jdbc.driver.*;

// create class collection_test(

// settest set(integer),

// multisettest multiset(integer),

// listtest list(Integer)

//);

//

// insert into collection_test values({1,2,3},{1,2,3},{1,2,3});

// insert into collection_test values({2,3,4},{2,3,4},{2,3,4});

// insert into collection_test values({3,4,5},{3,4,5},{3,4,5});

class Collection_Sample

{

 public static void main (String args [])

 {

 String url= "jdbc:cubrid:210.216.33.250:43300:demodb:::";

 String user = "";

 String passwd = "";

 String sql = "select settest,multisettest,listtest from collection_test";

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 } catch(Exception e){

 e.printStackTrace();

 }

 try {

 Connection con = DriverManager.getConnection(url,user,passwd);

 Statement stmt = con.createStatement();

 CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

 CUBRIDResultSetMetaData rsmd = (CUBRIDResultSetMetaData) rs.getMeta Data();

 int numbOfColumn = rsmd.getColumnCount();

 while (rs.next ()) {

 for (int j=1; j<=numbOfColumn; j++) {

 Object[] reset = (Object[]) rs.getCollection(j); //a

API Reference

541

 for (int m=0 ; m < reset.length ; m++)

 System.out.print(reset[m] +",");

 System.out.print(" | ");

 }

 System.out.print("\n");

 }

 rs.close();

 stmt.close();

 con.close();

 } catch(SQLException e) {

 e.printStackTrace();

 }

 }

}

Example 2

import java.sql.*;

import java.io.*;

import java.lang.*;

import cubrid.sql.*;

import cubrid.jdbc.driver.*;

// create class collection_test(

// settest set(integer),

// multisettest multiset(integer),

// listtest list(Integer)

//);

//

// insert into collection_test values({1,2,3},{1,2,3},{1,2,3});

// insert into collection_test values({2,3,4},{2,3,4},{2,3,4});

// insert into collection_test values({3,4,5},{3,4,5},{3,4,5});

class SetOP_Sample

{

 public static void main (String args [])

 {

 String url = "jdbc:cubrid:127.0.0.1:33000:demodb:::" ;

 String user = "";

 String passwd = "";

 String sql = "select collection_test from collection_test";

 try {

 Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

 } catch(Exception e){

 e.printStackTrace();

 }

 try {

 CUBRIDConnection con =(CUBRIDConnection)

 DriverManager.getConnection(url,user,passwd);

 Statement stmt = con.createStatement();

 CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

 while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 oid.addToSet("settest",new Integer(10));

 oid.addToSet("multisettest",new Integer(20));

 oid.addToSequence("listtest",1,new Integer(30));

 oid.addToSequence("listtest",100,new Integer(100));

 oid.putIntoSequence("listtest",99,new Integer(99));

 oid.removeFromSet("settest",new Integer(1));

 oid.removeFromSet("multisettest",new Integer(2));

 oid.removeFromSequence("listtest",99);

 oid.removeFromSequence("listtest",1);

 }

 con.commit();

 rs.close();

 stmt.close();

 con.close();

 } catch(SQLException e) {

 e.printStackTrace();

 }

 }

}

CUBRID 2008 R4.0 Help

542

Getting Auto-Increment Column Values

Auto-increment Feature

The auto-increment feature (AUTO_INCREMENT) is a column-related feature that increments the numeric value of

each row. For more information, see Column Definition in Creating Tables. This feature can be defined only for

numeric domains (SMALLINT, INTEGER, DECIMAL(p, 0), NUMERIC(p, 0)).

The auto-increment feature is recognized as an automatically created key in a JDBC program. To retrieve the key, you

need to specify the time to insert a row from which the automatically created key value is to be retrieved. To perform it,

you must set the flag by calling Connection.prepareStatement and Statement.execute. In this case, the command to

be executed should be the INSERT statement or INSERT within SELECT statement. For other commands, the JDBC

driver ignores the flag-setting parameter.

Steps

• Use one of the followings to indicate whether or not to return a key created automatically. The following method

forms are used for tables of the database server that supports the auto-increment columns. Each method form can be

applied only to a single-row INSERT statement.

• Create a PreparedStatement object by referring to the followings:

Connection.prepareStatement(sql statement, Statement.RETURN_GENERATED_KEYS);

• To insert a row using the Statement.execute method, use one of the forms of the Statement.execute method by

referring to the followings:

Statement.execute(sql statement, Statement.RETURN_GENERATED_KEYS);

• Retrieve a ResultSet object that contains a automatically created key value by calling the

PreparedStatement.getGeneratedKeys or Statement.getGeneratedKeys method. Note that the data type of the

automatically created key in ResultSet is DECIMAL regardless of the data type of the given domain.

Example

The following is an example of creating a table with the auto-increment feature, entering data into the table so that

automatically created key values are entered into auto-increment columns, and checking whether the key values are

successfully retrieved by using the Statement.getGeneratedKeys() method. Each step is explained in the comments for

commands that correspond to the steps above.

import java.sql.*;

import java.math.*;

import cubrid.jdbc.driver.*;

Connection con;

Statement stmt;

ResultSet rs;

java.math.BigDecimal iDColVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), "

+ "IDENTCOL INTEGER AUTO_INCREMENT)"); // Create table with identity column

stmt.execute(

"INSERT INTO EMP_PHONE (EMPNO, PHONENO) "

+ "VALUES ('000010', '5555')", // Insert a row <Step 1>

Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

rs = stmt.getGeneratedKeys(); // generated keys

 // Retrieve the automatically <Step 2>

 // generated key value in a ResultSet.

 // Only one row is returned.

 // Create ResultSet for query

while (rs.next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("automatically generated key value = " + idColVar);

API Reference

543

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Using BLOB/CLOB

The interfaces that porcess LOB data in JDBC is implemented based on JDBC 4.0 specification. The constraints of

interfaces are as follows:

• It supports sequential writes only when creating the objects of BLOB or CLOB. Writing to arbitary locations are

not supported.

• You cannot change the data of BLOB or CLOB by calling methods of BLOB or CLOB object which are

received from ResultSet.

• It does not support Blob.truncate, Clob.truncate, Blob.position, and Clob.position.

• You cannot bind LOB data by calling PreapredStatement.setAsciiStream,

PreparedStatement.setBinaryStream, and PreparedStatement.setCharacterStream methods of BLOB/CLOB

type columns.

• To use BLOB/CLOB types in an environment where JDBC 4.0 specification is not supported such as JDB

version 1.5 or earlier, you must convert a conn object to CUBRIDConnection, explicitly. See the example below.

// JDK 1.6 or later

import java.sql.*;

Connection conn = DriverManager.getConnection(url, id, passwd);

Blob blob = conn.createBlob();

…

// JDK 1.5 or earlier

import java.sql.*;

import cubrid.jdbc.driver.*;

Connection conn = DriverManager.getConnection(url, id, passwd);

Blob blob = ((CUBRIDConnection)conn).createBlob();

…

Saving LOB Data

The way to bind LOB type data is as follows:

• Create java.sql.Blob or java.sql.Clob object and save the file contents in the object. Use, then, setBlob() or

setClob() of PreparedStatement (example 1).

• Perform query and get java.sql.Blob or java.sql.Clob object from the ResultSet object. Bind, then, the object in

PreparedStatement (example 2).

Example 1

Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

Connection conn = DriverManager.getConnection ("jdbc:cubrid:localhost:33000:image_db:::",

"", "");

PreparedStatement pstmt1 = conn.prepareStatement("INSERT INTO doc(image_id, doc_id, image)

VALUES (?,?,?)");

pstmt1.setString(1, "image-21");

pstmt1.setString(2, "doc-21");

//Creating an empty file in the file system

Blob bImage = conn.createBlob();

byte[] bArray = new byte[256];

…

//Inserting data into the external file. Position is start with 1.

bImage.setBytes(1, bArray);

//appending data into the external file

bImage.setBytes(257, bArray);

…

pstmt1.setBlob(3, bImage);

pstmt1.executeUpdate();

…

Example 2

Class.forName("cubrid.jdbc.driver.CUBRIDDriver");

CUBRID 2008 R4.0 Help

544

Connection conn = DriverManager.getConnection ("jdbc:cubrid:localhost:33000:image_db:::",

"", "");

conn.setAutoCommit(false);

PreparedStatement pstmt1 = conn.prepareStatement("SELECT image FROM doc WHERE image_id = ?

");

pstmt1.setString(1, "image-21");

ResultSet rs = pstmt1.executeQuery();

while (rs.next())

{

Blob bImage = rs.getBlob(1);

PreparedStatement pstmt2 = conn.prepareStatement("INSERT INTO doc(image_id, doc_id, image)

VALUES (?,?,?)");

pstmt2.setString(1, "image-22")

pstmt2.setString(2, "doc-22")

pstmt2.setBlob(3, bImage);

pstmt2.executeUpdate();

pstmt2.close();

}

pstmt1.close();

conn.commit();

conn.setAutoCommit(true);

conn.close();

…

Getting LOB Data

The way to get LOB type data is as follows:

• Get data directly from ResultSet by using getBytes() or getString() method (example 1).

• Get the java.sql.Clob object from ResultSet by calling getBlob() or getClob() method and then get data by using

getBytes() or getSubString() method for this object (example 2).

Example 1

Connection conn = DriverManager.getConnection ("jdbc:cubrid:localhost:33000:image_db:::",

"", "");

// Getting data directly from ResetSet

PrepareStatement pstmt1 = conn.prepareStatement("SELECT content FROM doc_t WHERE doc_id = ?

");

pstmt2.setString(1, "doc-10");

ResultSet rs = pstmt1.executeQuery();

while (rs.next())

 {

 String sContent = rs.getString(1);

 System.out.println("doc.content= "+sContent.);

 }

Example 2

Connection conn = DriverManager.getConnection ("jdbc:cubrid:localhost:33000:image_db:::",

"", "");

//Getting Blob data from ResultSet and getting data from the Blob object

PrepareStatement pstmt2 = conn.prepareStatement(“SELECT image FROM image_t WHERE image_id

= ?”);

pstmt2.setString(1,”image-20”);

ResultSet rs = pstmt2.executeQuery();

while (rs.next())

 {

 Blob bImage = rs.getBlob(1);

 Bytes[] bArray = bImange.getBytes(1, (int)bImage.length());

 }

Note If a string longer than defined size in a column is inserted(INSERT) or updated(UPDATE), the string will be

truncated.

API Reference

545

CUBRIDOID

Overview

A CUBRIDOID class contains the following methods to process OIDs.

Return Type Method Name

void addToSequence(String attrName, int index, Object value)

void addToSet(String attrName, Object value)

static CUBRIDOID getNewInstance(CUBRIDConnection con, String oidStr)

String getOidString()

String getTableName()

ResultSet getValues(String[] attrNames)

Boolean isInstance()

void putIntoSequence(String attrName, int index, Object value)

void remove()

void removeFromSequence(String attrName, int index)

void removeFromSet(String attrName, Object value)

void setReadLock()

void setValues(String[] attrNames, Object[] values)

void setWriteLock()

addToSequence

Description

This function is used to insert the value specified in value into the attribute named attrName and associated with

SEQUENCE constraints on the CUBRIDOID instance, specifically in front of the index-th element in the

SEQUENCE attribute.

Syntax

void addToSequence(String attrName, int index, Object value)

Example

//create class foo(c list of int)

//insert into foo values({3})

String sql = "select foo from foo" ;

Connection con = DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1); // get OID

 oid.addToSequence("c",1, new Integer(22)); // c: {3}-> {22,3}

}

CUBRID 2008 R4.0 Help

546

addToSet

Description

This function is used to insert the value specified in value into the attribute named attrName and associated with SET or

MULTISET constraints on the CUBRIDOID instance.

Syntax

void addToSet(String attrName, Object value)

Example

//create class foo(a set of int, b multiset of int)

//insert into foo values({1},{2})

String sql = "select foo from foo" ;

Connection con = DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1); // get OID

 oid.addToSet("a",new Integer(11)); // a : {1} -> {1,11}

 oid.addToSet("b",new Integer(13)); // b : {2} -> {2, 13}

}

getNewInstance

Description

This function is used to convert an OID string to a CUBRIDOID object, and then returns the CUBRIDOID object.

Syntax

static CUBRIDOID getNewInstance(CUBRIDConnection con, String oidStr)

Return Value

• CUBRIDOID object

Example

String sql = "select foo from foo" ;

CUBRIDConnection con = (CUBRIDConnection)

 DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID realoid = rs.getOID(1); // get OID (CUBRIDOID)

 // CUBRIDOID -> OID string

 String stringoid = realoid.getOidString();

 // OID string -> CUBRIDOID

 realoid = CUBRIDOID.getNewInstance(con, stringoid);

}

getOidString

Description

This function is used to convert a CUBRIDOID object to an OID string, and then returns the string.

API Reference

547

Syntax

String getOidString()

Return Value

• Character string

Example

String sql = "select foo from foo" ;

CUBRIDConnection con = (CUBRIDConnection)

 DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID realoid = rs.getOID(1); // get OID

 // CUBRIDOID -> OID string

 String stringoid = realoid.getOidString();

 // OID string -> CUBRIDOID

 realoid = CUBRIDOID.getNewInstance(con,stringoid);

}

getTableName

Description

This function is used to returns the table name of the instance corresponding to the CUBRIDOID object.

Syntax

String getTableName()

Return Value

• A table name of an instance that corresponds to CUBRIDOID

Example

String sql = "select foo from foo" ;

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 String tablename = oid.getTableName();

 System.out.println(tablename);

}

getValues

Description

This function is used to return the ResultSet which contains values of the requested attribute.

Syntax

ResultSet getValues(String[] attrNames)

Return Value

• ResultSet

CUBRID 2008 R4.0 Help

548

Example

// create class foo (a string, b int)

// insert into foo values('CUBRID', 2001)

String sql = "select foo from foo";

String[] attr = { "a", "b" }; // class's column name list

CUBRIDResultSet rs= (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 ResultSet rsoid = oid.getValues(attr);

}

isInstance

Description

This function is used to return true if the instance corresponding to the CUBRIDOID exists. If otherwise, it returns

false.

Syntax

Boolean isInstance()

Return Value

• TRUE : An instance that corresponds to CUBRIDOID exists.

• FALSE : An instance that corresponds to CUBRIDOID does not exist.

Example

String sql = "select foo from foo" ;

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 System.out.print("isInstance : " + oid.isInstance()); // true

 oid.remove(); // remove the object in the oid

 System.out.print("After remove, isInstance : "

 + oid.isInstance()); // false

}

putIntoSequence

Description

This function is used to modify the index-th value in the attribute associated with the SEQUENCE constraint on the

CUBRIDOID instance as the value specified in value.

Syntax

void putIntoSequence(String attrName, int index, Object value)

Example

//create class foo(c list of int)

//insert into foo values({1})

String sql = "select foo from foo" ;

Connection con = DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

API Reference

549

 CUBRIDOID oid = rs.getOID(1); // get OID

 oid.putIntoSequence("c",1, new Integer(10)); // c:{1}->{10}

}

remove

Description

This function is used to remove the instance corresponding to the CUBRIDOID.

Syntax

void remove()

Example

String sql = "select foo from foo" ;

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 System.out.print("isInstance : " + oid.isInstance()); // true

 oid.remove(); // remove the object in the oid

 System.out.print(" After remove .isInstance : " +

 oid.isInstance()); // false

}

removeFromSequence

Description

This function is used to remove the index-th value from the attribute associated with the SEQUENCE constraint on the

CUBRIDOID instance.

Syntax

void removeFromSequence(String attrName, int index)

Example

//create class foo(c list of int)

//insert into foo values(1,3)

String sql = "select foo from foo" ;

Connection con = DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1); // get OID

 oid.removeFromSequence("c",1); // c: {1,3} -> {3}

}

removeFromSet

Description

This function is used to remove the corresponding value specified in value from the attribute associated with the SET

constraint on the CUBRIDOID instance. If the corresponding value is more than one, the very value found for the first

time becomes removed.

Syntax

void removeFromSet(String attrName, Object value)

CUBRID 2008 R4.0 Help

550

Example

//create class foo(a set of int, b multiset of int)

//insert into foo values({1,11},{2,13})

String sql = "select foo from foo"

Connection con = DriverManager.getConnection(url,user,passwd)

Statement stmt = con.createStatement()

CUBRIDResultSet rs= (CUBRIDResultSet) stmt.executeQuery(sql)

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1) // get OID

 oid.removeFromSet("a",new Integer(11)) // a: {1,11} -> {1}

 oid.removeFromSet("a",new Integer(13)) // b: {2,13} -> {2}

}

setReadLock

Description

This function is used to set a read-lock on the instance corresponding to the CUBRIDOID.

Syntax

void setReadLock()

Example

String sql = "select foo from foo" ;

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 oid.setReadLock();

}

setValues

Description

This function is used to replace the value specified in the attrNames with the value specified in the values.

Syntax

void setValues(String[] attrNames, Object[] values)

Example

// create class foo (a string, b int)

String sql = "select foo from foo";

String[] attr = { "a", "b" }; // a list of attribute names

String[] values = {"CUBRID", new Integer(2001)};

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 oid.setValues(attr, values);

}

setWriteLock

Description

This function is used to set a write-lock on the instance corresponding to the CUBRIDOID.

API Reference

551

Syntax

void setWriteLock()

Example

String sql = "select foo from foo" ;

CUBRIDResultSet rs = (CUBRIDResultSet) stmt.executeQuery(sql);

while (rs.next ()) {

 CUBRIDOID oid = rs.getOID(1);

 oid.setWriteLock();

}

CUBRIDPreparedStatement

Overview

The CUBRIDPreparedStatement class extends the standard PreparedStatement and contains the following

additional methods.

Return Type Method Name

CUBRIDOID executeInsert()

void setCollection(int index, Object[] array)

void setOID(int index, CUBRIDOID oid)

executeInsert

Description

This function is used to execute an INSERT statement within the CUBRIDPreparedStatement object and returns the

CUBRIDOID corresponding to the inserted object.

Syntax

CUBRIDOID executeInsert()

Return Value

• A CUBRIDOID that corresponds to the inserted object

Example

String sql = "insert into testtable(a) values(?)";

CUBRIDPreparedStatement pstmt = (CUBRIDPreparedStatement)

 con.prepareStatement(sql);

pstmt.setString(1, "CUBRID");

CUBRIDOID oid = pstmt.executeInsert();

setCollection

Description

This function is used to specify the index-th parameter in the prepared statement as a collection corresponding to array.

CUBRID has three types of collections: Set, Multiset and Sequence.

Syntax

void setCollection(int index, Object[] array)

CUBRID 2008 R4.0 Help

552

Example

String[] strs = { "abc", "def"};

psmt.setCollection(1, strs);

setOID

Description

This function is used to specify the index-th parameter in the prepared statement as the CUBRIDOID specified in oid.

Syntax

void setOID(int index, CUBRIDOID oid)

CUBRIDResultSet

Overview

The CUBRIDResultSet class is extended from the standard ResultSet class and has the following additional methods.

Return Type Method Name

Object getCollection(int attrIndex)

Object getCollection(String attrName)

CUBRIDOID getOid()

CUBRIDOID getOid(int attrIndex)

CUBRIDOID getOid(String attrName)

getCollection

Description

This function is used to return the index specified in attrIndex or the attribute value specified in attrName. The returned

object can be converted to an array such as String[].

Syntax

Object getCollection(int attrIndex)

Object getCollection(String attrName)

Return Value

• An index specified by attrIndex or a value of the column that corresponds to the column name specified by

attrName

getOID

Description

This function is used to return the index specified in attrIndex or the attribute value specified in attrName to

CUBRIDOID, thus it returns the CUBRIDOID.

If attrIndex or attrName is not specified, CUBRIDOID of the current row of ResultSet is returned. This is valid only

when ResultSet is TYPE_SCROLL_SENSITIVE or CONCUR_UPDATABLE.

Syntax

CUBRIDOID getOID(int attrIndex)

CUBRIDOID getOID(String attrName)

API Reference

553

CUBRIDOID getOID()

Return Value

• CUBRIDOID

CUBRIDResultSetMetaData

Overview

The CUBRIDResultSetMetaData class is extended from the standard ResultSetMetaData and has the following

additional methods.

Return Type Method Name

int getElementType(int columnIndex)

String getElementTypeName(int columnIndex)

getElementType

Description

This function is used to return a type of the COLLECTION element as int defined in the java.sql.Types. If a domain of

the columnIndex-th attribute is not COLLECTION such as SET, MULTISET, or SEQUENCE, SQLException occurs

in the end.

Syntax

int getElementType(int columnIndex)

Return Value

• Collection element type (int)

getElementTypeName

Description

This function is used to return the name of the type in the COLLECTION elements. If a domain of the columnIndex-th

attribute is not COLLECTION such as SET, MULTISET, or SEQUENCE, SQLException occurs in the end.

Syntax

String getElementTypeName(int columnIndex)

Return Value

• Collection element's type name

Example

// The following schema is used in this example.

//

// create class foo(

// a set(int),

// b multiset(int),

// c sequence(int)

//);

String sql = "select * from foo" ;

Connection con = DriverManager.getConnection(url,user,passwd);

Statement stmt = con.createStatement();

CUBRID 2008 R4.0 Help

554

CUBRIDResultSet rs = (CUBRIDResultSet)stmt.executeQuery(sql);

CUBRIDResultSetMetaData rsmd = (CUBRIDResultSetMetaData)

 rs.getMetaData();

int numberofColumn = rsmd.getColumnCount();

for (int i=1; i <= numberofColumn; i++) {

 System.out.println(rsmd.getElementType(i));

 System.out.println(rsmd.getElementTypeName(i));

}

CUBRIDStatement

Overview

The CUBRIDStatement class is extended from the standard Statement class and has the following additional methods.

Return Type Method Name

CUBRIDOID executeInsert(String insertStmt)

executeInsert

Description

This function is used to return the CUBRIDOID corresponding to a new tuple (row) inserted by the SQL statement,

insertStmt.

Syntax

CUBRIDOID executeInsert(String insertStmt)

Return Value

• CUBRIDOID of the added row

Example

String sql = "insert into testable(a) values (1)"

CUBRIDStatement stmt = (CUBRIDStatement) con.createStatement();

CUBRIDOID oid = stmt.executeInsert(sql);

API Reference

555

ODBC API

ODBC Programming

CUBRID ODBC Driver

Description

The CUBRID ODBC driver supports ODBC version 3.52, ODBC core, and some of Level 1 and Level 2 APIs. Since it

has been developed based on ODBC Spec 3.x, backward compatibility is not completely ensured for programs written

using ODBC Spec 2.x. Only 32 bit are supported. In the 64-bit Windows environment, you can check the ODBC driver

with CUBRID 32 bit by executing "C:\Windows\SysWOW64\odbcad32.exe."

For more information on configuring CUBRID ODBC driver, see Configuring the Environment of ODBC and ASP.

Data Type Mapping of CUBRID and ODBC

The following table shows the data mapping relationship between data types of ODBC and those supported by CUBRID.

CUBRID Data Type ODBC Data Type

Char SQL_CHAR

Varchar SQL_VARCHAR

String SQL_LONGVARCHAR

Nchar SQL_CHAR

Varnchar SQL_VARCHAR

Bit SQL_BINARY

varying bit SQL_VARBINARY

Numeric SQL_NUMERIC

Int SQL_INTEGER

Short SQL_SMALLINT

Float SQL_FLOAT

Double SQL_DOUBLE

Bigint SQL_BIGINT

Date SQL_TYPE_DATE

Time SQL_TYPE_TIME

Timestamp SQL_TYPE_TIMESTAMP

Datetime SQL_TYPE_TIMESTAMP

Monetary SQL_DOUBLE

Oid SQL_CHAR(32)

set, multiset, sequence SQL_VARCHAR(MAX_STRING_LENGTH)

Configuring Connection Strings

When you are programming CUBRID ODBC, you can write connection strings as follows:

Item Example Description

Driver CUBRID Driver Driver name

CUBRID 2008 R4.0 Help

556

UID user1 User ID

PWD xxx Password

FETCH_SIZE 100 Fetch size

PORT 30000 Broker port number

SERVER 192.168.1.11 IP address or host name of a CUBRID Broker server

DB_NAME demodb Database name

DESCRIPTION cubrid_test Description

CHARSET utf-8 Character set

The following example shows how to use connecting strings above.

"DRIVER=CUBRID

Driver;UID=user1;PWD=xxx;FETCH_SIZE=100;PORT=30000;SERVER=192.168.1.11;DB_NAME=demodb;DESC

RIPTION=cubrid_test;CHARSET=utf-8"

Supported Functions and Backward Compatibility

Information on supported functions by CUBRID ODBC, versions, compatibility with ODBC Spec is as follows:

API Version Introduced Standards Compliance Support

SQLAllocHandle 3.0 ISO 92 YES

SQLBindCol 1.0 ISO 92 YES

SQLBindParameter 2.0 ODBC YES

SQLBrowseConnect 1.0 ODBC NO

SQLBulkOperations 3.0 ODBC YES

SQLCancel 1.0 ISO 92 YES

SQLCloseCursor 3.0 ISO 92 YES

SQLColAttribute 3.0 ISO 92 YES

SQLColumnPrivileges 1.0 ODBC NO

SQLColumns 1.0 X/Open YES

SQLConnect 1.0 ISO 92 YES

SQLCopyDesc 3.0 ISO 92 YES

SQLDescribeCol 1.0 ISO 92 YES

SQLDescribeParam 1.0 ISO 92 NO

SQLDisconnect 1.0 ISO 92 YES

SQLDriverConnect 1.0 ISO 92 YES

SQLEndTran 3.0 ISO 92 YES

SQLExecDirect 1.0 ISO 92 YES

SQLExecute 1.0 ISO 92 YES

SQLFetch 1.0 ISO 92 YES

SQLFetchScroll 3.0 ISO 92 YES

SQLForeignKeys 1.0 ODBC YES

(2008 R3.1 or later)

SQLFreeHandle 3.0 ISO 92 YES

SQLFreeStmt 1.0 ISO 92 YES

API Reference

557

SQLGetConnectAttr 3.0 ISO 92 YES

SQLGetCursorName 1.0 ISO 92 YES

SQLGetData 1.0 ISO 92 YES

SQLGetDescField 3.0 ISO 92 YES

SQLGetDescRec 3.0 ISO 92 YES

SQLGetDiagField 3.0 ISO 92 YES

SQLGetDiagRec 3.0 ISO 92 YES

SQLGetEnvAttr 3.0 ISO 92 YES

SQLGetFunctions 1.0 ISO 92 YES

SQLGetInfo 1.0 ISO 92 YES

SQLGetStmtAttr 3.0 ISO 92 YES

SQLGetTypeInfo 1.0 ISO 92 YES

SQLMoreResults 1.0 ODBC YES

SQLNativeSql 1.0 ODBC YES

SQLNumParams 1.0 ISO 92 YES

SQLNumResultCols 1.0 ISO 92 YES

SQLParamData 1.0 ISO 92 YES

SQLPrepare 1.0 ISO 92 YES

SQLPrimaryKeys 1.0 ODBC YES

(2008 R3.1 or later)

SQLProcedureColumns 1.0 ODBC YES

(2008 R3.1 or later)

SQLProcedures 1.0 ODBC YES

(2008 R3.1 or later)

SQLPutData 1.0 ISO 92 YES

SQLRowCount 1.0 ISO 92 YES

SQLSetConnectAttr 3.0 ISO 92 YES

SQLSetCursorName 1.0 ISO 92 YES

SQLSetDescField 3.0 ISO 92 YES

SQLSetDescRec 3.0 ISO 92 YES

SQLSetEnvAttr 3.0 ISO 92 NO

SQLSetPos 1.0 ODBC YES

SQLSetStmtAttr 3.0 ISO 92 YES

SQLSpecialColumns 1.0 X/Open YES

SQLStatistics 1.0 ISO 92 YES

SQLTablePrivileges 1.0 ODBC YES

(2008 R3.1 or later)

SQLTables 1.0 X/Open YES

Some functions for which backward compatibility is not supported must be converted into appropriate ones by using the

mapping table below.

ODBC 2.x Function ODBC 3.x Function

CUBRID 2008 R4.0 Help

558

SQLAllocConnect SQLAllocHandle

SQLAllocEnv SQLAllocHandle

SQLAllocStmt SQLAllocHandle

SQLBindParam SQLBindParameter

SQLColAttributes SQLColAttribute

SQLError SQLGetDiagRec

SQLFreeConnect SQLFreeHandle

SQLFreeEnv SQLFreeHandle

SQLFreeStmt with SQL_DROP SQLFreeHandle

SQLGetConnectOption SQLGetConnectAttr

SQLGetStmtOption SQLGetStmtAttr

SQLParamOptions SQLSetStmtAttr

SQLSetConnectOption SQLSetConnectAttr

SQLSetParam SQLBindParameter

SQLSetScrollOption SQLSetStmtAttr

SQLSetStmtOption SQLSetStmtAttr

SQLTransact SQLEndTran

Using OIDs and Collections

ODBC is designed for relational DBMSs. Therefore, CUBRID ODBC does not support some object-oriented features

such as CUBRID OIDs and collections. It is because CUBRID is an object-relational DBMS that integrates relational

and object-oriented data models.

Using OIDs

Because the CUBRID ODBC driver considers an OID as a string (char(32)), the INSERT, UPDATE and DELETE

statements containing OIDs can be used as follows. The OID string should be used with single quotes (''). The domain

of the member attribute in the following example is the same as the OID.

insert into foo(member) values('@12|34|56')

delete from foo where member = '@12|34|56'

update foo set age = age + 1 where member = '@12|34|56'

Using Collections

Collection types : SET, MULTISET and SEQUENCE are supported. The CUBRID ODBC driver considers a

collection as a string (longvarchar). You can obtain a collection by separating each element in the SELECT statement

using commas in braces as with "{value_1, value_2, ...value_n}."

Note If a string longer than defined size in a column is inserted(INSERT) or updated(UPDATE), the string will be

truncated.

API Reference

559

OLE DB API

OLE DB Programming

Using Data Link Property Dialog Box

In the [Data Link Properties] dialog box, you can check and configure various OLE DB providers provided by the

current Windows operating system.

If you have properly installed the CUBRID OLE DB Provider for Windows, 'CUBRID OLE DB Provider' is displayed

in the provider list of the [Data Link Properties] dialog box, as shown below.

If you click the [Next] button after selecting 'CUBRID OLE DB Provider', the [Connection] tab appears as shown below.

Set the desired link properties in the [Connection] tab.

CUBRID 2008 R4.0 Help

560

• Data source : Enter the name of the CUBRID database.

• Location : Enter the IP address or host name of the server where the CUBRID Broker is running.

• User name : Enter the name of the user who will log on to the database server.

• Password : Enter the password to be used for the database server logon.

Select all connection properties and then click the [All] tab.

API Reference

561

To check every value currently configured, click the [All] tab; to edit the value, double-click the item you want. When

the [Edit Property Value] dialog box appears, enter the desired value and then click [OK]. The figure above shows an

example that configures the [Port] to "31000," and [Fetch Size] to "100."

You can check whether the connection is working properly by clicking the [Test Connection] button in the [Connection]

tab after completing all configuration.

CUBRID 2008 R4.0 Help

562

Configuring Connection String

When you program the CUBRID OLE DB Provider using ADO (ActiveX Data Object) or ADO.net, write the

connection string as follows:

Item Example Description

Provider CUBRIDProvider Provider name

Data source demodb Database name

Location 192.168.1.11 The IP address of the CUBRID Broker Server

User ID PUBLIC User ID

Password xxx Password

Port 30000 Broker port number

Fetch Size 100 Fetch size

A connection string using the above example is as follows:

"Provider = CUBRIDProvider;Data Source = demodb;Location = 192.168.1.11;User ID =

PUBLIC;Password =xxx;Port = 30000;Fetch Size = 100"

Multi-Thread Programming in .NET Environment

To develop programs by using the CUBRID OLE DB Provider in the Microsoft .NET, you should consider the

followings:

API Reference

563

If you develop multi-thread programs by using ADO.NET in the management environment, you need to change the

value of the ApartmentState attribute of the Thread object to a ApartmentState.STA value because the CUBRID OLE

DB Provider supports only Single Threaded Apartment (STA) attributes.

Without any change of given values, the default value of the attribute in the Thread object returns Unknown value,

thereby causing abnormal process or errors during multi-threads programming.

Caution All OLE DB objects are COM objects. Currently, the CUBRID OLE DB Provider supports only the

apartment threading model among COM threading models. It does not support the free threading model. This applies to

not only the .NET but all multi-threaded environment.

Note If a string longer than defined size in a column is inserted(INSERT) or updated(UPDATE), the string will be

truncated.

CUBRID 2008 R4.0 Help

564

PHP API

PHP Programming

General Features

Connection

• Connecting to a database : The first step of a database application is to use the cubrid_connect() or

cubrid_connect_with_url() function which provide a database connection. Once the cubrid_connect()

or cubrid_connect_with_url() function is executed successfully, you can use any functions available in the database.

It is very important to call the cubrid_disconnect() function before the application is terminated completely. The

cubrid_disconnect() function terminates the current transaction as well as the connection handle and all request

handles created by the cubrid_connect() function.

Transactions and auto-commit

CUBRID PHP supports both transaction and auto-commit mode. Auto-commit mode means that every query that you

run has its own implicit transaction. You can use the cubrid_get_autocommit() function to get the status of current

connection auto-commit mode, and use the cubrid_set_autocommit() function to enable/disable auto-commit mode of

current connection. When cubrid_set_autocommit() function is called, concurrent transactions are committed regardless

of the auto-commit mode. The default mode of autocommit-mode is off. You can also use cubrid_connect_with_url()

function to set the autocommit-mode when you establish the database connection. For example:

$con = cubrid_connect_with_url("cci:CUBRID:localhost:33000:demodb:dba::?autocommit=true");

If you need a transaction, you must use the cubrid_set_autocommit() function to disable the auto-commit mode. The

cubrid_commit() or cubrid_rollback() function is used to commit or roll back a transaction. The cubrid_disconnect()

function terminates the transaction and rolls back uncommitted ones.

Processing Queries

The following are basic steps of query execution.

• Creating a connection handle

• Creating a request handle for an SQL query request

• Fetching the result

• Terminating the request handle

$con = cubrid_connect("192.168.0.10", 33000, "demodb");

if($con) {

 $req = cubrid_execute($con, "select * from code")

 if($req) {

 while ($row = cubrid_fetch($req)) {

 echo $row["s_name"];

 echo $row["f_name"];

 }

 cubrid_close_request($req);

 }

 cubrid_disconnect($con);

}

Column types and names of the query result

The cubrid_column_types() function is used to get an array containing column types, and the cubrid_column_names()

function is used to get an array containing column names.

$req = cubrid_execute($con, "select host year, host city from olympic");

if($req) {

 $coltypes = cubrid_column_types($req);

 $colnames = cubrid_column_names($req);

 while (list($key, $coltype) = each ($col_types)) {

API Reference

565

 echo $col_type;

 }

 while (list($key, $colname) = each ($col_names))

 echo $col_name;

 cubrid_close_request($req);

}

Adjusting the cursor

You can configure the position of the query result. The cubrid_move_cursor() function is used to move the cursor to a

certain position from one of three points: the beginning of the query result, the current cursor position and the end of the

query result.

$req = cubrid_execute($con, "select host_year, host_city from olympic order by host_year");

if($req) {

cubrid_move_cursor($req, 20, CUBRID_CURSOR_CURRENT)

 while ($row = cubrid_fetch($req, CUBRID_ASSOC)) {

 echo $row["host_year"].” “;

 echo $row["host_city"].”\n”; }

}

Result array types

One of the following three types of arrays is used in the result of the cubrid_fetch() function. The type of the array can

be determined when the cubrid_fetch() function is called. The associative array uses character string indexes. The

numeric array uses numeric order indexes. The last array type includes both associative and numeric arrays.

• Numeric array

while (list($host_year, $host_city) = cubrid_fetch($req, CUBRID_NUM)) {

 echo $host_year;

 echo $host_city;

}

• Associative array

while ($row = cubrid_fetch($req, CUBRID_ASSOC)) {

 echo $row["host_year"];

 echo $row["host_city"];

}

Catalog Operation

Information about the database schema such as classes, virtual classes, attributes, functions, triggers and constraints can

be obtained by calling the cubrid_schema() function. The return value of the cubrid_schema() function is a two-

dimensional array.

$pk =cubrid_schema($con, CUBRID_SCH_PRIMARY_KEY,"game");

if ($pk) {

print_r($pk);

}

$fk = cubrid_schema($con, CUBRID_SCH_IMPORTED_KEYS, "game");

if ($fk) {

print_r($fk);

}

Processing Errors

When an error occurs, most PHP interface functions display the error message and return false or -1. Each error message,

error code or error facility code can be checked by using the cubrid_error_msg(), cubrid_error_code(), and

cubrid_error_code_facility() functions.

The return value of the cubrid_error_code_facility() function is one of CUBRID_FACILITY_DBMS (DBMS error),

CUBRID_FACILITY_CAS (CAS server error), CUBRID_FACILITY_CCI (CCI error) and

CUBRID_FACILITY_CLIENT (PHP module error).

CUBRID 2008 R4.0 Help

566

CUBRID Features

Using OIDs

With a query that can update the CUBRID_INCLUDE_OID option in the cubrid_execute() function, you can get the

OID value of the current row updated by the executing cubrid_current_oid().

$req =cubrid_execute($con,"select * from person where id =1", CUBRID_INCLUDE_OID);

if ($req) {

while ($row = cubrid_fetch($req)) {

echo cubrid_current_oid($req);

echo $row["id"];

echo $row["name"];

}

cubrid_close_request($req);

}

You can get all attributes, the specified attribute or an attribute of an instance by using the OID.

If you don't specify any attribute in the cubrid_get() function, the values of all attributes are returned (a). If you specify

an attribute as an array data type, an associative array containing the values of the specified attribute is returned (b). If

you specify an attribute as a character string array, the value of the attribute is returned (c).

$attr_array = cubrid_get($con, $oid); // (a)

$attr_array = cubrid_get($con, $oid, array("id", "name")); // (b)

$attr_array = cubrid_get($con, $oid, "id"); // (c)

You can also update an attribute value of an instance by using the OID. To update a single attribute value, specify the

attribute name as a character string type and its value (a). To set multiple attribute values, specify an associative array

containing the attribute names and values (b).

$cubrid_put ($con, $oid, "id", 1); // (a)

$cubrid_put ($con, $oid, array("id"=>1, "name"=>"Tomas")); // (b)

Using Collections

• Collection data types can be used by using either PHP array data types or PHP functions that support array data

types. The following is an example of fetching the query result with the cubrid_fetch() function.

$row = cubrid_fetch ($req);

$col = $row["customer"];

while (list ($key, $cust) = each ($col)) {

echo $cust;

}

• You can also get values of collection attributes. The following is an example of getting collection attribute values

with the cubrid_col_get() function.

$tels = cubrid_col_get ($con, $oid, "tels");

while (list ($key, $tel) = each ($tels)) {

echo $tel."\n";

}

• You can directly update collection type values with cubrid_set_add() and cubrid_set_drop() functions.

$tels = cubrid_col_get ($con, $oid, "tels");

while (list ($key, $tel) = each ($tels)) {

$res = cubrid_set_drop ($con, $oid, "tel", $tel);

}

cubrid_commit ($con);

cubrid_affected_rows

Description

The cubrid_affected_rows() function is used to get the number of rows that have been affected by the SQL statements

(INSERT, DELETE, and UPDATE).

API Reference

567

Syntax

int cubrid_affected_rows([resource $req_identifier])

• req_identifier : Request identifier. If the request identifier is not specified, the last request is assumed.

Return Value

• Success : Returns the number of rows affected by the SQL statement.

• When last SQL statement is not INSERT, UPDATE or DELETE : -1

• When request identifier is not specified and there is no last request : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE cubrid_test");

cubrid_execute($conn, "CREATE TABLE cubrid_test (t varchar)");

for ($i = 0; $i < 5; $i++) {

 cubrid_execute($conn, "INSERT INTO cubrid_test(t) VALUES('cubrid_test')");

}

cubrid_execute($conn, "DELETE FROM cubrid_test");

$affected_num = cubrid_affected_rows();

var_dump($affected_num);

cubrid_disconnect($conn);

?>

The above example will output:

int(5)

See Also

• cubrid_execute

cubrid_bind

Description

The cubrid_bind() function is used to substitute a value for a variable of the cubrid_prepare() with parameters, a

various types in PHP and corresponding types in SQL. If bind_value_type is not given, string will be the default. The

following table shows the types of substitute values:

Support Bind type Corresponding SQL type

Supported STRING CHAR, VARCHAR

NCHAR NCHAR, NVARCHAR

BIT BIT, VARBIT

NUMERIC or NUMBER SHORT, INT, NUMERIC

FLOAT FLOAT

DOUBLE DOUBLE

TIME TIME

DATE DATE

TIMESTAMP TIMESTAMP

OBJECT OBJECT

CUBRID 2008 R4.0 Help

568

BLOB BLOB

CLOB CLOB

NULL NULL

Not supported SET SET

MULTISET MULTISET

SEQUENCE SEQUENCE

Syntax

bool cubrid_bind(resource $req_identifier,mixed $bind_param, mixed $bind_value[,string

$bind_value_type])

• req_identifier : Request identifier as a result of cubrid_prepare()

• bind_param : Parameter identifier. For a prepared statement using named placeholders, this will be a parameter

name of the form :name (Note that the name can only contain digit, alphabet, and underscore, and it cannot begin

with digit. The name length cannot be longer than 32). For a prepared statement using question mark placeholders,

this will be the 1-indexed position of the parameter.

• bind_ value : Actual value to be bound

• bind_value_type : Type of the value to be bound. It can be omitted by default. If it is omitted, the type is

automatically cast to an appropriate one. However, NCHAR, BLOB/CLOB and BIT types must be passed as

arguments.

Note If data to be bound is BLOB/CLOB, CUBRID will map the data as a PHP stream, which introduces a unified

approach to the handling of files and sockets in PHP extension. If the actually bind value type is not stream, CUBRID

will convert it to string.

Return Value

• Success : TRUE

• Failure : FALSE

Example 1

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT code FROM event WHERE sports='Basketball' and

gender='M'");

$row = cubrid_fetch_array($result, CUBRID_ASSOC);

$event_code = $row["code"];

cubrid_close_request($result);

$game_req = cubrid_prepare($conn, "SELECT athlete_code FROM game WHERE host_year=1992 and

event_code=? and nation_code='USA'");

cubrid_bind($game_req, 1, $event_code, "number");

cubrid_execute($game_req);

printf("--- Dream Team (1992 United States men's Olympic basketball team) ---\n");

while ($athlete_code = cubrid_fetch_array($game_req, CUBRID_NUM)) {

 $athlete_req = cubrid_prepare($conn, "SELECT name FROM athlete WHERE code=? AND

nation_code='USA' AND event='Basketball' AND gender='M'");

 cubrid_bind($athlete_req, 1, $athlete_code[0], "number");

 cubrid_execute($athlete_req);

 $row = cubrid_fetch_assoc($athlete_req);

 printf("%s\n", $row["name"]);

}

cubrid_close_request($game_req);

cubrid_close_request($athlete_req);

cubrid_disconnect($conn);

?>

The above example will output:

API Reference

569

--- Dream Team (1992 United States men's Olympic basketball team) ---

Stockton John

Robinson David

Pippen Scottie

Mullin C.

Malone Karl

Laettner C.

Jordan Michael

Johnson Earvin

Ewing Patrick

Drexler Clyde

Bird Larry

Barkley Charles

Example 2

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$sql_stmt = <<<EOD

SELECT s.name FROM stadium s, game g

WHERE s.code = g.stadium_code AND g.medal = :medal_type

GROUP BY g.stadium_code ORDER BY count(medal) DESC LIMIT 1;

EOD;

$req = cubrid_prepare($conn, $sql_stmt);

printf("%-30s %s\n", "Medal Type", "Stadium where most medals were ever won");

cubrid_bind($req, ":medal_type", "G");

cubrid_execute($req);

$row = cubrid_fetch_assoc($req);

printf("%-30s %s\n", "Gold", $row["name"]);

cubrid_bind($req, ":medal_type", "S");

cubrid_execute($req);

$row = cubrid_fetch_assoc($req);

printf("%-30s %s\n", "Silver", $row["name"]);

cubrid_bind($req, ":medal_type", "B");

cubrid_execute($req);

$row = cubrid_fetch_assoc($req);

printf("%-30s %s\n", "Bronze", $row["name"]);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

Medal Type Stadium where most medals were ever won

Gold Olympic Aquatic Centre

Silver Olympic Aquatic Centre

Bronze Sydney Convention and Exhibition Centre

Example 3

<?php

$con = cubrid_connect("localhost", 33000, "foo");

if ($con) {

 $sql = "INSERT INTO php_cubrid_lob_test(doc_content) VALUES(?)";

 $req = cubrid_prepare($con, $sql);

 $fp = fopen("book.txt", "rb");

 cubrid_bind($req, 1, $fp, "blob");

 cubrid_execute($req);

}

?>

Example 4

<?php

CUBRID 2008 R4.0 Help

570

$con = cubrid_connect("localhost", 33000, "foo");

if ($con) {

 $sql = "INSERT INTO php_cubrid_lob_test(image) VALUES(?)";

 $req = cubrid_prepare($con, $sql);

 cubrid_bind($req, 1, “cubrid_logo.png”, "blob");

 cubrid_execute($req);

}

?>

See Also

• cubrid_execute

• cubrid_close_request

cubrid_client_encoding

Description

The cubrid_client_encoding() function returns the current CUBRID connection charset.

Syntax

string cubrid_client_encoding ([resource $conn_identifier])

• conn_identifier : The CUBRID connection. If the connection identifier is not specified, the last connection opened

is assumed.

Return Value

• Success : A string that represents the CUBRID connection charset

• Failure : FALSE

Example

<?php

 $con = cubrid_connect("localhost", 33000, "demodb");

 if (!$con)

 {

 die('Could not connect.');

 }

 printf("CUBRID current charset: %s\n", cubrid_client_encoding($con));

?>

See Also

• cubrid_get_charset

cubrid_close

Description

The cubrid_close() function is used to stop transactions currently being executed, terminate the connection with the

server and close the connection handle. All request handles that are still open will be closed.

Syntax

bool cubrid_close ([resource $con_identifier])

• con_identifier : Connection identifier. If the connection identifier is not specified, the last connection opened is

assumed.

Return Value

• Success : TRUE

API Reference

571

• Failure : FALSE

Example

$con = cubrid_connect("192.168.0.10", 33000, "demodb");

if ($con) {

 echo "connected successfully";

 $req = cubrid_execute($con, "insert into person values(1,'James')");

 if ($req) {

 cubrid_close_request($req);

 cubrid_commit($con);

 } else {

 cubrid_rollback($con);

 }

 cubrid_close($con);

}

See Also

• cubrid_connect

cubrid_close_prepare, cubrid_close_request

Description

The cubrid_close_prepare() function or the cubrid_close_request() function is used to close the request handle given

to the req_identifier parameter and release the memory area related to the handle.

Syntax

int cubrid_close_prepare (resource $req_identifier)

int cubrid_close_request (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_prepare ($conn, "SELECT * FROM olympic WHERE host_year=?");

$host_year = 2004;

cubrid_bind($req, 1, $host_year, "number");

cubrid_execute($req);

printf("%-9s %-11s %-9s %-12s %-12s %-15s %-15s\n",

 "host_year", "host_nation", "host_city", "opening_date",

 "closing_date", "mascot", "slogan");

while ($row = cubrid_fetch_assoc($req)) {

 printf("%-9s %-11s %-9s %-12s %-12s %-15s %-15s\n",

 $row["host_year"], $row["host_nation"], $row["host_city"],

 $row["opening_date"], $row["closing_date"], $row["mascot"], $row["slogan"]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

host_year host_nation host_city opening_date closing_date mascot slogan

2004 Greece Athens 2004-8-13 2004-8-29 Athena Phevos Welcome Home

CUBRID 2008 R4.0 Help

572

See Also

• cubrid_execute

cubrid_close_prepare, cubrid_close_request

Description

The cubrid_close_prepare() function or the cubrid_close_request() function is used to close the request handle given

to the req_identifier parameter and release the memory area related to the handle.

Syntax

int cubrid_close_prepare (resource $req_identifier)

int cubrid_close_request (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_prepare ($conn, "SELECT * FROM olympic WHERE host_year=?");

$host_year = 2004;

cubrid_bind($req, 1, $host_year, "number");

cubrid_execute($req);

printf("%-9s %-11s %-9s %-12s %-12s %-15s %-15s\n",

 "host_year", "host_nation", "host_city", "opening_date",

 "closing_date", "mascot", "slogan");

while ($row = cubrid_fetch_assoc($req)) {

 printf("%-9s %-11s %-9s %-12s %-12s %-15s %-15s\n",

 $row["host_year"], $row["host_nation"], $row["host_city"],

 $row["opening_date"], $row["closing_date"], $row["mascot"], $row["slogan"]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

host_year host_nation host_city opening_date closing_date mascot slogan

2004 Greece Athens 2004-8-13 2004-8-29 Athena Phevos Welcome Home

See Also

• cubrid_execute

cubrid_col_get

Description

The cubrid_col_get() function is used to get the elements of the given collection type (set, multiset, sequence) attribute

in the form of an array.

Syntax

array cubrid_col_get (resource $conn_identifier, string $oid, string $attr_name)

API Reference

573

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the attribute to be read from the instance

Return Value

• Success : An array that contains the desired elements (0 : default numeric array)

• Failure : FALSE. If an error occurs, a warning message is displayed to distinguish it from a collection without

attributes or NULL. You can check the error with cubrid_error_code().

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

$size = cubrid_col_size($conn, $oid, "b");

var_dump($size);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

int(3)

cubrid_col_size

Description

The cubrid_col_size() function is used to get the number of elements of a collection type (set, multiset, sequence)

attribute.

Syntax

int cubrid_col_size(resource $conn_identifier, string $oid, string $attr_name)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

Return Value

• Success : The number of elements

• Failure : FALSE

CUBRID 2008 R4.0 Help

574

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

$size = cubrid_col_size($conn, $oid, "b");

var_dump($size);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

int(3)

cubrid_column_names

Description

The cubrid_column_names() function is used to get column names in the query results by using req_identifier.

Syntax

array cubrid_column_names (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : An array that contains the column names

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$column_names = cubrid_column_names($result);

$column_types = cubrid_column_types($result);

printf("%-30s %-30s %-15s\n", "Column Names", "Column Types", "Column Maxlen");

for($i = 0, $size = count($column_names); $i < $size; $i++) {

 $column_len = cubrid_field_len($result, $i);

 printf("%-30s %-30s %-15s\n", $column_names[$i], $column_types[$i], $column_len); }

API Reference

575

cubrid_disconnect($conn);

?>

The above example will output:

Column Names Column Types Column Maxlen

host_year integer 11

event_code integer 11

athlete_code integer 11

stadium_code integer 11

nation_code char(3) 3

medal char(1) 1

game_date date 10

See Also

• cubrid_execute

• cubrid_prepare

• cubrid_column_types

cubrid_column_types

Description

The cubrid_colulmn_types() function is used to get column types in the query results by using req_identifier.

Syntax

array cubrid_column_types (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : An array that contains the column types

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$column_names = cubrid_column_names($result);

$column_types = cubrid_column_types($result);

printf("%-30s %-30s %-15s\n", "Column Names", "Column Types", "Column Maxlen");

for($i = 0, $size = count($column_names); $i < $size; $i++) {

 $column_len = cubrid_field_len($result, $i);

 printf("%-30s %-30s %-15s\n", $column_names[$i], $column_types[$i], $column_len); }

cubrid_disconnect($conn);

?>

The above example will output:

Column Names Column Types Column Maxlen

host_year integer 11

event_code integer 11

athlete_code integer 11

stadium_code integer 11

nation_code char(3) 3

medal char(1) 1

game_date date 10

CUBRID 2008 R4.0 Help

576

See Also

• cubrid_execute

• cubrid_prepare

• cubrid_column_names

cubrid_commit

Description

The cubrid_commit() function is used to commit on the transaction pointed by conn_identifier, currently in progress.

Connection to the server is closed after the cubrid_commit() function is called; the connection handle is still valid,

though.

In CUBRID PHP, an auto-commit mode is enabled by default for transaction management. If you want to set auto-

commit to off when a new transaction starts, you must use the cubrid_set_autocommit() function.

Syntax

bool cubrid_commit (int $conn_identifier)

• conn_identifier : Connection identifier

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("127.0.0.1", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE publishers");

$sql = <<EOD

CREATE TABLE publishers(

pub_id CHAR(3),

pub_name VARCHAR(20),

city VARCHAR(15),

state CHAR(2),

country VARCHAR(15)

)

EOD;

if (!cubrid_execute($conn, $sql)) {

 printf("Error facility: %d\nError code: %d\nError msg: %s\n",

cubrid_error_code_facility(), cubrid_error_code(), cubrid_error_msg());

 cubrid_disconnect($conn);

 exit;

}

$req = cubrid_prepare($conn, "INSERT INTO publishers VALUES(?, ?, ?, ?, ?)");

$id_list = array("P01", "P02", "P03", "P04");

$name_list = array("Abatis Publishers", "Core Dump Books", "Schadenfreude Press",

"Tenterhooks Press");

$city_list = array("New York", "San Francisco", "Hamburg", "Berkeley");

$state_list = array("NY", "CA", NULL, "CA");

$country_list = array("USA", "USA", "Germany", "USA");

for ($i = 0, $size = count($id_list); $i < $size; $i++) {

 cubrid_bind($req, 1, $id_list[$i]);

 cubrid_bind($req, 2, $name_list[$i]);

 cubrid_bind($req, 3, $city_list[$i]);

 cubrid_bind($req, 4, $state_list[$i]);

 cubrid_bind($req, 5, $country_list[$i]);

API Reference

577

 if (!($ret = cubrid_execute($req))) {

 break;

 }

}

if (!$ret) {

 cubrid_rollback($conn);

} else {

 cubrid_commit($conn);

 $req = cubrid_execute($conn, "SELECT * FROM publishers");

 while ($result = cubrid_fetch_assoc($req)) {

 printf("%-3s %-20s %-15s %-3s %-15s\n",

 $result["pub_id"], $result["pub_name"], $result["city"], $result["state"],

$result["country"]);

 }

}

cubrid_disconnect($conn);

?>

The above example will output:

P01 Abatis Publishers New York NY USA

P02 Core Dump Books San Francisco CA USA

P03 Schadenfreude Press Hamburg Germany

P04 Tenterhooks Press Berkeley CA USA

See Also

• cubrid_rollback

cubrid_connect

Description

The cubrid_connect() function is used to configure the connection environment with the server by using the given

information such as the server address, port number, database name, user name and password. If the user name and

password are not set, PUBLIC is used as default.

Syntax

resource cubrid_connect(string $host, int $port, string $dbname[, string $userid[, string

$passwd]])

• host : IP address and host name of the Broker Server

• port : Port number of the Broker Server

• dbname : Database name

• userid : Database user name

• passwd : Database user password

Return Value

• Success : Connection handle

• Failure : FALSE

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33000, "demodb");

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

CUBRID 2008 R4.0 Help

578

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

See Also

• cubrid_disconnect

cubrid_connect_with_url

Description

The cubrid_connect_with_url() function tries to connect a database by using connection information passed with an

url string argument. If the HA feature is enabled in PHP, you must specify connection information of the active server

and connection information of the standby server, which is used for failover when failure occurs, in the url string

argument of this function. If it has succeeded, the ID of connection handle is returned; if it fails, an error code is

returned.

Syntax

resource cubrid_connect_with_url(string $conn_url[, string $db_user, string $db_password])

• conn_url : A character string that contains server connection information

• db_user : A name of the database user

• db_password : A database user password

<conn_url> ::=cci:cubrid:<host>:<db_name>:<db_user>:<db_password>:[?<properties>]

<properties> ::= <property> [&<property>]

<property> ::= autocommit=<autocommit_mode>

<property> ::= althosts=<alternative_hosts> [&rctime=<time>]

<alternative_hosts> ::= <standby_broker1_host>:<port> [,<standby_broker2_host>:<port>]

<host> := HOSTNAME | IP_ADDR

<time> := SECOND

• host : A host name or IP address of the master database

API Reference

579

• db_name : A name of the database

• autocommit=true/false : The database connection auto commit mode.

• althosts =standby_broker1_host, standby_broker2_host, . . . : Specifies the broker information of the standby

server, which is used for failover when it is impossible to connect to the active server. You can specify multiple

brokers for failover, and the connection to the brokers is attempted in the order listed in alhosts.

• rctime : An interval between the attempts to connect to the active broker in which failure occurred. After a failure

occurs, the system connects to the broker specified by althosts (failover), terminates the transaction, and then

attempts to connect to the active broker of the master database at every rctime. The default value is 600 seconds.

• db_user : (IN) A name of the database user

• db_passwd : (IN) A database user password

Return Value

• Success : Connection identifier

• Failure : FALSE

Example

<?php

$con = cubrid_connect_with_url("cci:CUBRID:localhost:33000:demodb:dba::?autocommit=true");

?>

cubrid_current_oid

Description

The cubrid_current_oid() function is used to get the OID of the current cursor location from the query result. To use

cubrid_current_oid(), the query executed must be an updatable query, and the CUBRID_INCLUDE_OID option

must be included during the query execution.

Syntax

string cubrid_current_oid (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : OID of the current cursor position

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code", CUBRID_INCLUDE_OID);

$oid = cubrid_current_oid($req);

$res = cubrid_get($conn, $oid);

print_r($res);

cubrid_disconnect($conn);

?>

The above example will output:

Array

(

 [s_name] => X

 [f_name] => Mixed

)

CUBRID 2008 R4.0 Help

580

See Also

• cubrid_execute

cubrid_data_seek

Description

The cubrid_data_seek() function moves the internal row pointer of the CUBRID result associated with the specified

result identifier to point to the specified row_number. The next call to a CUBRID fetch function, such as

cubrid_fetch_assoc(), would return that row.

Syntax

bool cubrid_data_seek (resource $req_identifier, int $row_number)

• req_identifier : Result identifier

• row_number : The desired row number of the new result pointer

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("127.0.0.1", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code");

cubrid_data_seek($req, 0);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_data_seek($req, 2);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_data_seek($req, 4);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(2) {

 [0]=>

 string(1) "X"

 [1]=>

 string(5) "Mixed"

}

array(2) {

 [0]=>

 string(1) "M"

 [1]=>

 string(3) "Man"

}

array(2) {

 [0]=>

 string(1) "S"

 [1]=>

 string(6) "Silver"

}

API Reference

581

cubrid_ db_name

Description

The cubrid_db_name() functions is used to get db name from results of cubrid_list_dbs().

Syntax

string cubrid_db_name(resource $result, int $index)

• result : The result from a call to cubrid_list_dbs

• index : The index into the result set

Return Value

• Success : database name

• Failure : The index into the result set

Example

<?php

error_reporting(E_ALL); $conn = cubrid_connect('dbhost', 33000, 'demodb');

$db_list = cubrid_list_dbs($conn);

$i = 0;

$cnt = cubrid_num_rows($db_list);

while ($i < $cnt) {

echo cubrid_db_name($db_list, $i) . "\n";

 $i++;

}

?>

See Also

• cubrid_list_dbs

cubrid_disconnect

Description

The cubrid_disconnect() function is used to stop transactions currently being executed, terminate the connection with

the server and close the connection handle. All request handles that are still open will be closed.

Syntax

bool cubrid_disconnect (resource $conn_identifier)

• conn_identifier : Connection identifier

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33000, "demodb");

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

CUBRID 2008 R4.0 Help

582

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

See Also

• cubrid_connect

cubrid_drop

Description

The cubrid_drop() function is used to drop the desired instance from the database by using the OID.

Syntax

bool cubrid_drop (resource $conn_identifier, string $oid)

• conn_identifier : Connection identifier

• oid : OID of the instance to be deleted

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

API Reference

583

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(2, {4,5,7}, {44,55,66,666},

'b')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

printf("--- Before Drop: ---\n");

$attr = cubrid_get($conn, $oid);

var_dump($attr);

if (cubrid_drop($conn, $oid)) {

 cubrid_commit($conn);

} else {

 cubrid_rollback($conn);

}

cubrid_close_request($req);

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

printf("\n--- After Drop: ---\n");

$attr = cubrid_get($conn, $oid);

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

--- Before Drop: ---

array(4) {

 ["a"]=>

 string(1) "1"

 ["b"]=>

 array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=> string(1) "3"

 }

 ["c"]=>

 array(4) {

 [0]=>

 string(2) "11"

 [1]=> string(2) "22"

 [2]=> string(2) "33"

 [3]=>

 string(3) "333"

 }

 ["d"]=>

 string(10) "a "

 }

--- After Drop: ---

array(4) {

 ["a"]=>

 string(1) "2"

 ["b"]=>

 array(3) {

 [0]=> string(1) "4"

 [1]=> string(1) "5"

 [2]=> string(1) "7"

 }

 ["c"]=>

 array(4) {

 [0]=>

CUBRID 2008 R4.0 Help

584

 string(2) "44"

 [1]=>

 string(2) "55"

 [2]=> string(2) "66"

 [3]=> string(3) "666"

 } ["d"]=>

 string(10) "b "

}

See Also

• cubrid_is_instance

cubrid_errno, cubrid_error_code

Description

The cubrid_errno() function or the cubrid_error_code() function is used to get the code of the error that occurred

during the API execution. Usually, the error message can be fetched when the API returns FALSE.

Syntax

int cubrid_errno ()

int cubrid_error_code ()

Return Value

• Error code

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_prepare($conn , "SELECT * FROM code WHERE s_name=?");

$req = @cubrid_execute($req);

if (!$req) {

 printf("Error facility: %d\nError code: %d\nError msg: %s\n",

 cubrid_error_code_facility(), cubrid_error_code(), cubrid_error_msg());

 cubrid_disconnect($conn);

 exit;

}

?>

The above example will output:

Error facility: 4

Error code: -2015

Error msg: Some parameter not binded

See Also

• cubrid_error_code_facility

• cubrid_error_msg

cubrid_error, cubrid_error_msg

Description

The cubrid_error() function or the cubrid_error_msg() function is used to get the error message that occurred during

the API execution. Usually, the error message can be fetched when the API returns FALSE.

Syntax

string cubrid_error ()

API Reference

585

string cubrid_error_msg ()

Return Value

• Occurred error message

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

if (!@cubrid_schema($conn, 100000)) {

 printf("Error facility: %d\nError code: %d\nError msg: %s\n",

 cubrid_error_code_facility(), cubrid_error_code(), cubrid_error_msg());

 cubrid_disconnect($conn);

 exit;

}

?>

The above example will output:

Error facility: 2

Error code: -1015

Error msg: Invalid T_CCI_SCH_TYPE value

See Also

• cubrid_error_code

• cubrid_error_code_facility

cubrid_error_code_facility

Description

The cubrid_error_code_facility() function is used to get a facility code (level at which the error occurred) from the

code of the error that occurred during the API execution. Usually, the error code can be fetched when the API returns

FALSE.

Syntax

int cubrid_error_code_facility ()

Return Value

• Facility code of the occurred error code :

CUBRID_FACILITY_DBMS, CUBRID_FACILITY_CAS,

CUBRID_FACILITY_CCI, CUBRID_FACILITY_CLIENT

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = @cubrid_execute($conn, "SELECT * FROM unknown");

if (!$req) {

 printf("Error facility: %d\nError code: %d\nError msg: %s\n",

 cubrid_error_code_facility(), cubrid_error_code(), cubrid_error_msg());

 cubrid_disconnect($conn);

 exit;

}

?>

The above example will output:

Error facility: 1

Error code: -493

Error msg: Syntax: syntax error, unexpected UNKNOWN

CUBRID 2008 R4.0 Help

586

See Also

• cubrid_error_code

• cubrid_error_msg

cubrid_execute

Description

The cubrid_execute() function is used to execute a given SQL statement. It executes a query by using conn_identifier

and SQL and then returns the request identifier created. This is an appropriate way to simply execute a query when

parameter binding is not necessary.

The cubrid_execute() function is also used when executing Prepared Statement with cubrid_prepare and cubrid_bind.

In this case, required parameters are req_identifier and option.

The option parameter is used to determine whether to get OID after query execution and whether to execute the query in

synchronous or asynchronous mode. CUBRID_INCLUDE_OID and CUBRID_ASYNC (or

CUBRID_EXEC_QUERY_ALL if you want to execute multiple SQL statements) can be specified by using a bitwise

OR operator (|). If not specified, neither of them is selected.

If the flag CUBRID_EXEC_QUERY_ALL is set, a synchronous mode (sync_mode) is used to retrieve query results

and in such case the following rules are applied.

• The return value is the result of the first query.

• If an error occurs in any query, the execution is processed as a failure.

• For a query composed of in a query composed of q1 q2 q3 if an error occurs in q2 after q1 succeeds the execution,

the result of q1 remains valid. That is, the previous successful query executions are not rolled back when an error

occurs.

• If a query is executed successfully, the result of the second query can be obtained using cubrid_next_result().

If req_identifier is the first argument for the execution of cubrid_prepare(), only CUBRID_ASYNC or

CUBRID_EXEC_QUERY_ALL can be used as an option.

Syntax

resource cubrid_execute (resource $conn_identifier, string $SQL [, int $option])

• conn_identifier : Connection identifier

• SQL : SQL statement to be executed

• option : Query execution option - CUBRID_INCLUDE_OID, CUBRID_ASYNC,

CUBRID_EXEC_QUERY_ALL

bool cubrid_execute (resource &req_identifier[, int $option])

• req_identifier : request identifier

• option : Query execution option - CUBBRID_ASYNC, CUBRID_EXEC_QUERY_ALL

Return Value

• Success

• Request identifier : When process is successful and first parameter is conn_identifier

• TRUE : When process is successful and first argument is req_identifier

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT code FROM event WHERE name='100m Butterfly' and

gender='M'", CUBRID_ASYNC);

$row = cubrid_fetch_array($result, CUBRID_ASSOC);

$event_code = $row["code"];

API Reference

587

cubrid_close_request($result);

$history_req = cubrid_prepare($conn, "SELECT * FROM history WHERE event_code=?");

cubrid_bind($history_req, 1, $event_code, "number");

cubrid_execute($history_req);

printf("%-20s %-9s %-10s %-5s\n", "athlete", "host_year", "score", "unit");

while ($row = cubrid_fetch_array($history_req, CUBRID_ASSOC)) {

 printf("%-20s %-9s %-10s %-5s\n",

 $row["athlete"], $row["host_year"], $row["score"], $row["unit"]);

}

cubrid_close_request($history_req);

cubrid_disconnect($conn);

?>

The above example will output:

athlete host_year score unit

Phelps Michael 2004 51.25 time

See Also

• cubrid_close_request

• cubrid_commit

• cubrid_rollback

• cubrid_prepare

• cubrid_bind

cubrid_fetch

Description

The cubrid_fetch() function is used to fetch one row from the query result. After the fetch, the cursor automatically

moves to the next row.

Syntax

mixed cubrid_fetch (resource &result [, int &type])

• result : Result that comes from a call to cubrid_execute()

• type : Type of the result array to be fetched. CUBRID_NUM, CUBRID_ASSOC, CUBRID_BOTH,

CUBRID_OBJECT

Return Value

• Success : Result array or object.

It is determined by the type parameter. If the type parameter is omitted, CUBRID_BOTH is used. If you want to

get the query result as an object data type, column names must comply with identifier name rules allowed in PHP.

For example, a column name "count(*)" cannot be fetched and used as an object type.

The following are different result types depending on type.

• CUBRID_NUM : Numeric array (0-default)

• CUBRID_ASSOC : Associative array

• CUBRID_BOTH : Numeric and associative arrays (default value)

• CUBRID_OBJECT : An object that has the attribute whose name is the same as the column name of the query

result

• Failure or the end is reached : FALSE

Example

<?php

CUBRID 2008 R4.0 Help

588

$conn = cubrid_connect("localhost", 33088, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM stadium WHERE nation_code='GRE' AND seats >

10000");

printf("%-40s %-10s %-6s %-20s\n", "name", "area", "seats", "address");

while ($row = cubrid_fetch($req)) {

 printf("%-40s %-10s %-6s %-20s\n",

 $row["name"], $row["area"], $row["seats"], $row["address"]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

name area seats address

Panathinaiko Stadium 86300.00 50000 Athens, Greece

Olympic Stadium 54700.00 13000 Athens, Greece

Olympic Indoor Hall 34100.00 18800 Athens, Greece

Olympic Hall 52400.00 21000 Athens, Greece

Olympic Aquatic Centre 42500.00 11500 Athens, Greece

Markopoulo Olympic Equestrian Centre 64000.00 15000 Markopoulo, Athens,

Greece

Faliro Coastal Zone Olympic Complex 34650.00 12171 Faliro, Athens,

Greece

Athens Olympic Stadium 120400.00 71030 Maroussi, Athens,

Greece

Ano Liossia 34000.00 12000 Ano Liosia, Athens,

Greece

See Also

• cubrid_execute

cubrid_fetch_array

Description

The cubrid_fetch_array() function is used to get a single row from the query result and returns an array. The cursor

automatically moves to the next row after getting the result.

Syntax

array cubrid_fetch_array(resource $result[, int $type = CUBRID_BOTH])

• result : Result that comes from a call to cubrid_execute()

• type : Type of the result array to be fetched. CUBRID_NUM, CUBRID_ASSOC, CUBRID_BOTH

Return Value

• Success : Returns an array of strings that corresponds to the fetched row, when process is successful.

The type of returned array depends on how type is defined. By using CUBRID_BOTH (default), you'll get an array

with both associative and number indices, and you can decide which data type to use by setting the type argument.

The type variable can be set to one of the following values:

• CUBRID_NUM : Numeric array (0-based)

• CUBRID_ASSOC : Associative array

• CUBRID_BOTH : Numeric and associative arrays (default value)

• Failure or the end is reached : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT name,area,seats,address FROM stadium WHERE

nation_code='GRE' AND seats > 10000");

file:///D:/R4.0/api/api_php_execute

API Reference

589

printf("%-40s %-10s %-6s %-20s\n", "name", "area", "seats", "address");

while ($row = cubrid_fetch_array($req, CUBRID_NUM)) {

 printf("%-40s %-10s %-6s %-20s\n", $row[0], $row[1], $row[2], $row[3]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

name a rea seats address

Panathinaiko Stadium 86300.00 50000 Athens, Greece

Olympic Stadium 54700.00 13000 Athens, Greece

Olympic Indoor Hall 34100.00 18800 Athens, Greece

Olympic Hall 52400.00 21000 Athens, Greece

Olympic Aquatic Centre 42500.00 11500 Athens, Greece

Markopoulo Olympic Equestrian Centre 64000.00 15000 Markopoulo, Athens,

Greece

Faliro Coastal Zone Olympic Complex 34650.00 12171 Faliro, Athens,

Greece Athens

Olympic Stadium 120400.00 71030 Maroussi, Athens,

Greece

Ano Liossia 34000.00 12000 Ano Liosia, Athens,

Greece

See Also

• cubrid_execute

cubrid_fetch_assoc

Description

The cubrid_fetch_assoc() function is used to returns an associative array that corresponds to the fetched row and

moves the internal data pointer ahead or FALSE if there are no more rows.

Syntax

array cubrid_fetch_assoc (resource $result)

• result : Result that comes from a call to cubrid_execute()

Return Value

• Success : Return associative array

• Failure or the end is reached : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT name,area,seats,address FROM stadium WHERE

nation_code='GRE' AND seats > 10000");

printf("%-40s %-10s %-6s %-20s\n", "name", "area", "seats", "address");

while ($row = cubrid_fetch_assoc($req)) {

 printf("%-40s %-10s %-6s %-20s\n",

 $row["name"], $row["area"], $row["seats"], $row["address"]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID 2008 R4.0 Help

590

name area seats address

Panathinaiko Stadium 86300.00 50000 Athens, Greece

Olympic Stadium 54700.00 13000 Athens, Greece

Olympic Indoor Hall 34100.00 18800 Athens, Greece

Olympic Hall 52400.00 21000 Athens, Greece

Olympic Aquatic Centre 42500.00 11500 Athens, Greece

Markopoulo Olympic Equestrian Centre 64000.00 15000 Markopoulo, Athens,

Greece

Faliro Coastal Zone Olympic Complex 34650.00 12171 Faliro, Athens,

Greece

Athens Olympic Stadium 120400.00 71030 Maroussi, Athens,

Greece

Ano Liossia 34000.00 12000 Ano Liosia, Athens,

Greece

cubrid_fetch_field

Description

The cubrid_fetch_field() function is used to return an object containing field information. This function can be used to

obtain information about fields in the provided query result. The properties of the object are:

• name : Column name

• table : Name of the table where the column belongs

• def : Default value of the column

• max_length : Maximum length of the column

• not_null : 1 if the column cannot be NULL

• unique_key : 1 if the column is a unique key

• multiple_key : 1 if the column is a non-unique key

• numeric : 1 if the column is numeric

• type : The type of the column

Syntax

object cubrid_fetch_field (resource $result [, int $field_offset= 0])

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. If the field offset is not specified, the next field that was not yet retrieved

by this function is retrieved. The field_offset starts at 0.

Return Value

• Success: Object with certain properties of the specific column

• Failure or the end is reached : FALSE

Example

< ?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT event_code,athlete_code,nation_code,game_date FROM

game WHERE host_year=1988 and event_code=20001;");

var_dump(cubrid_fetch_row($req));

cubrid_field_seek($req, 1);

$field = cubrid_fetch_field($req);

printf("\n--- Field Properties ---\n");

printf("%-30s %s\n", "name:", $field->name);

printf("%-30s %s\n", "table:", $field->table);

printf("%-30s \"%s\"\n", "default value:", $field->def);

printf("%-30s %d\n", "max lenght:", $field->max_length);

printf("%-30s %d\n", "not null:", $field->not_null);

printf("%-30s %d\n", "unique key:", $field->unique_key);

printf("%-30s %d\n", "multiple key:", $field->multiple_key);

API Reference

591

printf("%-30s %d\n", "numeric:", $field->numeric);

printf("%-30s %s\n", "type:", $field->type);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 [0]=>

 string(5) "20001"

 [1]=>

 string(5) "16681"

 [2]=>

 string(3) "KOR"

 [3]=> string(9) "1988-9-30"

}

--- Field Properties ---

name: athlete_code

table: game

default value: ""

max lenght: 5

not null: 1

unique key: 1

multiple key: 0

numeric: 1

type: integer

cubrid_fetch_lengths

Description

The cubrid_fetch_lengths() function is used to return an array that corresponds to the lengths of each field in the last

row fetched by CUBRID or FALSE on failure.

Syntax

array cubrid_fetch_lengths (resource $result)

• result : The result handle that is being evaluated. This result comes from a call to cubrid_execute().

Note If field data type is BLOB/CLOB, you should get its length by using cubrid_lob_size().

Return Value

• Success : Returns numeric array with the lengths.

• Failure or the end is reached : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$row = cubrid_fetch_row($result);

print_r($row);

$lens = cubrid_fetch_lengths($result);

print_r($lens);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID 2008 R4.0 Help

592

Array

(

 [0] => 2004

 [1] => 20085

 [2] => 15118

 [3] => 30134

 [4] => AUS

 [5] => G

 [6] => 2004-8-20

)

Array

(

 [0] => 4

 [1] => 5

 [2] => 5

 [3] => 5

 [4] => 3

 [5] => 1

 [6] => 9

)

cubrid_fetch_object

Description

The cubrid_fetch_object() function is used to return the current row result set as an object, where the attributes of the

object represent the names of the fields found within the result set. The cursor automatically moves to the next row after

getting the result.

Syntax

object cubrid_fetch_object (resource

$result[, string $class_name="stdClass" [, array $params]])

• result : Result that comes from a call to cubrid_execute()

• class_name : The name of the class to instantiate. If not specified, a stdClass (stdClass is PHP's generic empty

class that's used when casting other types to objects) object is returned.

• params : An optional array of parameters to pass to the constructor for class_name objects

Return Value

• Success: Returnan object.

• Failure or the end is reached : FALSE

Example

<?php

$conn = cubrid_connect(“127.0.0.1”, 33000, “demodb”, “PUBLIC”, “”);

$res = cubrid_execute($conn, “SELECT * FROM code”);

var_dump(cubrid_fetch_object($res));

class demodb_code {

 public $s_name = null;

 public $f_name = null;

 public function toString() {

 var_dump($this);

 }

}

var_dump(cubrid_fetch_object($res, “demodb_code”);

class demodb_code_construct extends demodb_code {

public function __construct($s, $f) {

$this->s_name = $s;

$this->f_name = $f;

API Reference

593

}

}

var_dump(cubrid_fetch_object($res, 'demodb_code_construct', array('s_name', 'f_name')));

var_dump(cubrid_fetch_object($res));

cubrid_close_request($res);

cubrid_disconnect($conn);

?>

Output:

object(stdClass)#1 (2) {

 ["s_name"]=>

string(1) "X"

 ["f_name"]=>

string(5) "Mixed"

}

object(demodb_code)#1 (2) {

 ["s_name"]=>

string(1) "W"

 ["f_name"]=>

string(5) "Woman"

}

object(demodb_code_construct)#1 (2) {

 ["s_name"]=>

string(6) "s_name"

 ["f_name"]=>

string(6) "f_name"

}

object(stdClass)#1 (2) {

 ["s_name"]=>

string(1) "B"

 ["f_name"]=>

string(6) "Bronze"

}

cubrid_fetch_row

Description

The cubrid_fetch_row() function is used to return a numerical array that corresponds to the fetched row and moves the

internal data pointer ahead, or FALSE if there are no more rows.

Syntax

array cubrid_fetch_row (resource $result)

• result : Result that comes from a call to cubrid_execute()

Return Value

• Success: Return an numeric array.

• Failure or the end is reached : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT name,area,seats,address FROM stadium WHERE

nation_code='GRE' AND seats > 10000");

printf("%-40s %-10s %-6s %-20s\n", "name", "area", "seats", "address");

while ($row = cubrid_fetch_row($req)) {

 printf("%-40s %-10s %-6s %-20s\n", $row[0], $row[1], $row[2], $row[3]);

}

cubrid_close_request($req);

cubrid_disconnect($conn);

CUBRID 2008 R4.0 Help

594

?>

The above example will output:

name area seats address

Panathinaiko Stadium 86300.00 50000 Athens, Greece

Olympic Stadium 54700.00 13000 Athens, Greece

Olympic Indoor Hall 34100.00 18800 Athens, Greece

Olympic Hall 52400.00 21000 Athens, Greece

Olympic Aquatic Centre 42500.00 11500 Athens, Greece

Markopoulo Olympic Equestrian Centre 64000.00 15000 Markopoulo, Athens, Greece

Faliro Coastal Zone Olympic Complex 34650.00 12171 Faliro, Athens, Greece

Athens Olympic Stadium 120400.00 71030 Maroussi, Athens, Greece

Ano Liossia 34000.00 12000 Ano Liosia, Athens, Greece

cubrid_field_flags

Description

The cubrid_field_flags() function is used to return the field flags of the specified field. The flags are reported as a

single word per flag separated by a single space, so that you can split the returned value using explode().

Syntax

string cubrid_field_flags (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The field_offset starts at 0.

Return Value

• Success: A string with flags

• Invalid field_offset value : FALSE

• SQL sentence is not SELECT : -1

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$col_num = cubrid_num_cols($result);

printf("%-30s %s\n", "Field Name", "Field Flags");

for($i = 0; $i < $col_num; $i++) {

 printf("%-30s %s\n", cubrid_field_name($result, $i), cubrid_field_flags($result, $i));

}

cubrid_disconnect($conn);

?>

The above example will output:

Field Name Field Flags

host_year not_null primary_key unique_key

event_code not_null primary_key unique_key foreign_key

athlete_code not_null primary_key unique_key foreign_key

stadium_code not_null

nation_code

medal

game_date

API Reference

595

cubrid_field_len

Description

The cubrid_field_len() function is used to return the length of the specified field on success, or FALSE on failure.

Syntax

string cubrid_field_len (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error occurs.

Return Value

• Success: Maximum length

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$column_names = cubrid_column_names($result);

$column_types = cubrid_column_types($result);

printf("%-30s %-30s %-15s\n", "Column Names", "Column Types", "Column Maxlen");

for($i = 0, $size = count($column_names); $i < $size; $i++) {

 $column_len = cubrid_field_len($result, $i);

 printf("%-30s %-30s %-15s\n", $column_names[$i], $column_types[$i], $column_len);

}

cubrid_disconnect($conn);

?>

The above example will output:

Column Names Column Types Column Maxlen

host_year integer 11

event_code integer 11

athlete_code integer 11

stadium_code integer 11

nation_code char(3) 3

medal char(1) 1

game_date date 10

cubrid_field_name

Description

The cubrid_field_name() function is used to return the name of the specified field index on success, or FALSE on

failure.

Syntax

string cubrid_field_name (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error occurs.

Return Value

• Success: Name of specified field index

• Failure : FALSE

CUBRID 2008 R4.0 Help

596

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM game WHERE host_year=2004 AND

nation_code='AUS' AND medal='G'");

$col_num = cubrid_num_cols($result);

printf("%-30s %s\n", "Field Name", "Field Flags");

for($i = 0; $i < $col_num; $i++) {

 printf("%-30s %s\n", cubrid_field_name($result, $i), cubrid_field_flags($result, $i));

}

cubrid_disconnect($conn);

?>

The above example will output:

Field Name Field Flags

host_year not_null primary_key unique_key

event_code not_null primary_key unique_key foreign_key

athlete_code not_null primary_key unique_key foreign_key

stadium_code not_null

nation_code

medal

game_date

cubrid_field_seek

Description

The cubrid_field_seek() function is used to set a field offset value to be used in cubrid_fetch_field() function. If the

cubrid_fetch_field() function that does not include a field offset is called, the field offset specified in this function is

returned.

Syntax

bool cubrid_field_seek (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error occurs.

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT event_code,athlete_code,nation_code,game_date FROM

game WHERE host_year=1988 and event_code=20001;");

var_dump(cubrid_fetch_row($req));

cubrid_field_seek($req, 1);

$field = cubrid_fetch_field($req);

printf("\n--- Field Properties ---\n");

printf("%-30s %s\n", "name:", $field->name);

printf("%-30s %s\n", "table:", $field->table);

printf("%-30s \"%s\"\n", "default value:", $field->def);

printf("%-30s %d\n", "max lenght:", $field->max_length);

printf("%-30s %d\n", "not null:", $field->not_null);

printf("%-30s %d\n", "unique key:", $field->unique_key);

printf("%-30s %d\n", "multiple key:", $field->multiple_key);

printf("%-30s %d\n", "numeric:", $field->numeric);

printf("%-30s %s\n", "type:", $field->type);

API Reference

597

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 [0]=>

 string(5) "20001"

 [1]=>

 string(5) "16681"

 [2]=>

 string(3) "KOR"

 [3]=>

 string(9) "1988-9-30"

}

--- Field Properties ---

name: athlete_code

table: game

default value: ""

max length: 5

not null: 1

unique key: 1

multiple key: 0

numeric: 1

type: integer

cubrid_field_table

Description

The cubrid_field_table() function is used to return the name of the table that the specified field is in.

Syntax

string cubrid_field_table (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error occurs.

Return Value

• Success : Name of the table of the specified field

• Invalid field_offset value : FALSE

• SQL sentence is not SELECT : -1

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM code");

$col_num = cubrid_num_cols($result);

printf("%-15s %-15s %s\n", "Field Table", "Field Name", "Field Type");

for($i = 0; $i < $col_num; $i++) {

 printf("%-15s %-15s %s\n",

 cubrid_field_table($result, $i), cubrid_field_name($result, $i),

cubrid_field_type($result, $i));

}

cubrid_disconnect($conn);

?>

The above example will output:

Field Table Field Name Field Type

code s_name char(1)

CUBRID 2008 R4.0 Help

598

code f_name varchar(6)

cubrid_field_type

Description

The cubrid_field_type() function is similar to the cubrid_field_name() function. The arguments are identical, but the

field type is returned instead. The returned field type will be one of "int", "real", "string", etc.

Syntax

string cubrid_field_type (resource $result , int $field_offset)

• result : Result that comes from a call to cubrid_execute()

• field_offset : The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error occurs.

Result Value

• Success : Type of the column

• When invalid field_offset value : FALSE

• SQL sentence is not SELECT : -1

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$result = cubrid_execute($conn, "SELECT * FROM code");

$col_num = cubrid_num_cols($result);

printf("%-15s %-15s %s\n", "Field Table", "Field Name", "Field Type");

for($i = 0; $i < $col_num; $i++) {

 printf("%-15s %-15s %s\n",

 cubrid_field_table($result, $i), cubrid_field_name($result, $i),

cubrid_field_type($result, $i));

}

cubrid_disconnect($conn);

?>

The above example will output:

Field Table Field Name Field Type

code s_name char(1)

code f_name varchar(6)

cubrid_free_result

Description

The cubrid_free_result() function is used to free the memory occupied by the result data.

Note The cubrid_free_result() function can only frees the client fetch buffer now, and if you want free all memory

occupied by the result data, use function cubrid_close_request().

Syntax

bool cubrid_free_result (resource $result)

• result : Result that comes from a call to cubrid_execute

Return Value

• Success : TRUE

• Failure : FALSE

API Reference

599

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM history WHERE host_year=2004 ORDER BY

event_code");

$row = cubrid_fetch_assoc($req);

var_dump($row);

cubrid_free_result($req);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(5) {

 ["event_code"]=>

 string(5) "20005"

 ["athlete"]=>

 string(12) "Hayes Joanna"

 ["host_year"]=>

 string(4) "2004"

 ["score"]=>

 string(5) "12.37"

 ["unit"]=>

 string(4) "time"

}

cubrid_get

Description

The cubrid_get() function is used to get a desired attribute of an instance by using OID. You can get a single attribute

by using a character string type for the attr argument, or multiple attributes by using an array type.

Syntax

mixed cubrid_get (resource $conn_identifier, string $oid[, mixed $attr])

• conn_identifier : Connection identifier

• oid : OID of the instance whose value you want to get

• attr : Name of the attribute whose value you want to get

Return Value

A character string is returned if a character string type is set for the attr argument; an associative array is returned if an

array type (0 - default numeric array) is set. If the attr argument is omitted, all attributes of the instance are returned as

an associative array.

• Success : Content of the attribute(s) requested

• Failure : FALSE. If an error occurs, a warning message is displayed to distinguish it from an empty character string

or NULL. You can check the error with cubrid_error_code().

Example

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(2, {4,5,7}, {44,55,66,666},

'b')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

CUBRID 2008 R4.0 Help

600

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_get($conn, $oid, "b");

var_dump($attr);

$attr = cubrid_get($conn, $oid);

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

string(9) "{1, 2, 3}"

array(4) {

 ["a"]=>

 string(1) "1"

 ["b"]=>

 array(3) {

 [0]=> string(1) "1"

 [1]=> string(1)

 "2" [2]=> string(1) "3"

 }

 ["c"]=>

 array(4) {

 [0]=> string(2) "11"

 [1]=> string(2) "22"

 [2]=> string(2) "33"

 [3]=> string(3) "333"

 }

 ["d"]=>

 string(10) "a "

}

See Also

• cubrid_put

cubrid_get_autocommit

Description

The cubrid_get_autocommit() function is used to get the status of CUBRID database connection auto-commit mode.

Syntax

bool cubrid_get_autocommit (resource $conn_identifier)

• conn_identifier : Connection identifier

Return Value

• Auto-commit on : TRUE

• Auto-commit off : FALSE

See Also

• cubrid_set_autocommit

cubrid_get_charset

Description

The cubrid_get_charset() function is used to get CUBRID current connection charset.

API Reference

601

Syntax

string cubrid_get_charset (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : A string that represents the CUBRID connection charset

• Failure : FALSE

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33088, "demodb");

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

cubrid_get_class_name

Description

The cubrid_get_class_name() function is used to get a class name from an OID.

Syntax

mixed cubrid_is_instance (resource $conn_identifier, string $oid)

CUBRID 2008 R4.0 Help

602

• conn_identifier : Connection identifier

• oid : OID of an instance, for which you want to check whether it exists

Return Value

• Success : Class name

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33088, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code", CUBRID_INCLUDE_OID);

$oid = cubrid_current_oid($req);

$class_name = cubrid_get_class_name($conn, $oid);

print_r($class_name);

cubrid_disconnect($conn);

?>

The above example will output:

code

See Also

• cubrid_is_instance

• cubrid_drop

cubrid_get_client_info

Description

The cubrid_get_client_info() function is used to return a string that represents the client library version.

string cubrid_get_client_info (void)

Return Value

• Success : A string that represents the client library version

• Failure : FALSE

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33088, "demodb");

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

API Reference

603

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

cubrid_get_db_parameter

Description

The cubrid_get_db_parameter() function returns the CUBRID system parameters. It returns the CUBRID system

parameters or it returns FALSE on failure. It returns an associative array with the values for the following parameters:

• PARAM_ISOLATION_LEVEL : In CUBRID PHP, you can set the level of transaction isolation by using

cubrid_set_db_parameter() function, isolation_level in the $CUBRID/conf/cubrid.conf or the SET

TRANSACTION statement. For levels of isolation supported by CUBRID, refer SET TRANSACTION

ISOLATION LEVEL on the manual.

• PARAM_LOCK_TIMEOUT : CUBRID provides the lock timeout feature, which sets the waiting time for the

lock until the transaction lock setting is allowed. You can set lock timeout by using cubrid_set_db_parameter()

function, parameter lock_timeout_in_secs in the $CUBRID/conf/cubrid.conf file or the SET TRANSACTION

statement (in seconds). The default value of the lock_timeout_in_secs parameter is -1, which means the application

client will wait indefinitely until the transaction lock is allowed.

PARAM_MAX_STRING_LENGTH : The maximum string length of a parameter

• PARAM_AUTO_COMMIT : In CUBRID PHP, an auto-commit mode is enabled by default for transaction

management. If you want to start a transaction, you should set auto-commit mode to off by using the

cubrid_set_autocommit() function. And auto commit modes can be applied only for SELECT statements by setting

broker parameters.

Syntax

array cubrid_get_db_parameter (resource $conn_identifier)

• conn_identifier : Connection identifier previously obtained from a call to cubrid_connect()

Return Value

• Success : An associative array with CUBRID system parameters

• Failure : FALSE

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33088, "demodb");

CUBRID 2008 R4.0 Help

604

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

See Also

• cubrid_set_db_parameter

cubrid_get_server_info

Description

The cubrid_get_server_info() function returns a string that represents the CUBRID server version.

Syntax

string cubrid_get_server_info (resource $conn_identifier)

• conn_identifier : Connection identifier previously obtained from a call to cubrid_connect()

Return Value

• Success : A string that represents the CUBRID server version

• Failure : FALSE

Examples

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33088, "demodb");

API Reference

605

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

cubrid_insert_id

Description

The cubrid_insert_id() function retrieves the ID generated for the AUTO_INCREMENT columns which is updated

by the previous INSERT query. It returns 0 if the previous query does not generate new rows, or FALSE on failure.

Note CUBRID supports AUTO_INCREMENT for more than one column in a table. In most cases, there will be a

single AUTO_INCREMENT column in a table. If there are multiple AUTO_INCREMENT columns, the

cubrid_insert_id() should not be used even if it will return a value.

Syntax

array cubrid_insert_id (string $class_name [, resource $conn_identifier])

• class_name : The name of the class (table) that was used in the last INSERT statement for which the auto

increment values are retrieved.

• connection_identifier : Connection identifier previously obtained from a call to cubrid_connect()

Return Value

• Success : A string representing the ID generated for AUTO_INCREMENT column by the previous query

• If the previous query does not generate new rows : 0

• Failure : FALSE

CUBRID 2008 R4.0 Help

606

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE cubrid_test");

cubrid_execute($conn, "CREATE TABLE cubrid_test (d int AUTO_INCREMENT(1, 2), t varchar)");

for ($i = 0; $i < 10; $i++) {

 cubrid_execute($conn, "INSERT INTO cubrid_test(t) VALUES('cubrid_test')");

}

$id_list = cubrid_insert_id("cubrid_test");

var_dump($id_list);

cubrid_disconnect($conn);

?>

The above example will output:

array(1) {

 ["d"]=>

 int(19)

}

cubrid_is_instance

Description

The cubrid_is_instance() function is used to check whether an instance referred to by an OID exists in the database.

Syntax

int cubrid_is_instance (resource $conn_identifier, string $oid)

• conn_identifier : Connection identifier

• oid : OID of an instance, for which you want to check whether it exists

Return Value

• An instance exists : 1

• An instance does not exist : 0

• An error occurs : -1

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$sql = <<EOD

SELECT host_year, medal, game_date

FROM game

WHERE athlete_code IN

 (SELECT code FROM athlete WHERE name='Thorpe Ian');

EOD;

$req = cubrid_execute($conn, $sql, CUBRID_INCLUDE_OID);

$oid = cubrid_current_oid($req);

$res = cubrid_is_instance ($conn, $oid);

if ($res == 1) {

 echo "Instance pointed by $oid exists.\n";

} else if ($res == 0){

 echo "Instance pointed by $oid doesn't exist.\n";

} else {

 echo "error\n";

}

cubrid_disconnect($conn);

API Reference

607

?>

The above example will output:

Instance pointed by @0|0|0 doesn't exist.

See Also

• cubrid_drop

• cubrid_get_class_name

cubrid_lob_close

Description

The cubrid_lob_close() function is used to close BLOB/CLOB returned from cubrid_lob_get().

Syntax

bool cubrid_lob_close (array $lob_identifier_array)

• lob_identifier_array : LOB identifier array returned from cubrid_lob_get()

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$lobs = cubrid_lob_get($con, "SELECT doc_content FROM doc WHERE doc_id=5");

cubrid_lob_export($conn, $lobs[0], "doc_5.txt");

cubrid_lob_close($lobs);

?>

See Also

• cubrid_lob_get

• cubrid_lob_send

• cubrid_lob_export

• cubrid_lob_size

cubrid_lob_export

Description

The cubrid_lob_export() function is used to export BLOB/CLOB data to file.

Syntax

bool cubrid_lob_export(resource $conn_identifier, resource $lob_identifier, string

$path_name)

• conn_identifier : Connection identifier

• lob_identifier : LOB identifier

• path_name : Path name of file

Return Value

• Success : TRUE

• Failure : FALSE

CUBRID 2008 R4.0 Help

608

Example

<?php

$lobs = cubrid_lob_get($con, "SELECT doc_content FROM doc WHERE doc_id=5");

cubrid_lob_export($conn, $lobs[0], "doc_5.txt");

cubrid_lob_close($lobs);

?>

See Also

• cubrid_lob_get

• cubrid_lob_send

• cubrid_lob_export

• cubrid_lob_close

cubrid_lob_get

Description

The cubrid_lob_get() function is used to get BLOB/CLOB meta info from CUBRID database. CUBRID gets

BLOB/CLOB by executing a SQL statement, and returns all LOBs as a resource array. Be sure that the SQL retrieves

only one column and its data type is BLOB or CLOB.

Remember to use cubrid_lob_close() to release the LOBs if you don't need it any more.

Syntax

bool cubrid_lob_get(resource $conn_identifier, string $SQL)

• conn_identifier : Connection identifier

• SQL : SQL statement to be executed.

Return Value

• Success : An array of LOB resources

• Failure : FALSE

Example

<?php

$lobs = cubrid_lob_get($con, "SELECT doc_content FROM doc WHERE doc_id=5");

cubrid_lob_export($conn, $lobs[0], "doc_5.txt");

cubrid_lob_close($lobs);

?>

See Also

• cubrid_lob_close

• cubrid_lob_export

• cubrid_lob_send

• cubrid_lob_size

cubrid_lob_send

Description

The cubrid_lob_send() function reads BLOB/CLOB data and passes it straight through to the browser. To use this

function, you must use cubrid_lob_get() first to get BLOB/CLOB info from CUBRID.

Syntax

bool cubrid_lob_send(resource $conn_identifier, resource $lob_identifier)

API Reference

609

• conn_identifier : Connection identifier

• lob_identifier : LOB identifier

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$lobs = cubrid_lob_get($con, "SELECT image FROM doc WHERE id=1");

Header("Content-type: image/jpeg");

cubrid_lob_send($conn, $lobs[0]);

cubrid_lob_close($lobs);

?>

See Also

• cubrid_lob_close

• cubrid_lob_export

• cubrid_lob_get

• cubrid_lob_size

cubrid_lob_size

Description

The cubrid_lob_size() function is used to get BLOB/CLOB data size.

Syntax

bool cubrid_lob_size(resource $lob_identifier)

• lob_identifier : LOB identifier

Note The maximum length of BLOB/CLOB data is the maximum file size creatable in an external storage. The type of

LOB size in CUBRID PHP is 64-bit integer, but it can’t return 64-bit integer type in PHP, so returns a string instead.

Return Value

• Success : LOB data size, as a string

• Failure : FALSE

Example

<?php

$lobs = cubrid_lob_get($con, "SELECT doc_content FROM doc WHERE doc_id=5");

echo "Doc size:".cubrid_lob_size($lobs[0]);

cubrid_lob_export($conn, $lobs[0], "doc_5.txt");

cubrid_lob_close($lobs);

?>

See Also

• cubrid_lob_close

• cubrid_lob_export

• cubrid_lob_get

• cubrid_lob_send

CUBRID 2008 R4.0 Help

610

cubrid_list_dbs

Description

The cubrid_list_dbs() function returns an array with the list of all existing CUBRID database.

Syntax

array cubrid_list_dbs (resource $conn_identifier)

• conn_identifier : Connection identifier previously obtained from a call to cubrid_connect()

Example

<?php

$conn = cubrid_connect("localhost", 33088, "demodb");

$db_list = cubrid_list_dbs($conn);

var_dump($db_list);

cubrid_disconnect($conn);

?>

The above example will output:

array(1) {

 [0]=>

 string(6) "demodb"

}

See Also

• cubrid_db_name

cubrid_lock_read

Description

The cubrid_lock_read() function is used to configure a read lock on the given instance by using an OID.

Syntax

bool cubrid_lock_read (resource $conn_identifier, string $oid)

• conn_identifier : Connection identifier

• oid : OID of an instance on which you want to configure a lock

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33088, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(2, {4,5,7}, {44,55,66,666},

'b')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

API Reference

611

cubrid_lock_read($conn, $oid);

$attr = cubrid_get($conn, $oid, "b");

var_dump($attr);

$attr = cubrid_get($conn, $oid);

var_dump($attr); cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

string(9) "{1, 2, 3}"

array(4) {

 ["a"]=>

 string(1) "1"

 ["b"]=>

 array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

 }

 ["c"]=>

 array(4) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

 [3]=> string(3) "333"

 }

 ["d"]=>

 string(10) "a "

}

See Also

• cubrid_lock_write

cubrid_lock_write

Description

The cubrid_lock_write() function is used to configure a write lock on the given instance using an OID.

Syntax

bool cubrid_lock_write (resource $conn_identifier, string $oid)

• conn_identifier : Connection identifier

• oid : OID of an instance on which you want to configure a lock

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33088, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

CUBRID 2008 R4.0 Help

612

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(2, {4,5,7}, {44,55,66,666},

'b')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

cubrid_lock_read($conn, $oid);

$attr = cubrid_get($conn, $oid, "b");

var_dump($attr);

$attr = cubrid_get($conn, $oid);

var_dump($attr); cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

array(3) {

 [0]=>

 string(1) "2"

 [1]=>

 string(1) "4"

 [2]=>

 string(1) "8"

}

See Also

• cubrid_lock_read

cubrid_move_cursor

Description

The cubrid_move_cursor() function is used to move the current cursor position of req_identifier to the distance

configured by the offset argument in the direction in the origin argument. For origin, the first position in the result

(CUBRID_CURSOR_FIRST), the current position in the result (CUBRID_CURSOR_CURRENT) and the last

position in the result (CUBRID_CURSOR_LAST) can be used. If origin is not specified,

CUBRID_CURSOR_CURRENT is used by default.

If the amount of cursor movement exceeds the range of the result, the cursor moves to a position next to the end of the

result range. For example, if the cursor moves to the position 20 when the size of the result is 10, it moves to the 11th

position and returns CUBRID_NO_MORE_DATA.

Syntax

int cubrid_move_cursor (resource $req_identifier, int $offset[, int $origin])

• req_identifier : Request identifier

• offset : The number of positions to which the cursor is to be moved

• origin : Origin of the cursor movement CUBRID_CURSOR_FIRST, CUBRID_CURSOR_CURRENT,

CUBRID_CURSOR_LAST

API Reference

613

Return Value

• Success : CUBRID_CURSOR_SUCCESS

• No more data : CUBRID_NO_MORE_DATA

• Failure : CUBRID_CURSOR_ERROR

Example

<?php

$conn = cubrid_connect("127.0.0.1", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code");

cubrid_move_cursor($req, 1, CUBRID_CURSOR_LAST);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_CURRENT);

$result = cubrid_fetch_row($req);

var_dump($result);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(2) {

 [0]=>

 string(1) "G"

 [1]=> string(4) "Gold"

}

 array(2) {

 [0]=>

 string(1) "X"

 [1]=> string(5) "Mixed"

}

 array(2) {

 [0]=>

 string(1) "M"

 [1]=>

 string(3) "Man"

}

See Also

• cubrid_execute

cubrid_next_result

Description

The cubrid_next_result() function is used to get results of next query if CUBRID_EXEC_QUERY_ALL flag is set

upon cubrid_execute(). If next result is executed successfully, the database is updated with the information of the

current query.

Syntax

bool cubrid_next_result (resource $result)

• result : Result that comes from a call to cubrid_execute()

CUBRID 2008 R4.0 Help

614

Return Value

• Success : TRUE

• Failure or no more result : FALSE

Example

<?php

$conn = cubrid_connect($host, $port, $db, $user, $passwd);

$sql_stmt = "SELECT * FROM code; SELECT * FROM history WHERE host_year=2004 AND

event_code=20281";

$res = cubrid_execute($conn, $sql_stmt, CUBRID_EXEC_QUERY_ALL);

get_result_info($res);

cubrid_next_result($res);

get_result_info($res);

function get_result_info($req)

{

 printf("\n------------ get_result_info --------------------\n");

 $row_num = cubrid_num_rows($req);

 $col_num = cubrid_num_cols($req);

 $column_name_list = cubrid_column_names($req);

 $column_type_list = cubrid_column_types($req);

 $column_last_name = cubrid_field_name($req, $col_num - 1);

$column_last_table = cubrid_field_table($req, $col_num - 1);

 $column_last_type = cubrid_field_type($req, $col_num - 1);

 $column_last_len = cubrid_field_len($req, $col_num - 1);

 $column_1_flags = cubrid_field_flags($req, 1);

 printf("%-30s %d\n", "Row count:", $row_num);

 printf("%-30s %d\n", "Column count:", $col_num);

 printf("\n");

 printf("%-30s %-30s %-15s\n", "Column Names", "Column Types", "Column Len");

 printf("--

\n");

 $size = count($column_name_list);

 for($i = 0; $i < $size; $i++) {

 $column_len = cubrid_field_len($req, $i);

 printf("%-30s %-30s %-15s\n", $column_name_list[$i], $column_type_list[$i],

$column_len);

 }

 printf("\n\n");

 printf("%-30s %s\n", "Last Column Name:", $column_last_name);

 printf("%-30s %s\n", "Last Column Table:", $column_last_table);

 printf("%-30s %s\n", "Last Column Type:", $column_last_type);

 printf("%-30s %d\n", "Last Column Len:", $column_last_len);

 printf("%-30s %s\n", "Second Column Flags:", $column_1_flags);

 printf("\n\n");

}

?>

The above example will output:

------------ get_result_info --------------------

Row count: 6

Column count: 2

Column Names Column Types Column Len

--

API Reference

615

s_name char(1) 1

f_name varchar(6) 6

Last Column Name: f_name

Last Column Table: code

Last Column Type: varchar(6)

Last Column Len: 6

Second Column Flags:

------------ get_result_info --------------------

Row count: 4

Column count: 5

Column Names Column Types Column Len

--

event_code integer 11

athlete varchar(40) 40

host_year integer 11

score varchar(10) 10

unit varchar(5) 5

Last Column Name: unit

Last Column Table: history

Last Column Type: varchar(5)

Last Column Len: 5

Second Column Flags: not_null primary_key unique_key

See Also

• cubrid_execute

cubrid_num_cols, cubrid_num_fields

Description

The cubrid_num_cols() function or the cubrid_num_fields() function is used to return the number of columns in the

query result. This method is available only with the SELECT statement.

Syntax

int cubrid_num_cols (resource $req_identifier)

int cubrid_num_fields (resource $req_identifier)

• req_identifier : Request identifier

Return Value

• Success : The number of columns

• Error occurs : -1

Example

$req = cubrid_execute ($con, "select * from member");

if ($req) {

 $rows_count = cubrid_num_rows ($req);

 $cols_count = cubrid_num_cols ($req);

 echo "result set rows count : $rows\n";

 echo "result set columns count : $cols\n";

 cubrid_close_request ($req);

}

See Also

• cubrid_execute

CUBRID 2008 R4.0 Help

616

• cubrid_num_rows

cubrid_num_rows

Description

The cubrid_num_rows() function is used to return the number of rows in the query result. This is available only with

the SELECT statement. Use cubrid_affected_rows() if you want to know the results of INSERT, UPDATE and

DELETE queries. cubrid_num_rows() can be used only with synchronous queries. It returns 0 if the query is

asynchronous.

Syntax

int cubrid_num_rows (resource $request)

• request : Request that comes from a call to cubrid_execute()

Return Value

• Success : The number of rows

• Asynchronous query : 0

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code");

$row_num = cubrid_num_rows($req);

$col_num = cubrid_num_cols($req);

printf("Row Num: %d\nColumn Num: %d\n", $row_num, $col_num);

cubrid_disconnect($conn);

?>

The above example will output:

Row Num: 6

Column Num: 2

See Also

• cubrid_execute

• cubrid_num_cols

• cubrid_affected_rows

cubrid_ping

Description

The cubrid_ping() function pings a server connection or reconnection if there is no connection.

Syntax

bool cubrid_ping ([resource $conn_identifier])

• conn_identifier : Connection identifier. If the connection identifier is not specified, the last connection is assumed.

Return Value

• If the connection to the database server is working : TRUE

API Reference

617

• Otherwise : FALSE

Example

<?php

set_time_limit(0);

$conn = cubrid_connect('localhost', 33000, 'demodb');

/* Assuming this query will take a long time */

$result = cubrid_query($sql);

if (!$result) {

echo 'Query #1 failed, exiting.';

exit;

}

/* Make sure the connection is still alive, if not, try to reconnect */

if (!cubrid_ping($conn)) {

echo 'Lost connection, exiting after query #1';

exit;

}

cubrid_free_result($result);

/* So the connection is still alive, let's run another query */

$result2 = cubrid_query($sql2);

?>

cubrid_prepare

Description

The cubrid_prepare() function is an API that represents a precompiled SQL statement on the given connection handle.

The SQL statement is pre-compiled and then included in cubrid_prepare(). This method can be used to efficiently

execute the statement multiple times or to effectively process Long Data. You can use only a single statement and a

parameter can insert a question mark (?) into appropriate position in the SQL statement. You can also add a parameter

to the position in the VALUES clause of the INSERT statement or in the WHERE clause of the SQL statement, for

which the value is to be substituted. Substituting a value for a question mark (?) can be performed only by cubrid_bind.

Syntax

resource cubrid_prepare (resource $conn_identifier, string $prepare_stmt [, int $option])

• conn_identifier : Connection handle

• prepare_stmt : A prepare query

• option : OID return option - CUBRID_INCLUDE_OID

Return Value

• Success : Request handle

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$sql = <<EOD

SELECT g.event_code, e.name

FROM game g

JOIN event e ON g.event_code=e.code

WHERE host_year = ? AND event_code NOT IN (SELECT event_code FROM game WHERE host_year=?)

GROUP BY event_code;

EOD;

$req = cubrid_prepare($conn, $sql);

cubrid_bind($req, 1, 2004);

CUBRID 2008 R4.0 Help

618

cubrid_bind($req, 2, 2000);

cubrid_execute($req);

$row_num = cubrid_num_rows($req);

printf("There are %d event that exits in 2004 olympic but not in 2000. For example:\n\n",

$row_num);

printf("%-15s %s\n", "Event_code", "Event_name");

printf("----------------------------\n");

$row = cubrid_fetch_assoc($req);

printf("%-15d %s\n", $row["event_code"], $row["name"]);

$row = cubrid_fetch_assoc($req);

printf("%-15d %s\n", $row["event_code"], $row["name"]);

cubrid_disconnect($conn);

?>

The above example will output:

There are 27 event that exits in 2004 olympic but not in 2000. For example:

Event_code Event_name

20063 +91kg

20070 64kg

See Also

• cubrid_execute

• cubrid_bind

cubrid_put

Description

The cubrid_put() function is used to change attribute values of an instance by using the given OID. You can update

single attribute by using string data type to set attr. In such case, you can use integer, floating-point, or character string

data type for the value argument. To change multiple attributes simultaneously, pass value argument in the form of

associative array data type without specifying the attr argument.

Syntax

int cubrid_put (resource $conn_identifier, string $oid[, string $attr], mixed $value)

• conn_identifier : Connection identifier

• oid : OID of the instance whose value you want to change

• attr : Name of the attribute whose value you want to change

• value : Value of the attribute you want to change

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(2, {4,5,7}, {44,55,66,666},

'b')");

API Reference

619

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_put($conn, $oid, "b", array(2, 4, 8));

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

array(3) {

 [0]=>

 string(1) "2"

 [1]=> string(1) "4"

 [2]=>

 string(1) "8"

}

See Also

• cubrid_get

• cubrid_set_add

• cubrid_set_drop

• cubrid_seq_insert

• cubrid_seq _drop

• cubrid_seq_put

cubrid_query

Description

The cubrid_query() function sends a unique query (multiple queries are supported) to the currently active database on

the server that's associated with the specified conn_identifier.

The returned result resource should be passed to functions for dealing with result tables, to access the returned data. Use

cubrid_num_rows() to find out how many rows were returned for a SELECT statement or cubrid_affected_rows() to

find out how many rows were affected by a DELETE, INSERT, REPLACE, or UPDATE statement.

Syntax

resource cubrid_query (string $query [, resource $conn_identifier])

• query : A SQL query

• conn_identifier : The CUBRID connection. If the connection identifier is not specified, the last link opened is

assumed.

CUBRID 2008 R4.0 Help

620

Return Value

• Success : Request identifier

• Failure or user does not have permission to access the table(s) referenced by the query : FALSE

Example

<?php

// This could be supplied by a user, for example

$firstname = 'fred';

$lastname = 'fox';

$conn = cubrid_connect('localhost', 33000, 'foo');

// Formulate Query

// This is the best way to perform an SQL query

// For more examples, see cubrid_real_escape_string()

$query = sprintf("SELECT firstname, lastname, address, age FROM friends WHERE

firstname='%s' AND lastname='%s'",

cubrid_real_escape_string($firstname),

cubrid_real_escape_string($lastname));

// Perform Query

$result = cubrid_query($query);

// Check result

// This shows the actual query sent to CUBRID, and the error. Useful for debugging.

if (!$result) {

 $message = 'Invalid query: ' . cubrid_error() . "\n";

 $message .= 'Whole query: ' . $query;

die($message);

} // Use result

// Attempting to print $result won't allow access to information in the resource

// One of the cubrid result functions must be used

// See also cubrid_result(), cubrid_fetch_array(), cubrid_fetch_row(), etc.

while ($row = cubrid_fetch_assoc($result)) {

echo $row['firstname'];

echo $row['lastname'];

echo $row['address'];

echo $row['age'];

}

// Free the resources associated with the result set

// This is done automatically at the end of the script

cubrid_free_result($result);

?>

See Also

• cubrid_unbuffered_query

cubrid_real_escape_string

Description

The cubrid_real_escape_string() function returns the escaped string version of the given string. Follow two escape

sequence methods should be supported. On the quoted escape sequence, a string quoted with " or ' can be applied when

system parameter ansi_quotes is set to "yes". If this option is set to "no", only a string quoted with ' can be applied. The

default value is "no".

Quoted escape sequence:

• A ' inside a string quoted with ' may be written as ' '

• A " inside a string quoted with " may be written as "" (applied when ansi_quotes=yes)

• A ' inside a string quoted with " needs no special treatment and need not be doubled or escaped. (applied when

ansi_quotes=yes)

• In the same way, " inside a string quoted with ' needs no special treatment.

API Reference

621

Backslash escape sequence: This sequence is on by system parameter no_backslash_escapes.

The following characters can be escaped by backslash: \', \", \n, \r, \t, \\, \% _.

If this option is set to "no", backslash escaping will work. The default value is "yes".

Syntax

string cubrid_real_escape_string (string $unescaped_string [, resource $link_identifier])

• unescaped_string : The string that is to be escaped.

• link_identifier : The CUBRID connection. If the link identifier is not specified, the last link opened by

cubrid_connect() is assumed.

Return Value

• Success : Escaped characters

• Failure : FALSE

Example

< ?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$unescaped_str = ' !"#$%&\'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~';

$escaped_str = cubrid_real_escape_string($unescaped_str);

$len = strlen($unescaped_str);

@cubrid_execute($conn, "DROP TABLE cubrid_test");

cubrid_execute($conn, "CREATE TABLE cubrid_test (t char($len))");

cubrid_execute($conn, "INSERT INTO cubrid_test (t) VALUES('$escaped_str')");

$req = cubrid_execute($conn, "SELECT * FROM cubrid_test");

$row = cubrid_fetch_assoc($req);

var_dump($row);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(1) {

 ["t"]=>

 string(95) " !"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~"

}

cubrid_result

Description

The cubrid_result() function retrieves the contents of one cell from a CUBRID result set on success, or FALSE on

failure.

When working on large result sets, you should consider using one of the functions that fetch an entire row. As these

functions return the contents of multiple cells in one function call, they're MUCH quicker than cubrid_result(). Also,

note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or

tablename.fieldname argument.

Syntax

string cubrid_result (resource $result , int $row [, mixed $field= 0])

• result : Result that comes from a call to cubrid_execute()

CUBRID 2008 R4.0 Help

622

• row : The row number from the result that's being retrieved. Row numbers start at 0.

• field : The name or offset of the field being retrieved. It can be the field's offset, the field's name, or the field's table

dot field name (tablename.fieldname). If the column name has been aliased ('select foo as bar from...'), use the alias

instead of the column name. If undefined, the first field is retrieved.

Return Value

• Success : Value of a specific field (NULL if value if null)

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$req = cubrid_execute($conn, "SELECT * FROM code");

$result = cubrid_result($req, 0);

var_dump($result);

$result = cubrid_result($req, 0, 1);

var_dump($result);

$result = cubrid_result($req, 5, "f_name");

var_dump($result);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

string(1) "X"

string(5) "Mixed"

string(4) "Gold"

cubrid_rollback

Description

The cubrid_rollback() function is used to roll back the transaction being executed in the connection referred by the

conn_identifier. The connection with the server is terminated after the cubrid_rollback method is called, but the

connection identifier remains valid.

Syntax

bool cubrid_rollback (resource $conn_identifier)

• conn_identifier : Connection identifier

Example

<?php

$conn = cubrid_connect("127.0.0.1", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE publishers");

$sql = <<EOD

CREATE TABLE publishers(

pub_id CHAR(3),

pub_name VARCHAR(20),

city VARCHAR(15),

state CHAR(2),

country VARCHAR(15)

)

EOD;

if (!cubrid_execute($conn, $sql)) {

API Reference

623

 printf("Error facility: %d\nError code: %d\nError msg: %s\n",

cubrid_error_code_facility(), cubrid_error_code(), cubrid_error_msg());

 cubrid_disconnect($conn);

 exit;

}

$req = cubrid_prepare($conn, "INSERT INTO publishers VALUES(?, ?, ?, ?, ?)");

$id_list = array("P01", "P02", "P03", "P04");

$name_list = array("Abatis Publishers", "Core Dump Books", "Schadenfreude Press",

"Tenterhooks Press");

$city_list = array("New York", "San Francisco", "Hamburg", "Berkeley");

$state_list = array("NY", "CA", NULL, "CA");

$country_list = array("USA", "USA", "Germany", "USA");

for ($i = 0, $size = count($id_list); $i < $size; $i++) {

 cubrid_bind($req, 1, $id_list[$i]);

 cubrid_bind($req, 2, $name_list[$i]);

 cubrid_bind($req, 3, $city_list[$i]);

 cubrid_bind($req, 4, $state_list[$i]);

 cubrid_bind($req, 5, $country_list[$i]);

 if (!($ret = cubrid_execute($req))) {

 break;

 }

}

if (!$ret) {

 cubrid_rollback($conn);

} else {

 cubrid_commit($conn);

 $req = cubrid_execute($conn, "SELECT * FROM publishers");

 while ($result = cubrid_fetch_assoc($req)) {

 printf("%-3s %-20s %-15s %-3s %-15s\n",

 $result["pub_id"], $result["pub_name"], $result["city"], $result["state"],

$result["country"]);

 }

}

cubrid_disconnect($conn);

?>

The above example will output:

P01 Abatis Publishers New York NY USA

P02 Core Dump Books San Francisco CA USA

P03 Schadenfreude Press Hamburg Germany

P04 Tenterhooks Press Berkeley CA USA

See Also

• cubrid_commit

• cubrid_disconnect

cubrid_schema

Description

The cubrid_schema() function is used to get specific schema information of a database. You should specify

class_name to get information related to a specific class, and attr_name to get information related to a specific attribute

(currently, only used with CUBRID_SCH_ATTR_PRIVILEGE).

Syntax

array cubrid_schema (resource $conn_identifier, int $schema_type[, string $class_name[,

string $attr_name]])

• conn_identifier : Connection identifier

CUBRID 2008 R4.0 Help

624

• schema_type : Type of schema you want to get

• class_name : Class from which schema is to be obtained

• attr_name : Attribute from which schema is to be obtained

Return Value

• Success : Array in which schema information is contained

• Failure : FALSE

The result of the cubrid_schema() function is returned as a two-dimensional array(column (associative array) * row

(numeric array)). The following table shows types of schema and the column structure of the result array to be returned

based on the schema type.

Schema Column

Number

Column Name Value

CUBRID_SCH_CLASS 1 NAME 0 : System class

1 : vclass

2 : class

2 TYPE

CUBRID_SCH_VCLASS 1 NAME 1 : vclass

2 TYPE

CUBRID_SCH_QUERY_SPEC 1 QUERY_SPEC

CUBRID_SCH_ATTRIBUTE 1 ATTR_NAME

2 DOMAIN

3 SCALE

4 PRECISION

5 INDEXED 1 : indexed

6 NON NULL 1 : non null

7 SHARED 1 : shared

8 UNIQUE 1 : unique

9 DEFAULT

10 ATTR_ORDER 1 : base

11 CLASS_NAME

12 SOURCE_CLASS

CUBRID_SCH_CLASS_ATTRIBUTE 1 ATTR_NAME

2 DOMAIN

3 SCALE

4 PRECISION

5 INDEXED 1 : indexed

6 NON NULL 1 : non null

7 SHARED 1 : shared

8 UNIQUE 1 : unique

9 DEFAULT

10 ATTR_ORDER 1 : base

11 CLASS_NAME

API Reference

625

12 SOURCE_CLASS

CUBRID_SCH_METHOD 1 NAME

2 RET_DOMAIN

3 ARG_DOMAIN

CUBRID_SCH_METHOD_FILE 1 METHOD_FILE

CUBRID_SCH_SUPERCLASS 1 CLASS_NAME

2 TYPE

CUBRID_SCH_SUBCLASS 1 CLASS_NAME

2 TYPE

CUBRID_SCH_CONSTRAINT 1 TYPE 0 : unique

1 : index

2 NAME

3 ATTR_NAME

CUBRID_SCH_TRIGGER 1 NAME

2 STATUS

3 EVENT

4 TARGET_CLASS

5 TARGET_ATTR

6 ACTION_TIME

7 ACTION

8 PRIORITY

9 CONDITION_TIME

10 CONDITION

CUBRID_SCH_CLASS_PRIVILEGE 1 CLASS_NAME

2 PREVILEGE

3 GRANTABLE

CUBRID_SCH_ATTR_PRIVILEGE 1 ATT_NAME

2 PREVILEGE

3 GRANTABLE

CUBRID_SCH_PRIMARY_KEY 1 ATTR_NAME

2 KEY_SEQ 1 : base

3 KEY_NAME

4 KEY_NAME

CUBRID_SCH_IMPORTED_KEYS 1 PKTABLE_NAME

2 PKCOLUMN_NAME

3 FKTABLE_NAME

4 FKCOLUMN_NAME

5 KEY_SEQ

6 UPDATE_ACTION 0 : cascade

1 : restrict

2 : no action

CUBRID 2008 R4.0 Help

626

3 : set null

7 DELETE_ACTION 0 : cascade

1 : restrict

2 : no action

3 : set null

8 FK_NAME

9 PK_NAME

CUBRID_SCH_EXPORTED_KEYS 1 PKTABLE_NAME

2 PKCOLUMN_NAME

3 FKTABLE_NAME

4 FKCOLUMLN_NAME

5 KEY_SEQ

6 UPDATE_ACTION 0 : cascade

1 : restrict

2 : no action

3 : set null

7 DELETE_ACTION 0 : cascade

1 : restrict

2 : no action

3 : set null

8 FK_NAME

9 PK_NAME

CUBRID_SCH_CROSS_REFERENCE 1 PKTABLE_NAME

2 PKCOLUMN_NAME

3 FKTABLE_NAME

4 FKCOLUMLN_NAME

5 KEY_SEQ

6 UPDATE_ACTION 0 : cascade

1 : restrict

2 : no action

3 : set null

7 DELETE_ACTION 0 : cascade

1 : restrict

2 : no action

3 : set null

8 FK_NAME

9 PK_NAME

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

printf("\n--- Primary Key ---\n");

$pk = cubrid_schema($conn, CUBRID_SCH_PRIMARY_KEY, "game");

var_dump($pk);

printf("\n--- Foreign Keys ---\n");

$fk = cubrid_schema($conn, CUBRID_SCH_IMPORTED_KEYS, "game");

var_dump($fk);

API Reference

627

printf("\n--- Column Attribute ---\n");

$attr = cubrid_schema($conn, CUBRID_SCH_ATTRIBUTE, "stadium", "area");

var_dump($attr);

cubrid_disconnect($conn);

?>

The above example will output:

--- Primary Key ---

array(3) {

 [0]=>

 array(4) {

 ["CLASS_NAME"]=>

 string(4) "game"

 ["ATTR_NAME"]=>

 string(12) "athlete_code"

 ["KEY_SEQ"]=>

 string(1) "3"

 ["KEY_NAME"]=>

 string(41) "pk_game_host_year_event_code_athlete_code"

 }

 [1]=>

 array(4) {

 ["CLASS_NAME"]=>

 string(4) "game"

 ["ATTR_NAME"]=>

 string(10) "event_code"

 ["KEY_SEQ"]=>

 string(1) "2"

 ["KEY_NAME"]=>

 string(41) "pk_game_host_year_event_code_athlete_code"

 }

 [2]=>

 array(4) {

 ["CLASS_NAME"]=>

 string(4) "game"

 ["ATTR_NAME"]=>

 string(9) "host_year"

 ["KEY_SEQ"]=>

 string(1) "1"

 ["KEY_NAME"]=>

 string(41) "pk_game_host_year_event_code_athlete_code"

 }

}

--- Foreign Keys ---

array(2) {

 [0]=>

 array(9) {

 ["PKTABLE_NAME"]=>

 string(7) "athlete"

 ["PKCOLUMN_NAME"]=>

 string(4) "code"

 ["FKTABLE_NAME"]=>

 string(4) "game"

 ["FKCOLUMN_NAME"]=>

 string(12) "athlete_code"

 ["KEY_SEQ"]=>

 string(1) "1"

 ["UPDATE_RULE"]=>

 string(1) "1"

 ["DELETE_RULE"]=>

 string(1) "1"

 ["FK_NAME"]=>

 string(20) "fk_game_athlete_code"

 ["PK_NAME"]=>

 string(15) "pk_athlete_code"

 }

 [1]=>

 array(9) {

 ["PKTABLE_NAME"]=>

 string(5) "event"

CUBRID 2008 R4.0 Help

628

 ["PKCOLUMN_NAME"]=>

 string(4) "code"

 ["FKTABLE_NAME"]=>

 string(4) "game"

 ["FKCOLUMN_NAME"]=>

 string(10) "event_code"

 ["KEY_SEQ"]=>

 string(1) "1"

 ["UPDATE_RULE"]=>

 string(1) "1"

 ["DELETE_RULE"]=>

 string(1) "1"

 ["FK_NAME"]=>

 string(18) "fk_game_event_code"

 ["PK_NAME"]=>

 string(13) "pk_event_code"

 }

}

--- Column Attribute ---

array(1) {

 [0]=>

 array(13) {

 ["ATTR_NAME"]=>

 string(4) "area"

 ["DOMAIN"]=>

 string(1) "7"

 ["SCALE"]=>

 string(1) "2"

 ["PRECISION"]=>

 string(2) "10"

 ["INDEXED"]=>

 string(1) "0"

 ["NON_NULL"]=>

 string(1) "0"

 ["SHARED"]=>

 string(1) "0"

 ["UNIQUE"]=>

 string(1) "0"

 ["DEFAULT"]=>

 NULL ["ATTR_ORDER"]=>

 string(1) "4"

 ["CLASS_NAME"]=>

 string(7) "stadium"

 ["SOURCE_CLASS"]=>

 string(7) "stadium"

 ["IS_KEY"]=>

 string(1) "0"

 }

}

cubrid_seq_drop

Description

The cubrid_seq_drop() function is used to drop elements from the given SEQUENCE type attribute in the database.

Syntax

bool cubrid_seq_drop(resource $conn_identifier, string $oid, string $attr_name, int $index)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

• index : Index of the element to be dropped. The default value is 1.

Return Value

• Success : TRUE

API Reference

629

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c sequence(int),

d char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_seq_drop($conn, $oid, "c", 4);

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

 [3]=> string(3) "333"

 }

array(3) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

}

See Also

• cubrid_seq_insert

• cubrid_seq_put

cubrid_seq_insert

Description

The cubrid_seq_inset() function is used to insert an element into a specific position of a SEQUENCE type attribute.

Syntax

bool cubrid_seq_insert (resource $conn_identifier, string $oid, string $attr_name, int

$index, string $seq_element)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

CUBRID 2008 R4.0 Help

630

• index : Position into which the new element is to be inserted (default value: 1)

• seq_string : Content of the element to be inserted

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c sequence(int),

d char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_seq_insert($conn, $oid, "c", 5, "44");

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

 [3]=> string(3) "333"

}

array(5) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

 [3]=>

 string(3) "333"

 [4]=>

 string(2) "44"

}

See Also

• cubrid_seq_drop

• cubrid_seq_put

API Reference

631

cubrid_seq_put

Description

The cubrid_seq_put() function is used to change the content of an element of the given SEQUENCE type attribute.

Syntax

bool cubrid_seq_put (resource $conn_identifier, string $oid, string $attr_name, int index,

string $seq_element)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

• index : Index of the element to be changed (default value: 1)

• seq_element : Content of the element to be changed

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c sequence(int),

d char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_seq_put($conn, $oid, "c", 1, "111");

$attr = cubrid_col_get($conn, $oid, "c");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 [0]=>

 string(2) "11"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

 [3]=>

 string(3) "333"

}

array(4) {

 [0]=>

 string(3) "111"

 [1]=>

 string(2) "22"

 [2]=>

 string(2) "33"

CUBRID 2008 R4.0 Help

632

 [3]=> string(3)

 "333"

}

See Also

• cubrid_seq_insert

• cubrid_seq_drop

cubrid_set_add

Description

The cubrid_set_add() function is used to insert an element to the given SET type (set, multiset) attribute.

Syntax

bool cubrid_set_add (resource $conn_identifier, string $oid, string $attr_name, string

$set_element)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

• set_string : Content of the element to be inserted

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_set_add($conn, $oid, "b", "4");

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

API Reference

633

array(4) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

 [3]=>

 string(1) "4"

}

See Also

• cubrid_set_drop

cubrid_set_autocommit

Description

The cubrid_set_autocommit() function is used to set the status of CUBRID database connection auto-commit mode of

the current database connection. This function just turns on/off the auto-commit mode. When this function is called,

concurrent transactions are committed regardless of the auto-commit mode.

Syntax

bool cubrid_set_autocommit(resource $conn_identifier, int $mode)

• conn_identifier : Connection identifier

• mode : Whether to turn on auto-commit or not. It should be CUBRID_AUTOCOMMIT_FALSE or

CUBRID_AUTOCOMMIT_TRUE.

Return Value

• Success : TRUE

• Failure : FALSE

See Also

• cubrid_get_autocommit

cubrid_set_db_parameter

Description

The cubrid_set_db_parameter() function is used to set the CUBRID system parameters. It can set the following

CUBRID system parameters:

• CUBRID_PARAM_ISOLATION_LEVEL : Transaction isolation level. For more information, see SET

TRANSACTION ISOLATION LEVEL.

• CUBRID_PARAM_LOCK_TIMEOUT : Lock timeout. Time when transaction lock is held.

Syntax

bool cubrid_set_db_parameter (resource

$conn_identifier, int $param_type, int $param_value)

• conn_identifier : Connection identifier

• param_type : System parameter type

• param_value : System parameter value

Return Value

• Success : TRUE

• Failure : FALSE

CUBRID 2008 R4.0 Help

634

Example

<?php

$conn = cubrid_connect("localhost", 33000, "demodb");

$params = cubrid_get_db_parameter($conn);

var_dump($params);

cubrid_set_autocommit($conn, CUBRID_AUTOCOMMIT_TRUE);

cubrid_set_db_parameter($conn, CUBRID_PARAM_ISOLATION_LEVEL, 2);

$params_new = cubrid_get_db_parameter($conn);

var_dump($params_new);

cubrid_disconnect($conn);

?>

The above example will output:

array(4) {

 ["PARAM_ISOLATION_LEVEL"]=>

 int(3)

 ["PARAM_LOCK_TIMEOUT"]=>

 int(-1)

 ["PARAM_MAX_STRING_LENGTH"]=>

 int(1073741823)

 ["PARAM_AUTO_COMMIT"]=>

 int(0)

}

array(4) {

 ["PARAM_ISOLATION_LEVEL"]=>

 int(2)

 ["PARAM_LOCK_TIMEOUT"]=>

 int(-1)

 ["PARAM_MAX_STRING_LENGTH"]=>

 int(1073741823)

 ["PARAM_AUTO_COMMIT"]=>

 int(1)

}

See Also

• cubrid_get_db_parameter

cubrid_set_drop

Description

The cubrid_set_drop() function is used to drop an element from the given SET type (set, multiset) attribute.

Syntax

bool cubrid_set_drop (resource $conn_identifier, string $oid, string $attr_name, string

$set_element)

• conn_identifier : Connection identifier

• oid : OID of the desired instance

• attr_name : Name of the desired attribute of the instance

• set_element : Content of the element to be dropped.

Return Value

• Success : TRUE

• Failure : FALSE

Example

<?php

API Reference

635

$conn = cubrid_connect("localhost", 33000, "demodb");

@cubrid_execute($conn, "DROP TABLE foo");

cubrid_execute($conn, "CREATE TABLE foo(a int AUTO_INCREMENT, b set(int), c list(int), d

char(10))");

cubrid_execute($conn, "INSERT INTO foo(a, b, c, d) VALUES(1, {1,2,3}, {11,22,33,333},

'a')");

$req = cubrid_execute($conn, "SELECT * FROM foo", CUBRID_INCLUDE_OID);

cubrid_move_cursor($req, 1, CUBRID_CURSOR_FIRST);

$oid = cubrid_current_oid($req);

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_set_drop($conn, $oid, "b", "1");

$attr = cubrid_col_get($conn, $oid, "b");

var_dump($attr);

cubrid_close_request($req);

cubrid_disconnect($conn);

?>

The above example will output:

array(3) {

 [0]=>

 string(1) "1"

 [1]=>

 string(1) "2"

 [2]=>

 string(1) "3"

}

array(2) {

 [0]=>

 string(1) "2"

 [1]=>

 string(1) "3"

}

See Also

• cubrid_set_add

cubrid_unbuffered_query

Description

The cubrid_unbuffered_query() function sends a SQL query (multiple queries are not supported) to CUBRID, without

fetching and buffering the result rows automatically, as cubrid_execute() does. On the one hand, this saves a

considerable amount of memory with SQL queries that produce large result sets. On the other hand, you can start

working on the result set immediately after the first row has been retrieved: you don't have to wait until the complete

SQL query has been performed. When using multiple DB-connects, you have to specify the optional parameter

link_identifier.

Syntax

resource cubrid_unbuffered_query (string $query [, int $conn_identifier])

• query : A SQL query

• link_identifier : The CUBRID connection. If the connection identifier is not specified, the last link opened by

cubrid_connect() is assumed.

Note The benefits of cubrid_unbuffered_query() come at a cost: you cannot use cubrid_num_rows() and

cubrid_data_seek() on a result set returned from cubrid_unbuffered_query().

CUBRID 2008 R4.0 Help

636

Return Value

• Returns TRUE on success, or FALSE on error.

• For other type of SQL statements such as UPDATE, DELETE, DROP, etc, cubrid_unbuffered_query() returns

TRUE on success or FALSE on error.

Example

< ?php

$result = cubrid_unbuffered_query("INSERT INTO mytable (product) values ('kossu')", $link)

if (!$result) {

echo 'Could not run query: ' .cubrid_error_msg()

exit

}

printf("Last inserted record has id %d\n", cubrid_insert_id())

?>

cubrid_version

Description

The cubrid_version() function is used to check the version information of the CUBRID PHP module.

Syntax

string cubrid_version ()

Return Value

• n version information (e.g. "1.2.0")

Example

<?php

printf("%-30s %s\n", "CUBRID PHP Version:", cubrid_version());

printf("\n");

$conn = cubrid_connect("localhost", 33088, "demodb");

if (!$conn) {

 die('Connect Error ('. cubrid_error_code() .')' . cubrid_error_msg());

}

$db_params = cubrid_get_db_parameter($conn);

while (list($param_name, $param_value) = each($db_params)) {

 printf("%-30s %s\n", $param_name, $param_value);

}

printf("\n");

$server_info = cubrid_get_server_info($conn);

$client_info = cubrid_get_client_info();

printf("%-30s %s\n", "Server Info:", $server_info);

printf("%-30s %s\n", "Client Info:", $client_info);

printf("\n");

$charset = cubrid_get_charset($conn);

printf("%-30s %s\n", "CUBRID Charset:", $charset);

cubrid_disconnect($conn);

?>

The above example will output:

CUBRID PHP Version: 8.3.1.0005

API Reference

637

PARAM_ISOLATION_LEVEL 3

LOCK_TIMEOUT -1

MAX_STRING_LENGTH 1073741823

PARAM_AUTO_COMMIT ㅗ 0

Server Info: 8.3.1.0173

Client Info: 8.3.1

CUBRID Charset: iso8859-1

See Also

• cubrid_error_code

• cubrid_error_code_facility

CUBRID 2008 R4.0 Help

638

CCI API

CCI Overview

Overview

The CCI (C Client Interface) is an interface that exists between the CUBRID broker and the application client, through

which a C-based application client can access the CUBRID database server using a broker. This interface is also used as

an infrastructure for making tools that utilize CAS (e.g. PHP and ODBC). The CUBRID broker delivers the query

received from an application client to the broker, and transfers the execution result to the client.

A header file and library files are required to use CCI.

• Header file : $CUBRID/include/cas_cci.h

• Library file :

• $CUBRID/lib/libcascci.so (Windows : cascci.dll)

• $CUBRID/lib/libcascci.a (Windows : cascci.lib)

Writing CCI Application Program

The basic steps used for writing programs are as follows, and a step for binding the data to a variable is added to use the

prepared statement. The steps are implemented in example codes 1 and 2. Auto-commit mode is supported only for

SELECT statements when the SELECT_AUTO_COMMIT parameter has been set to ON. Otherwise, you must

explicitly commit or roll back the transaction by using the cci_end_tran() function. For details about how to configure

and use auto-commit mode in CCI, see [Performance Tuning > Broker Configuration > Parameter By Broker >

SELECT_AUTO_COMMIT] and cci_end_tran().

• Opening a database connection handle (related function : cci_connect(), cci_connect_with_url())

• Preparing an SQL statement (related function : cci_prepare())

• Binding data to a prepared SQL statement (related function : cci_bind_param())

• Executing a prepared SQL statement (related function : cci_execute())

• Processing the execution result (related function : cci_cursor(), cci_fetch(), cci_get_data(), cci_get_result_info())

• Closing the request handle (related function : cci_close_req_handle())

• Closing a database connection handle (related function : cci_disconnect())

Example 1

//Example to execute a simple query

#include <stdio.h>

#include "cas_cci.h"

#define BUFSIZE (1024)

int

main (void)

{

 int con = 0, req = 0, col_count = 0, i, ind;

 int error;

 char *data;

 T_CCI_ERROR cci_error;

 T_CCI_COL_INFO *col_info;

 T_CCI_SQLX_CMD cmd_type;

 char *query = "select * from code";

//getting a connection handle for a connection with a server

 con = cci_connect ("localhost", 44000, "demodb", "dba", "");

 if (con < 0)

 {

 printf ("cannot connect to database\n");

 return 1;

 }

API Reference

639

//preparing the SQL statement

 req = cci_prepare (con, query, 0, &cci_error);

 if (req < 0)

 {

 printf ("prepare error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

//getting column information when the prepared statement is the SELECT query

 col_info = cci_get_result_info (req, &cmd_type, &col_count);

 if (col_info == NULL)

 {

 printf ("get_result_info error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

//Executing the prepared SQL statement

 error = cci_execute (req, 0, 0, &cci_error);

 if (error < 0)

 {

 printf ("execute error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

 while (1)

 {

//Moving the cursor to access a specific tuple of results

 error = cci_cursor (req, 1, CCI_CURSOR_CURRENT, &cci_error);

 if (error == CCI_ER_NO_MORE_DATA)

 {

 break;

 }

 if (error < 0)

 {

 printf ("cursor error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

//Fetching the query result into a client buffer

 error = cci_fetch (req, &cci_error);

 if (error < 0)

 {

 printf ("fetch error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

 for (i = 1; i <= col_count; i++)

 {

//Getting data from the fetched result

 error = cci_get_data (req, i, CCI_A_TYPE_STR, &data, &ind);

 if (error < 0)

 {

 printf ("get_data error: %d, %d\n", error, i);

 goto handle_error;

 }

 printf ("%s\t|", data);

 }

 printf ("\n");

 }

//Closing the request handle

 error = cci_close_req_handle (req);

 if (error < 0)

 {

 printf ("close_req_handle error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

CUBRID 2008 R4.0 Help

640

//Disconnecting with the server

 error = cci_disconnect (con, &cci_error);

 if (error < 0)

 {

 printf ("error: %d, %s\n", cci_error.err_code, cci_error.err_msg);

 goto handle_error;

 }

 return 0;

handle_error:

 if (req > 0)

 cci_close_req_handle (req);

 if (con > 0)

 cci_disconnect (con, &cci_error);

 return 1;

}

Example 2

//Example to execute a query with a bind variable

char *query = "select * from nation where name = ?";

 char namebuf[128];

//getting a connection handle for a connection with a server

 con = cci_connect ("localhost", 44000, "demodb", "dba", "");

 if (con < 0)

 {

 printf ("cannot connect to database ");

 return 1;

 }

//preparing the SQL statement

 req = cci_prepare (con, query, 0, &cci_error);

 if (req < 0)

 {

 printf ("prepare error: %d, %s ", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

//Binding date into a value

 strcpy (namebuf, "Korea");

 error =

 cci_bind_param (req, 1, CCI_A_TYPE_STR, &namebuf, CCI_U_TYPE_STRING,

 CCI_BIND_PTR);

 if (error < 0)

 {

 printf ("bind_param error: %d ", error);

 goto handle_error;

 }

Using BLOB/CLOB with CCI

Storing LOB Data

You can create LOB data file and bind the data by using the following functions in CCI applications.

• Creating LOB data file (related function : cci_blob_new(), cci_blob_write())

• Binding LOB data (related function : cci_bind_param())

• Freeing memory of LOB structure (related function : cci_blob_free())

Example 1

int con = 0; /* connection handle */

int req = 0; /* request handle */

int res;

API Reference

641

int n_executed;

int i;

T_CCI_ERROR error;

T_CCI_BLOB blob = NULL;

char data[1024] = “bulabula”;

con = cci_connect ("localhost", 33000, “tdb", "PUBLIC", "");

if (con < 0) {

goto handle_error;

}

req = cci_prepare (con, “insert into doc (doc_id, content) values (?,?)”, 0, &error);

if (req< 0)

{

goto handle_error;

}

res = cci_bind_param (req, 1 /* binding index*/, CCI_A_TYPE_STR, “doc-10”, &ind,

CCI_U_TYPE_STRING);

/* Creating an empty LOB data file

res = cci_blob_new (con, &blob, &error);

res = cci_blob_write (con, blob, 0 /* start position */, 1024 /* length */, data, &error);

/* Binding BLOB data */

res = cci_bind_param (req, 2 /* binding index*/, CCI_A_TYPE_BLOB, (void *)blob,

CCI_U_TYPE_BLOB, CCI_BIND_PTR);

n_executed = cci_execute (req, 0, 0, &error);

if (n_executed < 0)

{

goto handle_error

}

/* Memory free */

cci_blob_free(blob);

return 0;

handle_error:

if (blob != NULL)

{

cci_blob_free(blob);

}

if (req > 0)

{

cci_close_req_handle (req);

}

if (con > 0)

{

cci_disconnect(con, &error);

}

return -1;

Getting LOB Data

You can get LOB data by using the following functions in CCI applications. Note that if you enter data in LOB type

colulmn, the actual LOB data is stored externally and Locator value referring to the file is stored in LOB type column

itself. Therefore, you must call the cci_blob_read() function (not the cci_get_data() function) to get LOB data stored in

the file.

• Getting LOB type column value (Locator) (related function : cci_get_data())

• Getting LOB data (related function : cci_blob_read())

• Freeing memory of LOB structure (related function : cci_blob_free())

Example

int con = 0; /* connection handle */

int req = 0; /* request handle */

int ind; /* NULL indicator, 0 if not NULL, -1 if NULL*/

int res;

int i;

CUBRID 2008 R4.0 Help

642

T_CCI_ERROR error;

T_CCI_BLOB blob;

char buffer[1024];

con = cci_connect ("localhost", 33000, "image_db", "PUBLIC", "");

if (con < 0)

 {

 goto handle_error;

 }

req = cci_prepare (con, "select content from doc_t", 0 /*flag*/, &error);

if (req< 0)

 {

 goto handle_error;

 }

res = cci_execute (req, 0/*flag*/, 0/*max_col_size*/, &error);

res = cci_fetch_size (req, 100 /* fetch size */);

while (1) {

 res = cci_cursor (req, 1/* offset */, CCI_CURSOR_CURRENT/* cursor position */, &error);

 if (res == CCI_ER_NO_MORE_DATA)

 {

 break;

 }

 res = cci_fetch (req, &error);

/* Fetching CLOB Locator */

 res = cci_get_data (req, 1 /* colume index */, CCI_A_TYPE_BLOB,

 (void *)&blob /* BLOB handle */, &ind /* NULL indicator */);

/* Fetching CLOB data */

res = cci_blob_read (con, blob, 0 /* start position */, 1024 /* length */, buffer, &error);

printf ("content = %s\n", buffer);

}

/* Memory free */

cci_blob_free(blob);

res=cci_close_req_handle(req);

res = cci_disconnect (con, &error);

return 0;

handle_error:

if (req > 0)

 {

 cci_close_req_handle (req);

 }

if (con > 0)

 {

 cci_disconnect(con, &error);

 }

return -1;

CCI Error Code and Message

The following table shows the error codes and their messages of CCI.

Error Code Error Message Note

CCI_ER_ALLOC_CON_HANDLE "Cannot allocate connection

handle"

CCI_ER_ATYPE "Invalid T_CCI_A_TYPE

value"

CCI_ER_BIND_ARRAY_SIZE "Array binding size is not

specified"

CCI_ER_BIND_INDEX "Parameter index is out of

range"

Index that binds data is not

valid.

CCI_ER_COLUMN_INDEX "Column index is out of

range"

CCI_ER_COMMUNICATION "Cannot communicate with

API Reference

643

server"

CCI_ER_CON_HANDLE "Invalid connection handle"

CCI_ER_CONNECT "Cannot connect to

CUBRID CAS"

Fails to connect the CAS

when trying connection to the

server.

CCI_ER_DELETED_TUPLE "Current row was deleted"

CCI_ER_FILE "Cannot open file" Fails to open/read/write a file.

CCI_ER_HOSTNAME "Unknown host name"

CCI_ER_INVALID_CURSOR_POS "Invalid cursor position"

CCI_ER_INVALID_URL "Invalid url string"

CCI_ER_ISOLATION_LEVEL "Unknown transaction

isolation level"

CCI_ER_NO_MORE_DATA "Invalid cursor position"

CCI_ER_NO_MORE_MEMORY "Memory allocation error" Insufficient memory

CCI_ER_OBJECT "Invalid oid string"

CCI_ER_OID_CMD "Invalid T_CCI_OID_CMD

value"

CCI_ER_TRAN_TYPE "Unknown transaction type"

CCI_ER_PARAM_NAME "Invalid

T_CCI_DB_PARAM value"

CCI_ER_REQ_HANDLE "Cannot allocate request

handle"

CCI_ER_SAVEPOINT_CMD "Invalid

T_CCI_SAVEPOINT_CMD

value"

Invalid

T_CCI_SAVEPOINT_CMD

value is used as an argument

of cci_savepoint() function.

CCI_ER_SET_INDEX "Invalid set index" Invalid index is specified

when an set element in the

T_SET is retrieved.

CCI_ER_STRING_PARAM "Invalid string argument" string parameter is NULL or

an empty string.

CCI_ER_THREAD_RUNNING "Thread is running" The thread is still executed

when cci_execute() is

executed with

CCI_EXEC_THREAD

flaged and check the result of

thread execution through

cci_get_thread_result().

CCI_ER_TRAN_TYPE "Unknown transaction type" Connection to the server
has succeeded,
connection to a database
fails.

CCI_ER_TYPE_CONVERSION "Type conversion error" Cannot convert the given

value into an actual data type.

CCI_ER_DBMS

CAS_ER_DBMS

"CUBRID DBMS Error" Fails to database connection.

CAS_ER_COLLECTION_DOMAIN "Heterogeneous set is not

supported"

Not supported set type.

CAS_ER_COMMUNICATION "Cannot receive data from

CUBRID 2008 R4.0 Help

644

client"

CAS_ER_DB_VALUE "Cannot make DB_VALUE"

CAS_ER_DBSERVER_DISCONNECTED "Cannot communicate with

DB Server"

CAS_ER_FREE_SERVER "Cannot process the request.

Try again later"

Cannot assign CAS.

CAS_ER_INVALID_CALL_STMT "Illegal CALL statement"

CAS_ER_NO_MORE_DATA "Invalid cursor position"

CAS_ER_NO_MORE_MEMORY "Memory allocation error"

CAS_ER_NO_MORE_RESULT_SET "No More Result"

CAS_ER_NOT_AUTHORIZED_CLIENT "Authorization error" Access is denied.

CAS_ER_NOT_COLLECTION "The attribute domain must

be the set type"

No set type.

CAS_ER_NUM_BIND "Invalid parameter binding

value argument"

The number of data to be

bound is not matched with

the number of delivered data.

CAS_ER_OBJECT "Invalid oid"

CAS_ER_OPEN_FILE "Cannot open file"

CAS_ER_PARAM_NAME "Invalid

T_CCI_DB_PARAM value"

Invalid get_db_parameter

and , set_db_parameter

parameter name.

CAS_ER_QUERY_CANCEL "Cannot cancel the query"

CAS_ER_UNKNOWN_U_TYPE "Invalid T_CCI_U_TYPE

value"

CAS_ER_TYPE_CONVERSION "Type conversion error"

CAS_ER_SCHEMA_TYPE "Invalid

T_CCI_SCH_TYPE value"

CAS_ER_STMT_POOLING "Invalid plan"

CAS_ER_TRAN_TYPE "Invalid transaction type

argument"

CAS_ER_TYPE_CONVERSION "Type conversion error"

CAS_ER_UNKNOWN_U_TYPE "Invalid T_CCI_U_TYPE

value"

CAS_ER_VERSION "Version mismatch" Invalid Server and Client

version.

C Type Definition

Name Type Member Description

T_CCI_ERROR struct char err_msg[1024] Representation of

database error

info
int err_code

T_CCI_BIT struct int size Representation of

bit type
char *buf

T_CCI_DATE struct short yr Representation of

timestamp, date,
short mon

API Reference

645

short day time type

short hh

short mm

short ss

short ms

T_CCI_SET void* Representation of

set type

T_CCI_COL_INFO struct T_CCI_U_TYPE type Representation of

column

information for

the SELECT

statement

char is_non_null

short scale

int precision

char *col_name

char *real_attr

char *class_name

T_CCI_QUERY_RESULT struct int result_count Results of batch

execution
int stmt_type

char *err_msg

char oid[32]

T_CCI_PARAM_INFO struct T_CCI_PARAM_MODE mode Representation of

input parameter

info
T_CCI_U_TYPE type

short scale

int precision

T_CCI_U_TYPE enum CCI_U_TYPE_UNKNOWN Database type

info
CCI_U_TYPE_NULL

CCI_U_TYPE_CHAR

CCI_U_TYPE_STRING

CCI_U_TYPE_NCHAR

CCI_U_TYPE_VARNCHAR

CCI_U_TYPE_BIT

CCI_U_TYPE_VARBIT

CCI_U_TYPE_NUMERIC

CCI_U_TYPE_INT

CCI_U_TYPE_SHORT

CCI_U_TYPE_MONETARY

CCI_U_TYPE_FLOAT

CCI_U_TYPE_DOUBLE

CCI_U_TYPE_DATE

CCI_U_TYPE_TIME

CCI_U_TYPE_TIMESTAMP

CCI_U_TYPE_SET

CUBRID 2008 R4.0 Help

646

CCI_U_TYPE_MULTISET

CCI_U_TYPE_SEQUENCE

CCI_U_TYPE_OBJECT

CCI_U_TYPE_BIGINT

CCI_U_TYPE_DATETIME

T_CCI_A_TYPE enum CCI_A_TYPE_STR Representation of

type info used in

API CCI_A_TYPE_INT

CCI_A_TYPE_FLOAT

CCI_A_TYPE_DOUBLE

CCI_A_TYPE_BIT

CCI_A_TYPE_DATE

CCI_A_TYPE_SET

CCI_A_TYPE_BIGINT

 CCI_TYPE_BLOB

CCI_TYPE_CLOB

T_CCI_DB_PARAM enum CCI_PARAM_ISOLATION_LEVEL System parameter

name
CCI_PARAM_LOCK_TIMEOUT

CCI_PARAM_MAX_STRING_LENGTH

CCI_PARAM_AUTO_COMMIT

T_CCI_SCH_TYPE enum CCI_SCH_CLASS

CCI_SCH_VCLASS

CCI_SCH_QUERY_SPEC

CCI_SCH_ATTRIBUTE

CCI_SCH_CLASS_ATTRIBUTE

CCI_SCH_METHOD

CCI_SCH_CLASS_METHOD

CCI_SCH_METHOD_FILE

CCI_SCH_SUPERCLASS

CCI_SCH_SUBCLASS

CCI_SCH_CONSTRAIT

CCI_SCH_TRIGGER

CCI_SCH_CLASS_PRIVILEGE

CCI_SCH_ATTR_PRIVILEGE

CCI_SCH_DIRECT_SUPER_CLASS

CCI_SCH_PRIMARY_KEY

CCI_SCH_IMPORTED_KEYS

CCI_SCH_EXPORTED_KEYS

CCI_SCH_CROSS_REFERENCE

T_CCI_CUBRID_STMT enum CUBRID_STMT_ALTER_CLASS

CUBRID_STMT_ALTER_SERIAL

API Reference

647

CUBRID_STMT_COMMIT_WORK

CUBRID_STMT_REGISTER_DATABASE

CUBRID_STMT_CREATE_CLASS

CUBRID_STMT_CREATE_INDEX

CUBRID_STMT_CREATE_TRIGGER

CUBRID_STMT_CREATE_SERIAL

CUBRID_STMT_DROP_DATABASE

CUBRID_STMT_DROP_CLASS

CUBRID_STMT_DROP_INDEX

CUBRID_STMT_DROP_LABEL

CUBRID_STMT_DROP_TRIGGER

CUBRID_STMT_DROP_SERIAL

CUBRID_STMT_EVALUATE

CUBRID_STMT_RENAME_CLASS

CUBRID_STMT_ROLLBACK_WORK

CUBRID_STMT_GRANT

CUBRID_STMT_REVOKE

CUBRID_STMT_STATISTICS

CUBRID_STMT_INSERT

CUBRID_STMT_SELECT

CUBRID_STMT_UPDATE

CUBRID_STMT_DELETE

CUBRID_STMT_CALL

CUBRID_STMT_GET_ISO_LVL

CUBRID_STMT_GET_TIMEOUT

CUBRID_STMT_GET_OPT_LVL

CUBRID_STMT_SET_OPT_LVL

CUBRID_STMT_SCOPE

CUBRID_STMT_GET_TRIGGER

CUBRID_STMT_SET_TRIGGER

CUBRID_STMT_SAVEPOINT

CUBRID_STMT_PREPARE

CUBRID_STMT_ATTACH

CUBRID_STMT_USE

CUBRID_STMT_REMOVE_TRIGGER

CUBRID_STMT_RENAME_TRIGGER

CUBRID_STMT_ON_LDB

CUBRID_STMT_GET_LDB

CUBRID_STMT_SET_LDB

CUBRID_STMT_GET_STATS

CUBRID 2008 R4.0 Help

648

CUBRID_STMT_CREATE_USER

CUBRID_STMT_DROP_USER

CUBRID_STMT_ALTER_USER

T_CCI_CURSOR_POS enum CCI_CURSOR_FIRST

CCI_CURSOR_CURRENT

CCI_CURSOR_LAST

T_CCI_TRAN_ISOLATION enum TRAN_COMMIT_CLASS_UNCOMMIT_INSTANCE

TRAN_COMMIT_CLASS_COMMIT_INSTANCE

TRAN_REP_CLASS_UNCOMMIT_INSTANCE

TRAN_REP_CLASS_COMMIT_INSTANCE

TRAN_REP_CLASS_REP_INSTANCE

TRAN_SERIALIZABLE

T_CCI_PARAM_MODE enum CCI_PARAM_MODE_UNKNOWN

CCI_PARAM_MODE_IN

CCI_PARAM_MODE_OUT

CCI_PARAM_MODE_INOUT

Note If a string longer than defined size in a column is inserted(INSERT) or updated(UPDATE), the string will be

truncated.

cci_bind_param

Description

This function is used to bind data in the bind variable of prepared statement. Converts value of the given a_type to an

actual binding type and saves it. Subsequently, whenever cci_execute() is called, the saved data is sent to the server. If

cci_bind_param() is called multiple times for the same index, the last set value is configured.

If NULL is bound to the database, there can be two scenarios.

• value is a NULL pointer.

• u_type is CCI_U_TYPE_NULL.

If CCI_BIND_PTR is configured for flag, the pointer of value variable is copied (shallow copy), but no value is copied.

If it is not configured for flag, the value of value variable is copied (deep copy) by allocating memory. If multiple

columns are bound by using the same memory buffer, CCI_BIND_PTR must not be configured for the flag.

T_CCI_A_TYPE is a C language type that is used in CCI application programs, and consists of primitive types such as

int and float and user-defined types defined by CCI such as T_CCI_BIT and T_CCI_DATE. The identitier for each

type is defined as shown in the table below.

a_type value Type

CCI_A_TYPE_STR char**

CCI_A_TYPE_INT int*

CCI_A_TYPE_FLOAT float*

CCI_A_TYPE_DOUBLE double*

CCI_A_TYPE_BIT T_CCI_BIT*

CCI_A_TYPE_SET T_CCI_SET

API Reference

649

CCI_A_TYPE_DATE T_CCI_DATE*

CCI_A_TYPE_BIGINT int64_t*

(For Windows : __int64*)

CCI_A_TYPE_BLOB T_CCI_BLOC

CCI_A_TYPE_CLOB T_CCI_CLOB

T_CCI_U_TYPE is a type supported by the CUBRID database. For the definition of the identifier for each type, see

the table below. These two types are used in the cci_bind_param() function to deliver the information required to

convert the A type data that can be understood by the C language to the U type data that can be understood by the

database. T_CCI_A_TYPE and T_CCI_U_TYPE enums are all defined in the cas_cci.h file.

u_type value Type

CCI_U_TYPE_CHAR char**

CCI_U_TYPE_STRING char**

CCI_U_TYPE_NCHAR char**

CCI_U_TYPE_VARNCHAR char**

CCI_U_TYPE_BIT T_CCI_BIT*

CCI_U_TYPE_VARBIT T_CCI_BIT*

CCI_U_TYPE_NUMERIC char**

CCI_U_TYPE_INT int*

CCI_U_TYPE_SHORT int*

CCI_U_TYPE_MONETARY Double*

CCI_U_TYPE_FLOAT float*

CCI_U_TYPE_DOUBLE Double*

CCI_U_TYPE_DATE T_CCI_DATE*

CCI_U_TYPE_TIME T_CCI_DATE*

CCI_U_TYPE_TIMESTAMP T_CCI_DATE*

CCI_U_TYPE_OBJECT char**

CCI_U_TYPE_BIGINT int64_t*

(Windows : __int64*)

CCI_U_TYPE_DATETIME T_CCI_DATE*

Syntax

int cci_bind_param(int req_handle, int index, T_CCI_A_TYPE a_type, void *value,

T_CCI_U_TYPE u_type, char flag)

• req_handle : (IN) Request handle of a prepared SQL statement

• index : (IN) One-based binding location it starts with 1.

• a_type : (IN) Data type of value

• value : (IN) Data value to be bound

• u_type : (IN) Data type to be applied to the database

• flag : (IN) bind_flag (CCI_BIND_PTR)

Return Value

• Error code (0 : success)

CUBRID 2008 R4.0 Help

650

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_TYPE_CONVERSION

• CCI_ER_BIND_INDEX

• CCI_ER_ATYPE

• CCI_ER_NO_MORE_MEMORY

cci_bind_param_array

Description

This function is used to bind a parameter array for a prepared req_handle. Subsequently, whenever cci_execute_array()

occurs, data is sent to the server by the saved value pointer. If cci_bind_param_array() is called multiple times for the

same index, the last configured value is used. If NULL is bound to the data, a non-zero value is configured to null_ind.

If value is a NULL pointer, or u_type is CCI_U_TYPE_NULL, all data are bound to NULL and the data buffer used

by value cannot be reused.

For the data type of value for a_type, see the cci_bind_param() function description.

Syntax

int cci_bind_param_array(int req_handle, int index, T_CCI_A_TYPE a_type, void *value, int

*null_ind, T_CCI_U_TYPE u_type)

• req_handle : (IN) Request handle of a prepared SQL statement

• index : (IN) Binding location

• a_type : (IN) Data type of value

• value : (IN) Data value to be bound

• null_ind : (IN) NULL indicator array (0 : not NULL, 1 : NULL)

• u_type : (IN) Data type to be applied to the database.

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_TYPE_CONVERSION

• CCI_ER_BIND_INDEX

• CCI_ER_ATYPE

• CCI_ER_BIND_ARRAY_SIZE

cci_bind_param_array_size

Description

This function is used to determine the size of the array to be used in cci_bind_param_array().

cci_bind_param_array_size() must be called first before cci_bind_prarm_array() is used.

Syntax

int cci_bind_param_array_size(int req_handle, int array_size)

• req_handle : (IN) Request handle of a prepared statement

• array_size : (IN) Binding array size

API Reference

651

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

cci_blob_free

Description

This function frees memory of BLOB structure.

Syntax

int cci_blob_free (T_CCI_BLOB blob)

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_INVALID_LOB_HANDLE

cci_blob_new

Description

This function creates an empty file where LOB data is stored and returns Locator referring to the data to blob structure.

Syntax

int cci_blob_new(int conn_handle, T_CCI_BLOB* blob, T_CCI_ERROR* error_buf)

• conn_handle : (IN) Connection handle

• blob : (OUT) LOB Locator

• error_buf : (OUT) Error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

• CCI_ER_INVALID_HANDLE

cci_blob_write

Description

This function reads LOB data as long as the value of length from start_pos in LOB data file, stores the value in buf, and

then returns it.

CUBRID 2008 R4.0 Help

652

Syntax

int cci_blob_read(int conn_handle, T_CCI_BLOB blob, long start_pos, int length, const char

buf, T_CCI_ERROR error_buf)

• conn_handle : (IN) Connection handle

• blob : (IN) LOB Locator

• start_pos : (IN) Index location of LOB data file

• length : (IN) LOB data length from buffer

• error_buf : (OUT) Error buffer

Return Value

• Size of read value (> =0 : success)

• Error code (< 0 : error)

Error Code

• CCI_ER_INVALID_LOB_READ_POS

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

• CCI_ER_INVALID_LOB_HANDLE

cci_blob_size

Description

This function returns data file size that is specified in blob.

Syntax

long long cci_blob_size (T_CCI_BLOB* blob)

• blob : (IN) LOB Locator

Return Value

• Size of BLOB data file (> =0 : success)

• Error code (<0 : error)

Error Code

• CCI_ER_INVALID_LOB_HANDLE

cci_blob_write

Description

This function reads data as long as the value of length from buf and then stores the value from start_pos in LOB data

file.

Syntax

int cci_blob_write(int conn_handle, T_CCI_BLOB blob, long start_pos, int length, const

char *buf, T_CCI_ERROR* error_buf)

• conn_handle : (IN) Connection handle

• blob : (IN) LOB Locator

API Reference

653

• start_pos : (IN) Index location of LOB data file

• length : (IN) Data length from buffer

• error_buf : (OUT) Error buffer

Return Value

• Size of written value (> =0 : success)

• Error code (<0 : error)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

• CCI_ER_INVALID_LOB_HANDLE

cci_clob_free

Description

This function frees memory of CLOB structure.

Syntax

int cci_clob_free (T_CCI_CLOB clob)

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_INVALID_LOB_HANDLE

cci_clob_new

Description

This function creates an empty file where LOB data is stored and returns Locator referring to the data to clob structure.

Syntax

int cci_clob_new(int conn_handle, T_CCI_CLOB* clob, T_CCI_ERROR* error_buf)

• conn_handle : (IN) Connection handle

• clob : (OUT) LOB Locator

• error_buf : (OUT) Error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

CUBRID 2008 R4.0 Help

654

• CCI_ER_INVALID_HANDLE

cci_blob_write

Description

This function reads LOB data as long as the value of length from start_pos in LOB data file, stores the value in buf, and

then returns it.

Syntax

int cci_clob_read(int conn_handle, T_CCI_CLOB clob, long start_pos, int length, const char

buf, T_CCI_ERROR error_buf)

• conn_handle : (IN) Connection handle

• clob : (IN) LOB Locator

• start_pos : (IN) Index location of LOB data file

• length : (IN) LOB data length from buffer

• error_buf : (OUT) Error buffer

Return Value

• Size of read value (> =0 : success)

• Error code (< 0 : error)

Error Code

• CCI_ER_INVALID_LOB_READ_POS

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

• CCI_ER_INVALID_LOB_HANDLE

cci_clob_size

Description

This function returns data file size that is specified in clob.

Syntax

long long cci_clob_size (T_CCI_BLOB* clob)

• clob : (IN) LOB Locator

Return Value

• Size of CLOB data file (> =0 : success)

• Error code (<0 : error)

Error Code

• CCI_ER_INVALID_LOB_HANDLE

API Reference

655

cci_clob_write

Description

This function reads data as long as the value of length from buf and then stores the value from start_pos in LOB data

file.

Syntax

int cci_clob_write(int conn_handle, T_CCI_BLOB clob, long start_pos, int length, const

char *buf, T_CCI_ERROR* error_buf)

• conn_handle : (IN) Connection handle

• clob : (IN) LOB Locator

• start_pos : (IN) Index location of LOB data file

• length : (IN) Data length from buffer

• error_buf : (OUT) Error buffer

Return Value

• Size of written value (> =0 : success)

• Error code (<0 : error)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_DBMS

• CCI_ER_INVALID_LOB_HANDLE

cci_close_req_handle

Description

This function is used to close the request handle obtained by cci_prepare().

Syntax

int cci_close_req_handle(int req_handle)

• req_handle : (IN) Request handle

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_COMMUNICATION

cci_col_get

Description

This function is used to get an attribute value of collection type. If the name of the class is C, and the domain of set_attr

is set (multiset, sequence), the query looks like as follows:

SELECT a FROM C, TABLE(set_attr) AS t(a) WHERE C = oid;

CUBRID 2008 R4.0 Help

656

That is, the number of members becomes the number of records.

Syntax

intcci_col_get (int conn_handle, char *oid_str, char *col_attr, int *col_size, int

*col_type, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• col_size : (OUT) Collection size (-1 : null)

• col_type : (OUT) Collection type (set, multiset, sequence : u_type)

• err_buf : (OUT) Database error buffer

Return Value

• Request handle

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_col_seq_drop

Description

This function is used to drop the index-th (base:1) member of the sequence attribute values. The following is an

example of dropping the first member of the sequence attribute values.

cci_col_seq_drop(con_id, oid_str, seq_attr, 1, err_buf);

Syntax

intcci_col_seq_drop (int conn_handle, char *oid_str, char *col_attr, int index,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• index : (IN) Index

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

API Reference

657

cci_col_seq_insert

Description

This function is used to insert a member at the index-th (base:1) position of the sequence attribute values. The following

is an example of inserting "a" at the first position of the sequence attribute values.

cci_col_seq_insert(con_id, oid_str, seq_attr, 1, "a", err_buf);

Syntax

intcci_col_seq_insert (int conn_handle, char *oid_str, char *col_attr, int index, char

*value, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• index : (IN) Index

• value : (IN) Sequential element (string)

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_col_seq_put

Description

This function is used to replace the index-th (base:1) member of the sequence attribute values with a new value. The

following is an example of replacing the first member of the sequence attributes values with "a".

cci_col_seq_put(con_id, oid_str, seq_attr, 1, "a", err_buf);

Syntax

intcci_col_seq_put (int conn_handle, char *oid_str, char *col_attr, int index, char *value,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• index : (IN) Index

• value : (IN) Sequential value

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

CUBRID 2008 R4.0 Help

658

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_col_set_add

Description

This function is used to add a member to the set attribute values. The following is an example of adding "a" to the set

attribute values.

cci_col_set_add(con_id, oid_str, set_attr, "a", err_buf);

Syntax

intcci_col_set_add (int conn_handle, char *oid_str, char *col_attr, char *value,

T_CCI_ERRROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• value : (IN) Set element

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_col_set_drop

Description

This function is used to drop a member from the set attribute values. The following is an example of dropping "a" from

the set attribute values.

cci_col_set_drop(con_id, oid_str, set_attr, "a", err_buf);

Syntax

intcci_col_set_drop (int conn_handle, char *oid_str, char *col_attr, char *value,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• value : (IN) Set element (string)

• err_buf : (OUT) Database error buffer

Return Value

• Error code

API Reference

659

cci_col_size

Description

This function is used to get the size of the set (seq) attribute.

Syntax

intcci_col_size (int conn_handle, char *oid_str, char *col_attr, int *col_size,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• col_attr : (IN) Collection attribute name

• col_size : (OUT) Collection size (-1 : NULL)

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_connect

Description

A connection handle to the database server is assigned and it tries to connect to the server. If it has succeeded, the

connection handle ID is returned; if fails, an error code is returned.

Syntax

int cci_connect(char *ip, int port, char *db_name, char *db_user, char *db_password)

• ip : (IN) A character string representing the IP address of the server (host name)

• port : (IN) Broker port (the port configured in the $CUBRID/conf/cubrid_broker.conf file)

• db_name : (IN) Database name

• db_user : (IN) Database user name

• db_passwd : (IN) Database user password

Return Value

• Success : Connection handle ID (int)

• Failure : Error code

Error Code

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_HOSTNAME

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_CONNECT

CUBRID 2008 R4.0 Help

660

cci_connect_with_url

Description

cci_connect_with_url tries to connect a database by using connection information passed with an url string argument. If

the HA feature is enabled in CCI, you must specify the connection information of the standby server, which is used for

failover when failure occurs, in the url string argument of this function. If it has succeeded, the ID of connection handle

is returned; if it fails, an error code is returned.

Syntax

int cci_connect_with_url (char *url [, char *db_user, char *db_password])

<url> ::=

cci:CUBRID:<host>:<db_name>:<db_user>:<db_password>:[?<properties>]

<properties> ::= <property> [&<property>]

<property> ::= althosts=<alternative_hosts> [&rctime=<time>]

<alternative_hosts> ::= <standby_broker1_host>:<port> [,<standby_broker2_host>:<port>]

<host> := HOSTNAME | IP_ADDR

<time> := SECOND

• url : (IN) A character string that contains server connection information

• host : A host name or IP address of the master database

• db_name : A name of the database

• db_user : A name of the database user

• db_password : A database user password

• althosts =standby_broker1_host, standby_broker2_host, . . . : Specifies the broker information of the standby

server, which is used for failover when it is impossible to connect to the active server. You can specify multiple

brokers for failover, and the connection to the brokers is attempted in the order listed in alhosts.

• rctime : An interval between the attempts to connect to the active broker in which failure occurred. After a failure

occurs, the system connects to the broker specified by althosts (failover), terminates the transaction, and then

attempts to connect to the active broker of the master database at every rctime. The default value is 600 seconds.

• db_user : (IN) A name of the database user

• db_passwd : (IN) A database user password

Return Value

• Success : Connection handle ID (int)

• Failure : Error code

Error Code

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_HOSTNAME

• CCI_ER_INVALID_URL

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

Example

--connection URL string when a property(althosts) specified for HA

URL=cci:CUBRID:127.0.0.1:31000:db1:::?althosts=127.0.0.2:31000,127.0.0.3:31000

--connection URL string when properties(althosts,rctime) specified for HA

URL=cci:CUBRID:127.0.0.1:31000:db1:::?althosts=127.0.0.2:31000,127.0.0.3:31000&rctime=600

API Reference

661

cci_cursor

Description

This function is used to move the cursor specified in the request handle to access the specific record in the query result

executed by cci_execute(). The position of cursor is moved by the values specified in the origin and offset values. If the

position to be moved is not valid, CCI_ER_NO_MORE_DATA is returned.

Syntax

int cci_cursor(int req_handle, int offset, T_CCI_CURSOR_POS origin, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle

• offset : (IN) Offset to be moved

• origin : (IN) Variable to represent a position. The type is T_CCI_CURSOR_POS. T_CCI_CURSOR_POS enum

consists of CCI_CURSOR_FIRST, CCI_CURSOR_CURRENT, and CCI_CURSOR_LAST.

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_NO_MORE_DATA

• CCI_ER_COMMUNICATION

Example

//the cursor moves to the first record

cci_cursor(req, 1, CCI_CURSOR_FIRST, &err_buf);

//the cursor moves to the next record

cci_cursor(req, 1, CCI_CURSOR_CURRENT, &err_buf);

//the cursor moves to the last record

cci_cursor(req, 1, CCI_CURSOR_LAST, &err_buf);

//the cursor moves to the previous record

cci_cursor(req, -1, CCI_CURSOR_CURRENT, &err_buf);

cci_cursor_update

Description

This function is used to update cursor_pos from the value of the index th column to value . If the database is updated to

NULL, value becomes NULL. For update conditions, see cci_prepare(). The data type of value for a_type is shown in

the table below.

a_type value Type

CCI_A_TYPE_STR char*

CCI_A_TYPE_INT int*

CCI_A_TYPE_FLOAT float*

CCI_A_TYPE_DOUBLE double*

CCI_A_TYPE_BIT T_CCI_BIT*

CCI_A_TYPE_SET T_CCI_SET

CUBRID 2008 R4.0 Help

662

CCI_A_TYPE_DATE T_CCI_DATE*

CCI_A_TYPE_BIGINT int64_t (For Windows : __int64)

CCI_A_TYPE_BLOB
T_CCI_BLOB

CCI_A_TYPE_CLOB
T_CCI_CLOB

Syntax

int cci_cursor_update(int req_handle, int cursor_pos, int index, T_CCI_A_TYPE a_type, void

*value, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle

• cursor_pos : (IN) Cursor position

• index : (IN) Column index

• a_type : (IN) value Type

• value : (IN) A new value

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : no error)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_TYPE_CONVERSION

• CCI_ER_ATYPE

cci_disconnect

Description

This function is used to disconnect all request handles created for conn_handle. If a transaction is being performed, the

handles are disconnected after cci_end_tran() is executed.

Syntax

int cci_disconnect(int conn_handle, T_CCI_ERROR * err_buf)

• conn_handle : (IN) Connection handle

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

cci_end_tran

Description

This function is used to perform a commit or rollback on the current transaction. At this point, all open request handles

are terminated and the connection to the database server is disabled. However, even after the connection to the server is

API Reference

663

disabled, the connection handle remains valid. This is the same state as one in which one connection handle has been

assigned by the cci_connect() function. The transaction is committed if the type is set to CCI_TRAN_COMMIT; and

is rolled back if it is set to CCI_TRAN_ROLLBACK.

Syntax

int cci_end_tran(int conn_handle, char type, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• type : (IN) CCI_TRAN_COMMIT or CCI_TRAN_ROLLBACK

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_TRAN_TYPE

Remark

Auto-commit mode is supported for SELECT statements. To apply this mode, you must add

SELECT_AUTO_COMMIT=ON to the cubrid_broker.conf file. However, auto-commit is performed only at the point

at which the result set for all n query statements is fetched from the server when there are n prepared statements. An

example is as follows:

Example 1

$sql1 = "select * from db_user";

$sql2 = "select * from db_class where owner_name = ?";

$result = cubrid_execute($con, $sql1); // 1 select handle. fetch completed - autocommit

if ($result) {

 while ($row = cubrid_fetch ($result))

 {

 echo ($row[0]);

 $req = cubrid_prepare ($con, $sql2);

 cubrid_bind ($req, 1, $row[0]);

 $res = cubrid_execute ($req); // 1 select handle. fetch completed - autocommit

 }

}

Example 2

$sql1 = "select * from db_user";

$sql2 = "select * from db_class where owner_name = ?";

$req = cubrid_prepare ($con, $sql2);

$result = cubrid_execute($con, $sql1); // 2 handle. fetch completed for only 1 hanlde -

no autcommit

if ($result) {

 while ($row = cubrid_fetch ($result))

 {

 echo ($row[0]);

 cubrid_bind ($req, 1, $row[0]);

 $res = cubrid_execute ($req); // fetch completed for all select handles -

autocommit

 }

}

CUBRID 2008 R4.0 Help

664

Example 3

$sql1 = "select * from db_user";

$sql2 = "insert into a values (?)";

$result = cubrid_execute($con, $sql1); // 1 select handle. fetch completed - autocommit

if ($result) {

 while ($row = cubrid_fetch ($result))

 {

 echo ($row[0]);

 $req = cubrid_prepare ($con, $sql2);

 cubrid_bind ($req, 1, $row[0]);

 $res = cubrid_execute ($req); // no autocommit for insert

 }

}

Example 4

$sql1 = "select * from db_user";

$sql2 = "insert into a values (?)";

$req = cubrid_prepare ($con, $sql2);

$result = cubrid_execute($con, $sql1); // no autocommit for insert because no fetch

if ($result) {

 while ($row = cubrid_fetch ($result))

 {

 echo ($row[0]);

 cubrid_bind ($req, 1, $row[0]);

 $res = cubrid_execute ($req); // no autocommit for insert

 }

}

cci_execute

Description

This function is used to execute the prepared SQL statement, which is executing cci_prepare(). A request handle, a flag,

the maximum length of the column to be fetched and the address of the T_CCI_ERROR construct to contain the error

information are specified as parameters for this function.

The function of retrieving the query result from the server through a flag can be classified as synchronous or

asynchronous. If the flag is set to CCI_EXEC_QUERY_ALL, a synchronous mode (sync_mode) is used to retrieve

query results immediately after executing prepared queries if it is set to CCI_EXEC_ASYNC, an asynchronous mode

(async_mode) is used to retrieve the result immediately each time a query result is created. The flag is set to

CCI_EXEC_QUERY_ALL by default, and in such cases the following rules are applied.

• The return value is the result of the first query.

• If an error occurs in any query, the execution is processed as a failure.

• For a query composed of in a query composed of q1 q2 q3 if an error occurs in q2 after q1 succeeds the execution,

the result of q1 remains valid. That is, the previous successful query executions are not rolled back when an error

occurs.

• If a query is executed successfully, the result of the second query can be obtained using cci_next_result().

max_col_size is a value that is used to determine the size of the column to be transferred to the client when the type of

the column of the prepared query is CHAR, VARCHAR, NCHAR, VARNCHAR, BIT or VARBIT. If it is set to 0,

all data is transferred.

Syntax

int cci_execute(int req_handle, char flag, int max_col_size, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle of a prepared SQL statement

• flag : (IN) Exec flag (CCI_EXEC_ASYNC or CCI_EXEC_QUERY_ALL)

• max_col_size : (IN) The size of the column to be fetched

API Reference

665

• err_buf : (OUT) Database error buffer

Return Value

• Success

• SELECT : Returns the number of results in sync mode returns 0 in async mode.

• INSERT, UPDATE : Returns the number of tuples reflected.

• Others queries : 0

• Failure : Error code

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_BIND

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

cci_execute_array

Description

If more than one value are bound to the prepared statement, this gets the values of the variables to be bound and

executes the query by binding each value to the variable.

To bind the data, call the cci_bind_param_array_size() function to specify the size of the array, bind each value to the

variable by using the cci_bind_param_array() function, and execute the query by calling the cci_execute_array()

function.

You can get three execution results by calling the cci_execute() function. However, the cci_execute_array() function

returns the number of queries executed by the query_result variable. You can use the following macro to get the

information about the execution result. However, note that the validity check is not performed for each parameter

entered in the macro. After using the query_result variable, you must delete the query_result by using the

cci_query_result_free() function.

Marco Return Type Meaning

CCI_QUERY_RESULT_RESULT int the number of results

CCI_QUERY_RESULT_ERR_MSG char* error message about query

CCI_QUERY_RESULT_STMT_TYPE int(T_CCI_CUBRID_STMT

enum)

type of query statement

Syntax

int cci_execute_array(int req_handle, T_CCI_QUERY_RESULT **query_result, T_CCI_ERROR

*err_buf)

• req_handle : (IN) Request handle of a prepared SQL statement

• query_result : (OUT) Query results (the number of executed queries)

• err_buf : (OUT) Database error buffer

Return Value

• Success : The number of executed queries

• Failure : Negative number

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_BIND

CUBRID 2008 R4.0 Help

666

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

Example

char *query =

 "update participant set gold = ? where host_year = ? and nation_code = 'KOR'";

int gold[2];

char *host_year[2];

int null_ind[2];

T_CCI_QUERY_RESULT *result;

int n_executed;

...

req = cci_prepare (con, query, 0, &cci_error);

if (req < 0)

{

 printf ("prepare error: %d, %s\n", cci_error.err_code, cci_error.err_msg);

 goto handle_error;

}

gold[0] = 20;

host_year[0] = "2004";

gold[1] = 15;

host_year[1] = "2008";

null_ind[0] = null_ind[1] = 0;

error = cci_bind_param_array_size (req, 2);

if (error < 0)

{

 printf ("bind_param_array_size error: %d\n", error);

 goto handle_error;

}

error =

 cci_bind_param_array (req, 1, CCI_A_TYPE_INT, gold, null_ind, CCI_U_TYPE_INT);

if (error < 0)

{

 printf ("bind_param_array error: %d\n", error);

 goto handle_error;

}

error =

 cci_bind_param_array (req, 2, CCI_A_TYPE_STR, host_year, null_ind, CCI_U_TYPE_INT);

if (error < 0)

 {

 printf ("bind_param_array error: %d\n", error);

 goto handle_error;

}

n_executed = cci_execute_array (req, &result, &cci_error);

if (n_executed < 0)

{

 printf ("execute error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

}

for (i = 1; i <= n_executed; i++)

{

 printf ("query %d\n", i);

 printf ("result count = %d\n", CCI_QUERY_RESULT_RESULT (result, i));

 printf ("error message = %s\n", CCI_QUERY_RESULT_ERR_MSG (result, i));

 printf ("statement type = %d\n",

 CCI_QUERY_RESULT_STMT_TYPE (result, i));

}

error = cci_query_result_free (result, n_executed);

if (error < 0)

{

 printf ("query_result_free: %d\n", error);

 goto handle_error;

}

error = cci_end_tran(con, CCI_TRAN_COMMIT, &cci_error);

API Reference

667

if (error < 0)

{

 printf ("end_tran: %d, %s\n", cci_error.err_code, cci_error.err_msg);

 goto handle_error;

}

cci_execute_batch

Description

In CCI, multiple jobs can be processed simultaneously when using DML queries such as INSERT/UPDATE/DELETE.

cci_execute_arrary() and cci_execute_batch() functions can be used to execute such batch jobs. Note that prepared

statements cannot be used in the cci_execute_batch() function.

Executes sql_stmt as many times as num_sql_stmt specified as a parameter and returns the number of queries executed

with the query_result variable. You can use the macro (CCI_QUERY_RESULT_RESULT,

CCI_QUERY_RESULT_ERR_MSG, CCI_QUERY_RESULT_STMT_TYPE) available in the cci_execute_array()

function to get the information about the execution result.

However, note that the validity check is not performed for each parameter entered in the macro. After using the

query_result variable, you must delete the query result by using the cci_query_result_free() function.

Syntax

int cci_execute_batch(int conn_handle, int num_sql_stmt, char **sql_stmt,

T_CCI_QUERY_RESULT **query_result, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• num_sql_stmt : (IN) The number of sql_stmts

• sql_stmt : (IN) SQL statement array

• query_result : (OUT) The results of sql_stmt

• err_buf : (OUT) Database error buffer

Return Value

• Success : The number of executed queries

• Failure : Negative number

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_CONNECT

Example

char **queries;

 T_CCI_QUERY_RESULT *result;

 int n_queries, n_executed;

...

 count = 3;

 queries = (char **) malloc (count * sizeof (char *));

 queries[0] =

 "insert into athlete(name, gender, nation_code, event) values('Ji-sung Park', 'M',

'KOR', 'Soccer')";

 queries[1] =

 "insert into athlete(name, gender, nation_code, event) values('Joo-young Park', 'M',

'KOR', 'Soccer')";

 queries[2] =

 "select * from athlete order by code desc for orderby_num() < 3";

//calling cci_execute_batch()

CUBRID 2008 R4.0 Help

668

 n_executed = cci_execute_batch (con, count, queries, &result, &cci_error);

 if (n_executed < 0)

 {

 printf ("execute_batch: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

 printf ("%d statements were executed.\n", n_executed);

 for (i = 1; i <= n_executed; i++)

 {

 printf ("query %d\n", i);

 printf ("result count = %d\n", CCI_QUERY_RESULT_RESULT (result, i));

 printf ("error message = %s\n", CCI_QUERY_RESULT_ERR_MSG (result, i));

 printf ("statement type = %d\n",

 CCI_QUERY_RESULT_STMT_TYPE (result, i));

 }

 error = cci_query_result_free (result, n_executed);

 if (error <

0)

 {

 printf ("query_result_free: %d\n", error);

 goto handle_error;

 }

cci_execute_result

Description

This function is used to get the execution results (e.g. statement type, result count) performed by cci_execute(). The

results of each query are retrieved by CCI_QUERY_RESULT_STMT_TYPE and CCI_QUERY_RESULT_RESULT.

The query results used must be deleted by cci_query_result_free.

Syntax

int cci_execute_result(int req_handle, T_CCI_QUERY_RESULT **query_result, T_CCI_ERROR

*err_buf)

• req_handle : (IN) Request handle of a prepared SQL statement

• query_result : (OUT) Query results

• err_buf : (OUT) Database error buffer

Return Value

• Suceess : The number of queries

• Failure : Negative number

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_COMMUNICATION

Example

T_CCI_QUERY_RESULT *qr;

…

cci_execute(…);

res = cci_execute_result(req_h, &qr, &err_buf);

if (res < 0) {

 /* error */

}

else {

 for (i=1 ; i <= res ; i++) {

API Reference

669

 result_count = CCI_QUERY_RESULT_RESULT(qr, i);

 stmt_type = CCI_QUERY_RESULT_STMT_TYPE(qr, i);

 }

 cci_query_result_free(qr, res);

}

cci_fetch

Description

Fetches the query result executed by cci_execute() from the server-side CAS and saves it to the client buffer. The

cci_get_data() function can be used to identify the data of a specific column from the fetched query result.

Syntax

int cci_fetch(int req_handle, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

cci_fetch_buffer_clear

Description

This function is used to clear the records temporarily saved in the client buffer.

Syntax

int cci_fetch_buffer_clear(int req_handle)

• req_handle : (IN) Request handle

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

cci_fetch_sensitive

Description

This function is used to send changed values for sensitive columns when the results are sent to the client from the server.

If the results by req_handle are not sensitive, they are same as the ones by cci_fetch(). The return value of

CCI_ER_DELETED_TUPLE means that the given tuple has been deleted.

Syntax

int cci_fetch_sensitive(int req_handle, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

CUBRID 2008 R4.0 Help

670

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_NO_MORE_DATA

• CCI_ER_COMMUNICATION

• CCI_ER_DBMS

• CCI_ER_DELETED_TUPLE

cci_fetch_size

Description

This function is used to determine the number of records sent by cci_fetch() from the server to the client.

Syntax

int cci_fetch_size(int req_handle, int fetch_size)

• req_handle : (IN) Request handle

• fetch_size : (IN) Fetch size

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

cci_get_autocommit

Description

The cci_get_autocommit() function returns the auto-commit mode currently configured.

Syntax

int cci_get_autocommit (int conn_handle)

• conn_handle : Connection handle

Return Value

• 1 : Auto-commit ON

• 0 : Auto-commit OFF

Error Code

• None

cci_get_bind_num

Description

This function is used to get the number of input bindings. If the SQL statement used during preparation is composed of

multiple queries, it represents the number of input bindings used in all queries.

Syntax

int cci_get_bind_num(int req_handle)

• req_handle : (IN) Request handle for a prepared SQL statement

API Reference

671

Return Value

• The number of input bindings

Error Code

• CCI_ER_REQ_HANDLE

cci_get_class_num_objs

Description

This function is used to get the number of objects of the class_name class and the number of pages being used. If the

flag is configured to 1, an approximate value is fetched; if it is configured to 0, an exact value is fetched.

Syntax

int cci_get_class_num_objs(int conn_handle, char *class_name, int flag, int *num_objs, int

*num_pages, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• class_name : (IN) Class name

• flag : (IN) 0 or 1

• num_objs : (OUT) The number of objects

• num_pages : (OUT) The number of pages

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_COMMUNICATION

• CCI_ER_CONNECT

CCI_GET_COLLECTION_DOMAIN

Description

If u_type is set, multiset or sequence type, this macro gets the domain of the set, multiset or sequence. If u_type is not a

set type, the return value is the same as u_type.

Syntax

#define CCI_GET_COLLECTION_DOMAIN(u_type)

Return Value

• Type (CCI_U_TYPE)

cci_get_cur_oid

Description

This function is used to get the OID of the currently fetched records if CCI_INCLUDE_OID is configured in execution.

The OID is represented as a string for a page, slot or volume.

CUBRID 2008 R4.0 Help

672

Syntax

intcci_get_cur_oid(int req_handle, char *oid_str_buf)

• conn_handle : (IN) Request handle

• oid_str_buf : (OUT) OID string

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

cci_get_data

Description

Gets the col_noth value from the currently fetched result. The type of the value variable is determined according to the

given type parameter, and the value or the pointer is copied to the value variable accordingly.

For a value to be copied, the memory for the address to be transferred to the value variable must have been previously

assigned. Note that if a pointer is copied, a pointer in the application client library is returned, so the value becomes

invalid next time the cci_get_data() function is called.

In addition, the pointer returned by the pointer copy must not be freed. However, if the type is CCI_A_TYPE_SET, the

memory must be freed by using the cci_set_free() function after using the set because the set is returned after the

T_CCI_SET type memory is allocated. The following table shows the summary of type parameters and data types of

their corresponding values.

type value Type Meaning

CCI_A_TYPE_STR char** pointer copy

CCI_A_TYPE_INT int* value copy

CCI_A_TYPE_FLOAT float* value copy

CCI_A_TYPE_DOUBLE double* value copy

CCI_A_TYPE_BIT T_CCI_BIT* value copy (pointer copy for each member)

CCI_A_TYPE_SET T_CCI_SET* memory alloc and value copy

CCI_A_TYPE_DATE T_CCI_DATE* value copy

CCI_A_TYPE_BIGINT int64_t*

(For Windows : __int64*)

value copy

CCI_A_TYPE_BLOB T_CCI_BLOB memory alloc and value copy

CCI_A_TYPE_CLOB T_CCI_CLOB memory alloc and value copy

Syntax

int cci_get_data(int req_handle, int col_no, int type, void *value, int *indicator)

• req_handle : (IN) Request handle

• col_no : (IN) One-based column index. It starts with 1.

• type : (IN) Data type (defined in the T_CCI_A_TYPE) of value variable

• value : (OUT) Variable address for data to be stored

• indicator : (OUT) NULL indicator (-1 : NULL)

• if type is CCI_A_TYPE_STR : -1 is returned in case of NULL; the length of character string stored in value is

returned, otherwise.

• if type is CCI_A_TYPE_STR : -1 is returned in case of NULL, 0 is returned, otherwise.

API Reference

673

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_TYPE_CONVERSION

• CCI_ER_COLUMN_INDEX

• CCI_ER_ATYPE

cci_get_db_parameter

Description

This function is used to get a parameter specified in the database. The data type of value for param_name is shown in

the table below.

param_name value Type note

CCI_PARAM_ISOLATION_LEVEL int* get/set

CCI_PARAM_LOCK_TIMEOUT int* get/set

CCI_PARAM_MAX_STRING_LENGTH int* get only

Syntax

int cci_get_db_parameter(int conn_handle, T_CCI_DB_PARAM param_name, void *value,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• param_name : (IN) System parameter name

• value : (OUT) Parameter value

• err_buf : (OUT) Database error buffer

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_PARAM_NAME

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_CONNECT

cci_get_db_version

Description

This function is used to get the Database Management System (DBMS) version.

Syntax

int cci_get_db_version(int conn_handle, char *out_buf, int out_buf_size)

• conn_handle : (IN) Connection handle

• out_buf : (OUT) Result buffer

• out_buf_size : (IN) oub_buf size

Return Value

• Error code (0 : success)

CUBRID 2008 R4.0 Help

674

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_COMMUNICATION

• CCI_ER_CONNECT

cci_get_result_info

Description

If the prepared statement is SELECT, the T_CCI_COL_INFO struct that stores the column information about the

execution result can be obtained by using this function. If it is not SELECT, NULL is returned and the num value

becomes 0.

You can access the T_CCI_COL_INFO struct directly to get the column information from the struct, but you can also

use a macro to get the information, which is defined as follows. The address of the T_CCI_COL_INFO struct and the

column index are specified as parameters for each macro. The macro can be called only for the SELECT query. Note

that the validity check is not performed for each parameter entered in each macro. If the return type of the macro is

char*, do not free the memory pointer.

Macro Return Type Meaning

CCI_GET_RESULT_INFO_TYPE T_CCI_U_TYPE column type

CCI_GET_RESULT_INFO_SCALE short column scale

CCI_GET_RESULT_INFO_PRECISION int column precision

CCI_GET_RESULT_INFO_NAME char* column name

CCI_GET_RESULT_INFO_ATTR_NAME char* column attribute name

CCI_GET_RESULT_INFO_CLASS_NAME char* column class name

CCI_GET_RESULT_INFO_IN_NON_NULL char(0 or 1) whether a column is

NULL

Syntax

T_CCI_COL_INFO* cci_get_result_info(int req_handle, T_CCI_SQLX_CMD *cmd_type, int *num)

• req_handle : (IN) Request handle for a prepared SQL statement

• cmd_type : (OUT) Command type

• num : (OUT) The number of columns in the SELECT statement (if cmd_type is SQLX_CMD_SELECT)

Return Value

• Success : Result info pointer

• Failure : NULL

Example

col_info = cci_get_result_info (req, &cmd_type, &col_count);

 if (col_info == NULL)

 {

 printf ("get_result_info error: %d, %s\n", cci_error.err_code,

 cci_error.err_msg);

 goto handle_error;

 }

 for (i = 1; i <= col_count; i++)

 {

 printf ("%-12s = %d\n", "type", CCI_GET_RESULT_INFO_TYPE (col_info, i));

 printf ("%-12s = %d\n", "scale",

 CCI_GET_RESULT_INFO_SCALE (col_info, i));

 printf ("%-12s = %d\n", "precision",

 CCI_GET_RESULT_INFO_PRECISION (col_info, i));

API Reference

675

 printf ("%-12s = %s\n", "name", CCI_GET_RESULT_INFO_NAME (col_info, i));

 printf ("%-12s = %s\n", "attr_name",

 CCI_GET_RESULT_INFO_ATTR_NAME (col_info, i));

 printf ("%-12s = %s\n", "class_name",

 CCI_GET_RESULT_INFO_CLASS_NAME (col_info, i));

 printf ("%-12s = %s\n", "is_non_null",

 CCI_GET_RESULT_INFO_IS_NON_NULL (col_info,i) ? "true" : "false");

CCI_GET_RESULT_INFO_ATTR_NAME

Description

This macro is used to get the actual attribute name of the index -th column of a prepared SELECT statement. If there is

no name for the attribute (constant, function, etc), " " (empty string) is returned. It does not check whether the specified

argument, res_info, is NULL and whether index is valid. You cannot delete the returned memory pointer with free().

Syntax

#define CCI_GET_RESULT_INFO_ATTR_NAME(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) pointer to the column information fetched by cci_get_result_info

• index : (IN) Column index

Return Value

• Attribute name (char*)

CCI_GET_RESULT_INFO_CLASS_NAME

Description

This macro is used to get the index -th class name of a prepared SELECT statement. It does not check whether the

specified argument, res_info, is NULL and whether index is valid. You cannot delete the returned memory pointer with

free(). The returned value can be NULL.

Syntax

#define CCI_GET_RESULT_INFO_CLASS_NAME(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) Column info pointer by cci_get_result_info

• index : (IN) Column index

Return Value

• Class name (char*)

CCI_GET_RESULT_INFO_IS_NON_NULL

Description

This macro is used to get a value indicating whether the index -th column of a prepared SELECT statement is nullable.

It does not check whether the specified argument, res_info, is NULL and whether index is valid.

Syntax

#define CCI_GET_RESULT_INFO_IS_NON_NULL(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) Column info pointer by cci_get_result_info

• index : (IN) Column index

Return Value

• 0 : nullable

CUBRID 2008 R4.0 Help

676

• 1 : non NULL

CCI_GET_RESULT_INFO_NAME

Description

This macro is used to get the index -th column name of a prepared SELECT statement. It does not check whether the

specified argument, res_info, is NULL and whether index is valid. You cannot delete the returned memory pointer with

free().

Syntax

#define CCI_GET_RESULT_INFO_NAME(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) Column info pointer to cci_get_result_info

• index : (IN) Column index

Return Value

• Column name (char*)

CCI_GET_RESULT_INFO_PRECISION

Description

This macro is used to get the index -th precision of a prepared SELECT statement. It does not check whether the

specified argument, res_info, is NULL and whether index is valid.

Syntax

#define CCI_GET_RESULT_INFO_PRECISION(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) Column info pointer by cci_get_result_info

• index : (IN) Column index

Return Value

• Precision (int)

CCI_GET_RESULT_INFO_SCALE

Description

This macro is used to get the index -th column's scale of a prepared SELECT statement. It does not check whether the

specified argument, res_info, is NULL and whether index is valid.

Syntax

#define CCI_GET_RESULT_INFO_SCALE(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) Column info pointer by cci_get_result_info

• index : (IN) Column index

Return Value

• Scale (int)

API Reference

677

CCI_GET_RESULT_INFO_TYPE

Description

This macro is used to get the index -th column type of a prepared SELECT statement. It does not check whether the

specified argument, res_info, is NULL and whether index is valid.

Syntax

#define CCI_GET_RESULT_INFO_TYPE(T_CCI_COL_INFO* res_info, int index)

• res_info : (IN) pointer to the column information fetched by cci_get_result_info

• index : (IN) Column index

Return Value

• Column type (T_CCI_U_TYPE)

CCI_IS_SET_TYPE, CCI_IS_MULTISET_TYPE, CCI_IS_SEQUENCE_TYPE,
CCI_IS_COLLECTION_TYPE

Description

This macro is used to check whether u_type is set, multiset or sequence type.

Syntax

#define CCI_IS_SET_TYPE(u_type)

#define CCI_IS_MULTISET_TYPE(u_type)

#define CCI_IS_SEQUENCE_TYPE(u_type)

#define CCI_IS_COLLECTION_TYPE(u_type)

Return Value

• CCI_IS_SET_TYPE

• 1 : set

• 0 : not set

• CCI_IS_MULTISET_TYPE

• 1 : multiset

• 0 : not multiset

• CCI_IS_SEQUENCE_TYPE

• 1 : sequence

• 0 : not sequence

• CCI_IS_SET_TYPE

• 1 : collection (set, multiset, sequence)

• 0 : not collection

cci_is_updatable

Description

It is used to check whether the SQL statement, which executed cci_prepare(), is updatable. If it is updatable, 1 is

returned.

Syntax

int cci_is_updatable(int req_handle)

• req_handle : (IN) Request handle for a prepared SQL statement

CUBRID 2008 R4.0 Help

678

Return Value

• 1 : updatable

• 0 : not updatable

Error Code

• CCI_ER_REQ_HANDLE

cci_next_result

Description

The function is used to get results of next query if CCI_EXEC_QUERY_ALL flag is set upon cci_execute(). The

information about the query fetched by next_result can be obtained with cci_get_result_info. If next_result is executed

successfully, the database is updated with the information of the current query.

The error code CAS_ER_NO_MORE_RESULT_SET means that no more result set exists.

Syntax

int cci_next_result(int req_handle, T_CCI_ERROR *err_buf)

• req_handle : (IN) Request handle of a prepared statement

• err_buf : (OUT) Database error buffer

Return Value

• Success

• SELECT (sync mode) : the number of results, (async mode) : 0

• INSERT, UPDATE : the number of records reflected

• Others : 0

• Failure : Error code

Error Code

• CCI_ER_REQ_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

cci_oid

Description

CCI_OID_DROP : Deletes the given oid.

CCI_OID_IS_INSTANCE : Checks whether the given oid is an instance oid.

CCI_OID_LOCK_READ : Sets a read lock on the given oid.

CCI_OID_LOCK_WRITE : Sets a write lock on the given oid.

Syntax

intcci_oid(int conn_handle, T_CCI_OID_CMD cmd, char *oid_str, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• cmd : (IN) CCI_OID_DROP, CCI_OID_IS_INSTANCE, CCI_OID_LOCK_READ, CCI_OID_LOCK_WRITE

• oid_str : (IN) oid

• err_buf : (OUT) Database error buffer

API Reference

679

Return Value

• CCI_OID_IS_INSTANCE

• 0 : non-instance

• 1 : instance

• < 0 : error

• CCI_OID_DROP, CCI_OID_LOCK_READ, CCI_OID_LOCK_WRITE

• Error code (0 : success, negative : failure)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OID_CMD

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_oid_get

Description

This function is used to get the attribute values of the given oid. attr_name is an array of the attributes, and it must end

with NULL. If attr_name is NULL, the information of all attributes is fetched. The request handle has the same form as

when the SQL statement "SELECT attr_name FROM oid_class WHERE oid_class = oid" is executed.

Syntax

int cci_oid_get(int conn_handle, char *oid_str, char **attr_name, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• attr_name : (IN) A list of attributes

• err_buf : (OUT) Database error buffer

Return Value

• Success : Request handle

• Failure : Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_CONNECT

cci_oid_get_class_name

Description

This function is used to get the class name of the given oid.

Syntax

intcci_oid_get_class_name(int conn_handle, char *oid_str, char *out_buf, int out_buf_len,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• out_buf : (OUT) Out buffer

CUBRID 2008 R4.0 Help

680

• out_buf_len : (IN) out_buf length

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_OBJECT

• CCI_ER_DBMS

cci_oid_put

Description

This function is used to configure the attr_name attribute values of the given oid to new_val_str. The last value of

attr_name must be NULL. Any value of any type must be represented as a string. The value represented as a string is

applied to the database after being converted depending on the attribute type on the server. To insert a NULL value,

configure the value of new_val_str[i] to NULL.

Syntax

intcci_oid_put(int conn_handle, char *oid_str, char **attr_name, char **new_val_str,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• attr_name : (IN) A list of attribute names

• new_val_str : (IN) A list of new values

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

cci_oid_put2

Description

This function is used to set the attr_name attribute values of the given oid to new_val. The last value of attr_name must

be NULL. To insert a NULL value, set the value of new_val[i] to NULL.

The type of new_val[i] for a_type is shown in the table below.

Type of new_val[i] for a_type

Type value type

CCI_A_TYPE_STR char*

CCI_A_TYPE_INT int*

CCI_A_TYPE_FLOAT float*

CCI_A_TYPE_DOUBLE double*

API Reference

681

CCI_A_TYPE_BIT T_CCI_BIT*

CCI_A_TYPE_SET T_CCI_SET

CCI_A_TYPE_DATE T_CCI_DATE*

CCI_A_TYPE_BIGINT int64_t (For Windows : __int64)

Syntax

intcci_oid_put2(int conn_handle, char *oidstr, char **attr_name, void **new_val, int

*a_type, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• oid_str : (IN) oid

• attr_name : (IN) A list of attribute names

• new_val : (IN) A new value array

• a_type : (IN) new_val type array

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success, negative number : failure)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

Example

char *attr_name[array_size]

void *attr_val[array_size]

int a_type[array_size]

int int_val

…

attr_name[0] = "attr_name0"

attr_val[0] = &int_val

a_type[0] = CCI_A_TYPE_INT

attr_name[1] = "attr_name1"

attr_val[1] = "attr_val1"

a_type[1] = CCI_A_TYPE_STR

…

attr_name[num_attr] = NULL

res = cci_put2(con_h, oid_str, attr_name, attr_val, a_type, &error)

cci_prepare

Description

This function is used to prepare SQL execution by acquiring request handle for SQL statements. If a SQL statement

consists of multiple queries, the preparation is performed only for the first query. With the parameter of this function, an

address to T_CCI_ERROR where connection handle, SQL statement, flag, and error information are saved.

CCI_PREPARE_UPDATABLE or CCI_PREPARE_INCLUDE_OID can be configured in flag. If

CCI_PREPARE_UPDATABLE is configured, updatable result set is created and CCI_PREPARE_INCLUDE_OID

is automatically configured. However, not all updatable result sets are created even though

CCI_PREPARE_UPDATABLE is configured. So you need to check if the results are updatable by using

cci_is_updatable after preparation.

The conditions of updatable queries are as follows:

CUBRID 2008 R4.0 Help

682

• A query must be SELECT.

• OID must be contained in the query result.

• The column to be updated must be the one that belongs to the table specified in the FROM clause.

Syntax

int cci_prepare(int conn_handle, char *sql_stmt, char flag,T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• sql_stmt : (IN) SQL statement

• flag : (IN) prepare flag (CCI_PREPARE_INCLUDE_OID or CCI_PREPARE_UPDATABLE)

• err_buf : (OUT) Database error buffer

Return Value

• Success : Request handle ID (int)

• Failure : Error code (negative)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_STR_PARAM

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_CONNECT

CCI_QUERY_RESULT_ERR_MSG

Description

This macro is used to get error messages for the cci_execute_batch query. If there is no error message, " " (empty string)

is returned. It does not check whether the specified argument, query_result, is NULL, and whether index is valid.

Syntax

#define CCI_QUERY_RESULT_ERR_MSG(T_CCI_QUERY_RESULT* query_result, int index)

• query_result : (IN) Query results of cci_execute_batch

• index : (IN) Column index (base : 1)

Return Value

• Error message

cci_query_result_free

Description

This function is used to delete query result.

Syntax

int cci_query_result_free(T_CCI_QUERY_RESULT* query_result, int num_query)

• query_result : (IN) Query results of cci_execute_batch

• num_query : (IN) The number of arrays in query_result

Return Value

• Error code (0 : success, negative number : failure)

API Reference

683

Example

T_CCI_QUERY_RESULT *qr;

char **sql_stmt;

res = cci_execute_array(conn, &qr, &err_buf);

cci_query_result_free(qr, res);

CCI_QUERY_RESULT_RESULT

Description

This macro is used to get the result count of the cci_execute_batch query. It does not check whether the specified

argument, query_result, is NULL and whether index is valid.

Syntax

#define CCI_QUERY_RESULT_RESULT(T_CCI_QUERY_RESULT* query_result, int index)

• query_result : (IN) Query results of cci_execute_batch

• index : (IN) Column index (base : 1)

Return Value

• Result count

CCI_QUERY_RESULT_STMT_TYPE

Description

This macro is used to get the statement type of the cci_execute_batch query. It does not check whether the specified

argument, query_result, is NULL and whether index is valid.

Syntax

#define CCI_QUERY_RESULT_STMT_TYPE(T_CCI_QUERY_RESULT* query_result, int index)

• query_result : (IN) Query results of cci_execute_batch

• index : (IN) Column index (base : 1)

Return Value

• Statement type (T_CCI_SQLX_CMD)

cci_savepoint

Description

This function is used to configure a savepoint or performs transaction rollback to a specified savepoint. Sets a savepoint

if cmd is set to CCI_SP_SET. If it is set to CCI_SP_ROLLBACK, the transaction is rolled back to the specified

savepoint.

Syntax

intcci_savepoint(int conn_handle, T_CCI_SAVEPOINT_CMD cmd, char* savepoint_name,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• cmd : (IN) CCI_SP_SET or CCI_SP_ROLLBACK

• savepoint_name : (IN) Savepoint name

CUBRID 2008 R4.0 Help

684

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Example

con = cci_connect(...);

.../* query execute */

/* sets a savepoint named "savepoint1"

cci_savepoint(con, CCI_SP_SET, "savepoint1", err_buf);

... /* query execute */

/* rolls back the set savepoint to "savepoint1" */

cci_savepoint(con, CCI_SP_ROLLBACK, "savepoint1", err_buf);

cci_schema_info

Description

This function is used to get schema information. If it is performed successfully, the results are managed by the request

handle and can be fetched by fetch and getdata. If you want to retrieve a class_name of attr_name by pattern matching,

configure the flag.

Two flags, CCI_CLASS_NAME_PATTERN_MATCH and CCI_ATTR_NAME_PATTERN_MATCH, are used

for pattern matching. You can configure these two flags by using the OR operator (|). Performance may significantly

decrease if pattern matching is used.

The following table shows records composition of each type.

Record Composition of Each Type

Type Column Order Column Name Column Type

CCI_SCH_CLASS 1 NAME char*

2 TYPE short

0 : system

class

1 : vclass

2 : class

3 : proxy

CCI_SCH_VCLASS 1 NAME char*

2 TYPE short

1 : vclass

3 : proxy

CCI_SCH_ATTRIBUTE 1 NAME char*

2 DOMAIN int

3 SCALE int

4 PRECISION int

5 INDEXED int

1 : indexed

6 NON_NULL int

1 : non null

7 SHARED int

1 : shared

8 UNIQUE int

API Reference

685

1 : unique

9 DEFAULT void*

10 ATTR_ORDER int

base : 1

11 CLASS_NAME char*

12 SOURCE_CLASS char*

13 IS_KEY short

1 : key

CCI_SCH_CLASS_METHOD 1 NAME char*

2 RET_DOMAIN int

3 ARG_DOMAIN char*

CCI_SCH_METHOD_FILE 1 METHOD_FILE char*

CCI_SCH_super class 1 CLASS_NAME char*

2 TYPE short

CCI_SCH_SUBCLASS 1 CLASS_NAME char*

2 TYPE short

CCI_SCH_CONSTRAINT 1 TYPE

0 : unique

1 : index

2 : reverse unique

3 : reverse index

int

2 NAME char*

3 ATTR_NAME char*

4 NUM_PAGES int

5 NUM_KEYS int

6 PRIMARY_KEY

1 : primary key

short

7 KEY_ORDER short

base : 1

CCI_SCH_TRIGGER 1 NAME char*

2 STATUS char*

3 EVENT char*

4 TARGET_CLASS char*

5 TARGET_ATTR char*

6 ACTION_TIME char*

7 ACTION char*

8 PRIORITY float

9 CONDITION_TIME char*

10 CONDITION char*

CCI_SCH_CLASS_PRIVILEGE 1 CLASS_NAME char*

2 PRIVELEGE char*

3 GRANTABLE char*

CCI_SCH_ATTR_PRIVILEGE 1 ATTR_NAME char*

CUBRID 2008 R4.0 Help

686

2 PRIVILEGE char*

3 GRANTABLE char*

CCI_SCH_PRIMARY_KEY 1 CLASS_NAME char*

2 ATTR_NAME char*

3 KEY_SEQ short

base : 1

4 KEY_NAME char*

CCI_SCH_IMPORTED_KEY

Used to retrieve primary key columns that are

referred by a foreign key column in a given table.

The results are sorted by PKTABLE_NAME and

KEY_SEQ.

If this type is specified as a parameter, a foreign

key table is specified for class_name, and NULL

is specified for attr_name.

1 PKTABLE_NAME char**

2 PKCOLUMN_NAME char**

3 FKTABLE_NAME char**

4 FKCOLUMN_NAME char**

5 KEY_SEQ char**

6 UPDATE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

7 DELETE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

8 FK_NAME char**

9 PK_NAME char**

CCI_SCH_EXPORTED_KEYS

Used to retrieve primary key columns that are

referred by all foreign key columns. The results

are sorted by FKTABLE_NAME and KEY_SEQ.

If this type is specified as a parameter, a primary

key table is specified for class_name, and NULL

is specified for attr_name.

1 PKTABLE_NAME char**

2 PKCOLUMN_NAME char**

3 FKTABLE_NAME char**

4 FKCOLUMN_NAME char**

5 KEY_SEQ char**

6 UPDATE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

7 DELETE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

8 FK_NAME char**

9 PK_NAME char**

CCI_SCH_CROSS_REFERENCE

Used to retrieve foreign key information when

primary keys and foreign keys in a given table are

cross referenced. The results are sorted by

FKTABLE_NAME and KEY_SEQ.

If this type is specified as a parameter, a primary

key is specified for class_name, and a foreign key

1 PKTABLE_NAME char**

2 PKCOLUMN_NAME char**

3 FKTABLE_NAME char**

4 FKCOLUMN_NAME char**

5 KEY_SEQ char**

API Reference

687

table is specified for attr_name. 6 UPDATE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

7 DELETE_ACTION

-cascade=0

-restrict=1

-no action=2

-set null=3

Int*

8 FK_NAME char**

9 PK_NAME char**

Pattern match

CCI_SCH_TYPE Class name ATTR_name

CCI_SCH_CLASS (VCLASS) O none

CCI_SCH_ATTRIBUTE (CLASS ATTRIBUTE) O O

CCI_SCH_CLASS_PRIVILEGE O none

CCI_SCH_ATTR_PRIVILEGE X O

CCI_SCH_PRIMARY_KEY O none

If the pattern flag is not configured, exact string matching is used for the given class or attribute name. Therefore, there

is no result if NULL is given. If the name of the class or attribute is NULL when the pattern flag is configured, the result

is the same as when "%" is used.

Note TYPE column of CCI_SCH_CLASS and CCI_SCH_VCLASS : The proxy type is added. When used in OLEDB,

ODBC or PHP, vclass is represented without distinguishing between proxy and vclass.

Syntax

int cci_schema_info(int conn_handle, T_CCI_SCHEMA_TYPE type, char *class_name, char

*attr_name, char flag, T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• type : (IN) Schema type

• class_name : (IN) Class name or NULL

• attr_name : (IN) Attribute name of NULL

• flag : (IN) Pattern matching flag (CCI_CLASS_NAME_PATTERN_MACTH or

CCI_CLASS_NAME_PATTERN_MATCH)

• err_buf : (OUT) Database error buffer

Return Value

• Success : Request handle

• Failure : Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_SCHEMA_TYPE

• CCI_ER_NO_MORE_MEMORY

• CCI_ER_CONNECT

CUBRID 2008 R4.0 Help

688

cci_set_autocommit

Description

The cci_set_autocommit() function configures the auto-commit mode. When this function is called, concurrent

transactions are committed.

Syntax

int cci_set_autocommit (int conn_handle, int autocommit_mode)

• conn_handle : (IN) Connection handle which cci_connect() or cci_connect_with_url() returns

• autocommit_mode : (IN) 1 if autocommit mode is on, 0 if autocommit mode is off.

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

cci_set_db_parameter

Description

This function is used to configure a system parameter. For the type of value for param_name, see

cci_get_db_parameter().

Syntax

int cci_set_db_parameter(int conn_handle, T_CCI_DB_PARAM param_name, void* value,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• param_name : (IN) System parameter name

• value : (IN) Parameter value

• err_buf : (OUT) Database error buffer

Return Value

• Error code (0 : success)

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_PARAM_NAME

• CCI_ER_DBMS

• CCI_ER_COMMUNICATION

• CCI_ER_CONNECT

cci_set_element_type

Description

This function is used to get the element type for the set fetched by CCI_A_TYPE_SET with cci_get_data().

Syntax

intcci_set_element_type(T_CCI_SET set)

• set : (IN) cci set pointer

API Reference

689

Return Value

• Type

cci_set_free

Description

This function is used to release the memory assigned to T_CCI_SET gotten by CCI_A_TYPE_SET with

cci_get_data().

Syntax

voidcci_set_free(T_CCI_SET set)

• set : (IN) cci set pointer

Return Value

• None

cci_set_get

Description

This function is used to get the index-th data for the set fetched by CCI_A_TYPE_SET with cci_get_data(). The data

type of value for a_type is shown in the table below.

a_type value Type

CCI_A_TYPE_STR char**

CCI_A_TYPE_INT int*

CCI_A_TYPE_FLOAT float*

CCI_A_TYPE_DOUBLE double*

CCI_A_TYPE_BIT T_CCI_BIT*

CCI_A_TYPE_DATE T_CCI_DATE*

CCI_A_TYPE_BIGINT int64_t*

(For Windows : __int64*)

Syntax

intcci_set_get(T_CCI_SET set, int index, T_CCI_A_TYPE a_type, void *value, int *indicator)

• set : (IN) cci set pointer

• index : (IN) Set index (base : 1)

• a_type : (IN) Type

• value : (OUT) Result buffer

• indicator : (OUT) Null indicator

Return Value

• Error code

CUBRID 2008 R4.0 Help

690

cci_set_isolation_level

Description

This function is used to set the transaction isolation level of connections. All further transactions for the given

connections work as new_isolation_level.

Note If the transaction isolation level is set by cci_set_db_parameter(), only the current transaction is affected. When

the transaction is complete, the transaction isolation level returns to the one set by CAS. You must use

cci_set_isolation_level() to set the isolation level for the entire connection.

Syntax

intcci_set_isolation_level(int conn_handle, T_CCI_TRAN_ISOLATION new_isolation_level,

T_CCI_ERROR *err_buf)

• conn_handle : (IN) Connection handle

• new_isolation_level : (IN) Transaction isolation level

• err_buf : (OUT) Database error buffer

Return Value

• Error code

Error Code

• CCI_ER_CON_HANDLE

• CCI_ER_CONNECT

• CCI_ER_ISOLATION_LEVEL

• CCI_ER_DBMS

cci_set_make

Description

This function is used to make a set of a new CCI_A_TYPE_SET type. The created set is sent to the server as

CCI_A_TYPE_SET by cci_bind_param(). The memory for the set created by cci_set_make() must be freed by

cci_set_free(). The type of value for u_type is shown in the table below.

Syntax

intcci_set_make(T_CCI_SET *set, T_CCI_U_TYPE u_type, int size, void *value, int *indicator)

• set : (IN) cci set pointer

• u_type : (IN) Element type

• size : (IN) Set size

• value : (IN) Set element

• indicator : (IN) Null indicator array

Return Value

• Error code

cci_set_max_row

Description

This function is used to configure the maximum number of records for the results of the SELECT statement executed

by cci_execute. If the max value is 0, it is the same as not setting the value.

API Reference

691

Syntax

intcci_set_max_row(int req_handle, int max)

• req_handle : (IN) Connection handle

• max : (IN) The maximum number of rows

Return Value

• Error code

Example

req = cci_prepare(…);

cci_set_max_row(req, 1);

cci_execute(…);

cci_set_size

Description

This function is used to get the number of elements for the set fetched by CCI_A_TYPE_SET with cci_get_data().

Syntax

intcci_set_size(T_CCI_SET set)

• set : (IN) cci set pointer

Return Value

• Size

