CUBRID 2008 R4.0 Help

Table of Contents

Introduction to Manual

Introduction to CUBRID

Introduction to CUBRID

System Architecture

System Architecture

Database Volume Structure

Database Server

Broker

Interface Module

CUBRID Features

Getting Started with CUBRID

Getting Started with CUBRID

Installing and Running

Installing and Running on Linux

Installing and Running on Windows

Configuring Environment Variable and Starting CUBRID

Configuring the Environment Variable

Language Setting

Starting the CUBRID Service

CSQL Interpreter

Starting the CSQL Interpreter

Executing the SQL with CSQL

Programming with JDBC

Setting up the JDBC Environment

JDBC Sample

Programming with PHP

Installing the PHP Module

PHP Sample

Programming with ODBC and ASP

Configuring the Environment of ODBC and ASP

ASP Sample

Programming with CCI

W

o o0 o uu u bH

11

15

16
17
17
19
20
20
21
22
24
24
25
26
26
27
31
31
31
34
34
36
40

CUBRID 2008 R4.0 Help

CCI Library 40
CCI Installation and Configuration 40
Using CCI 41
CCI Sample 42
CSQL Interpreter 45
CSQL Interpreter 46
Introduction to the CSQL Interpreter 47
Executing CSQL 48
CSQL Execution Mode 48
Using CSQL (Syntax) 48
CSQL Startup Options 49
Session Commands 52
CUBRID SQL Guide 59
CUBRID SQL Guide 60
Glossary 61
Comment 62
Identifier 63
Reserved Words 65
Data Types 69
Numeric Types 69
Date/Time Types 73
Bit Strings 79
Character Strings 81
BLOB/CLOB Data Types 86
Collection Types 92
Implicit Type Conversion 94
Table Definition 101
CREATE TABLE 101
ALTER TABLE 112
DROP TABLE 123
RENAME TABLE 123
Index Definition 125
CREATE INDEX 125
ALTER INDEX 125

DROP INDEX 126

Table of Contents

VIEW 127
CREATE VIEW 127
ALTER VIEW 129
DROP VIEW 131
RENAME VIEW 131

SERIAL 132
CREATE SERIAL 132
ALTER SERIAL 133
DROP SERIAL 134
Use SERIAL 134

Operators and Functions 136
Logical Operators 136
Comparison Operators 136
Arithmetic Operators 138
Set Operators 142
Containment Operators 146
BIT Functions and Operators 151
String Functions and Operators 153
Numeric and Operator Functions 176
Date/Time Functions and Operators 189
Data Type Conversion Functions and Operators 208
Aggregate Functions 221
Click Counter Functions 227
ROWNUM Functions 228
Information Functions 231
Encryption Function 235
Conditional Operators and Functions 236
Conditional Expressions 242

Data Manipluation 248
SELECT 248
Outer Join 255
Subquery 258
Hierarchical Query 259
INSERT 266
UPDATE 269
REPLACE 270
DELETE 271
TRUNCATE 272

DO 273

CUBRID 2008 R4.0 Help

Vi

Query Optimization

Java Stored Function/Procedure

PREPARED STATEMENT

SET

SHOW

Transaction and Lock

Overview

Database Transaction

Database Concurrency

Lock Protocol

Transaction Isolation Level

Transaction Termination and Restoration

Database User Authorization

Database User

Managing User

Granting Authorization

Revoking Authorization

User Authorization Management METHOD

Updating Statistics

Checking Statistics Information

Using SQL Hint

Viewing Query Plan

Using Indexes

TRIGGER

CREATE TRIGGER

ALTER TRIGGER

DROP TRIGGER

RENAME TRIGGER

Deferred Condition and Action

Trigger on REPLACE and INSERT ... ON DUPLICATE KEY UPDATE
TRIGGER Debugging

TRIGGER Example

Overview

Environment Configuration for Java Stored Function/Procedure

How to Write Java Stored Function/Procedure

Using Server-side Internal JDBC Driver

Connecting to Other Database

loadjava Utility

Loaded Java Class Publish

273
275
276
281
281
281
284
285
292
306
308
308
308
309
310
311
313
313
313
313
315
316
323
323
328
329
329
330
331
332
333
335
335
335
336
337
338
339
339

Java Stored Function/Procedure Call

Note

METHOD

Overview

METHOD Type

Calling METHOD

Partitioning

What is Partitioning?

Range Partitioning

Hash Partitioning

List Partitioning

Partitioning Management

Class Inheritance

Overview

Class Attribute and Method

Order Rule for Inheritance

INHERIT Clause

ADD SUPERCLASS Clause

DROP SUPERCLASS Clause

Class Conflict Resolution

Overview

Resolution Specifier

Superclass Conflict

Subclass Conflict

Schema Invariant

Rule for Schema Changes

CUBRID System Catalog

Overview

System Catalog Classes

System Catalog Virtual Class

Catalog Class/Virtual Class Authorization

Consistency of Catalog Information

Querying on Catalog

Administrator's Guide

Administrator's Guide

CUBRID Utilities

CUBRID Controls

Table of Contents

341
343
346
346
346
346
348
348
348
351
352
354
359
359
359
360
360
360
361
362
362
362
362
363
364
365
368
368
368
378
393
393
393

395

396
397
399

vii

CUBRID 2008 R4.0 Help

viii

How to Use CUBRID Utilities (Syntax)

CUBRID Services

Database Server

Broker

CUBRID Manager Server

Database Administration

How to Use the CUBRID Administration Utilities (Syntax)

Database Users

databases.txt File

Creating Database

Adding Database Volume

Deleting Database

Renaming Database

Copying/Moving Database

Installing Database

Checking Used Space

Compacting Used Space

Updating Statistics

Outputting Statistics Information of Server

Checking Lock Status

Checking Database Consistency

Killing Database Transactions

Checking the Query Plan Cache

Outputting Internal Database Information

Backup and Restore

Export and Import

Outputting Parameters Used in Server/Client

Database Migration

Migrating Database

Unloading Database

Loading Database

How to Write Files to Load Database

Database Backup and Restore

Database Backup

Backup Strategy and Method
Managing Backup Files

Database Restore

Restore Strategy and Procedure

Restoring Database to Different Server

399
399
402
405
415
416
416
416
416
417
421
423
424
425
427
427
428
429
430
434
434
435
436
437
437
438
438
439
439
439
442
445
448
448
450
452
453
455
456

Table of Contents

CUBRID HA 459
Overview 459
CUBRID HA Concept 460
CUBRID HA Feature 467
Quick Start 471
Environment Configuration 473
Running and Monitoring 477
Configuration 481
Constraints 487
Error Messages 488
Operation Scenario 494

Performance Tuning 499

Performance Tuning 500

Database Server Configuration 501
Scope of Database Server Configuration 501
cubrid.conf Configuration File and Default Parameters 501
Connection-Related Parameters 505
Memory-Related Parameters 506
Disk-Related Parameters 507
Error Message-Related Parameters 508
Concurrency/Lock Parameters 510
Logging-Related Parameters 511
Transaction Processing-Related Parameters 514
Statement/Type-Related Parameters 514
Query Cache-Related Parameters 518
Utility-Related Parameters 519
HA-Related Parameters 519
Other Parameters 520
Changing Database Server Configuration 523

Broker Configuration 525
cubrid_broker.conf Configuration File and Default Parameters 525
Common Parameters 526
Parameter by Broker 527

API Reference 533

API Reference 534

CUBRID 2008 R4.0 Help

JDBC API 535
JDBC Programming 535
CUBRIDOID 545
CUBRIDPreparedStatement 551
CUBRIDResultSet 552
CUBRIDResultSetMetaData 553
CUBRIDStatement 554

ODBC API 555
ODBC Programming 555

OLE DB API 559
OLE DB Programming 559

PHP API 564
PHP Programming 564
cubrid_affected_rows 566
cubrid_bind 567
cubrid_client_encoding 570
cubrid_close 570
cubrid_close_prepare, cubrid_close_request 571
cubrid_close_prepare, cubrid_close_request 572
cubrid_col_get 572
cubrid_col_size 573
cubrid_column_names 574
cubrid_column_types 575
cubrid_commit 576
cubrid_connect 577
cubrid_connect_with_url 578
cubrid_current_oid 579
cubrid_data_seek 580
cubrid_ db_name 581
cubrid_disconnect 581
cubrid_drop 582
cubrid_errno, cubrid_error_code 584
cubrid_error, cubrid_error_msg 584
cubrid_error_code_facility 585
cubrid_execute 586
cubrid_fetch 587
cubrid_fetch_array 588
cubrid_fetch_assoc 589
cubrid_fetch_field 590

cubrid_fetch_lengths

cubrid_fetch_object

cubrid_fetch_row

cubrid_field_flags

cubrid_field_len

cubrid_field_name

cubrid_field_seek

cubrid_field_table

cubrid_field_type

cubrid_free_result

cubrid_get

cubrid_get_autocommit

cubrid_get_charset

cubrid_get_class_name

cubrid_get_client_info

cubrid_get_db_parameter

cubrid_get_server_info

cubrid_insert_id

cubrid_is_instance

cubrid_lob_close

cubrid_lob_export

cubrid_lob_get

cubrid_lob_send

cubrid_lob_size

cubrid_list_dbs

cubrid_lock_read

cubrid_lock_write

cubrid_move_cursor

cubrid_next_result

cubrid_num_cols, cubrid_num_fields

cubrid_num_rows

cubrid_ping

cubrid_prepare

cubrid_put

cubrid_query

cubrid_real_escape_string

cubrid_result

cubrid_rollback

cubrid_schema

591
592
593
594
595
595
596
597
598
598
599
600
600
601
602
603
604
605
606
607
607
608
608
609
610
610
611
612
613
615
616
616
617
618
619
620
621
622
623

Table of Contents

Xi

CUBRID 2008 R4.0 Help

cubrid_seq_drop 628
cubrid_seq_insert 629
cubrid_seq_put 631
cubrid_set_add 632
cubrid_set_autocommit 633
cubrid_set_db_parameter 633
cubrid_set_drop 634
cubrid_unbuffered_query 635
cubrid_version 636
CCI API 638
CCI Overview 638
cci_bind_param 648
cci_bind_param_array 650
cci_bind_param_array_size 650
cci_blob_free 651
cci_blob_new 651
cci_blob_write 651
cci_blob_size 652
cci_blob_write 652
cci_clob_free 653
cci_clob_new 653
cci_blob_write 654
cci_clob_size 654
cci_clob_write 655
cci_close_req_handle 655
cci_col_get 655
cci_col_seq_drop 656
cci_col_seq_insert 657
cci_col_seq_put 657
cci_col_set_add 658
cci_col_set_drop 658
cci_col_size 659
cci_connect 659
cci_connect_with_url 660
cci_cursor 661
cci_cursor_update 661
cci_disconnect 662
cci_end_tran 662
cci_execute 664

Xii

Table of Contents

cci_execute_array 665
cci_execute_batch 667
cci_execute_result 668
cci_fetch 669
cci_fetch_buffer_clear 669
cci_fetch_sensitive 669
cci_fetch_size 670
cci_get_autocommit 670
cci_get_bind_num 670
cci_get_class_num_objs 671
CCI_GET_COLLECTION_DOMAIN 671
cci_get_cur_oid 671
cci_get_data 672
cci_get_db_parameter 673
cci_get_db_version 673
cci_get_result_info 674
CCI_GET_RESULT_INFO_ATTR_NAME 675
CCI_GET_RESULT_INFO_CLASS_NAME 675
CCI_GET_RESULT_INFO_IS_NON_NULL 675
CCI_GET_RESULT_INFO_NAME 676
CCI_GET_RESULT_INFO_PRECISION 676
CCI_GET_RESULT_INFO_SCALE 676
CCI_GET_RESULT_INFO_TYPE 677
CCI_IS_SET_TYPE, CCLIS_MULTISET_TYPE, CCI_IS_SEQUENCE_TYPE, CCLIS_COLLECTION_TYPE 677
cci_is_updatable 677
cci_next_result 678
cci_oid 678
cci_oid_get 679
cci_oid_get_class_name 679
cci_oid_put 680
cci_oid_put2 680
cci_prepare 681
CCI_QUERY_RESULT_ERR_MSG 682
cci_query_result_free 682
CCI_QUERY_RESULT_RESULT 683
CCI_QUERY_RESULT_STMT_TYPE 683
cci_savepoint 683
cci_schema_info 684

cci_set_autocommit 688

xiii

CUBRID 2008 R4.0 Help

Xiv

cci_set_db_parameter
cci_set_element_type

cci_set_free

cci_set_get

cci_set_isolation_level

cci_set_make

cci_set_max_row

cci_set_size

688
688
689
689
690
690
690
691

Introduction to Manual

Manual Contents

The contents of the CUBRID Database Management System (CUBRID DBMS) product manual are as follows:

Introduction to CUBRID : This chapter provides a description of the structure and characteristics of the CUBRID
DBMS.

Getting Started with CUBRID : The "Getting Started with CUBRID" provides users with a brief explanation on
what to do when first starting CUBRID. The chapter contains information on new features added to CUBRID, on
how to install and execute the system, and provides a simple guide on how to use the CSQL Interpreter and
CUBRID Manager. The chapter also includes examples of how to write application programs using JDBC, PHP,
ODBC, CCl, etc.

CSQL Interpreter : CSQL is an application that allows you to use SQL statements through a command-driven
interface. This chapter explains how to use the CSQL Interpreter and associated commands.

CUBRID SQL Guide : This chapter describes SQL syntaxes such as data types, functions and operators, data
retrieval or table manipulation. The chapter also provides SQL syntaxes used for indexes, triggers, partitioning,
serial and user information changes, etc.

Administrator's Guide : This chapter provides instructions on how to create, drop, back up, restore and migrate a

database, and executing CUBRID HA functionality. Also it includes instructions on how to use CUBRID utilities,
which starts and stops the Server, Broker and CUBRID Manager servers, etc.

Performance Tuning : The "Performance Tuning" chapter provides instructions on setting system parameters that
may influence the performance. This chapter provides information on how to use the configuration file for the
Server and Broker, and describes the meaning of each parameter.

API Reference : This chapter provides information on JDBC API, ODBC API, OLE DB API, PHP API, and CCI
API.

Manual Conventions

The following table provides conventions on definitions used in the CUBRID Database Management System product
manual to identify "statements," "commands" and "reference within texts."

Convention Description Example
Italics Italics type is used to show the variable names. persistent:
stringVariableName
Boldface Boldface type is used for names such as the member fetch () member function
function name, class name, constants, CUBRID class odb_User
keyword or names such as other required characters.
Constant Width Constant Width type is used to show segments of csql database_name
code example or describes a command's execution
and results.
UPPER-CASE UPPER-CASE is used to show the CUBRID SELECT

keyword (see Boldface).

Single Quotes (') Single quotes (‘") are used with braces and brackets, {'{'const_list'}'}

and shows the necessary sections of a syntax. Single
quotes are also used to enclose strings.

Brackets ([]) Brackets ([]) indicate optional parameters or [ONLY]

keywords.

CUBRID 2008 R4.0 Help

Underline(_)

Underline () indicates a default keyword if no
keyword is specified.

[DISTINCT|UNIQUEJALL]

Vertical bar(|)

Vertical bar (|) indicates that one or another option
can be specified.

[COLUMNIATTRIBUTE]

Braces around
parameters({ })

Braces around parameters indicate that one of those
parameters must be specified in a statement syntax.

{2, 4,6}

Braces with

ellipsis({ }...)

Braces before an ellipsis indicate that a parameter
can be repeated.

{, class_name}...

Angle brackets(< >)

Angle brackets indicate a single key or a series of
key strokes.

<Ctrl+n>

Introduction to CUBRID

CUBRID 2008 R4.0 Help

Introduction to CUBRID

This chapter explains the architecture and features of CUBRID. CUBRID is an object-relational database management

system (DBMS) consisting of the Database Server, the Broker, and the CUBRID Manager. It is optimized for Internet
data services, and provides various user-friendly features.

This chapter covers the following topics:

« System Architecture
* Features of CUBRID

Introduction to CUBRID

System Architecture

System Architecture

CUBRID is an object-relational database management system (DBMS) consisting of the Database Server, the Broker,
and the CUBRID Manager.

» Asthe core component of the CUBRID Database Management System, the Database Server stores and manages
data in multi-threaded client/server architecture. The Database Server processes the queries requested by users and
manages objects in the database. The CUBRID Database Server provides seamless transactions using locking and
logging methods even when multiple users use the database at the same time. It also supports database backup and
restore for the operation.

* The Broker is a CUBRID-specific middleware that relays the communication between the Database Server and
external applications. It provides functions including connection pooling, monitoring, and log tracing and analysis.

» The CUBRID Manager is a GUI tool that allows users to remotely manage the database and the Broker. It also
provides the Query Editor, a convenient tool that allows users to execute SQL queries on the Database Server. See
CUBRID Manager manual or online manual for more information on the CUBRID Manager.

Interface

Broker

CUBRID 2008 R4.0 Help

Database Volume Structure

The following diagram illustrates the CUBRID database volume structure. As you can see, the database is divided into
three volumes: permanent, temporary and backup. This chapter will examine each volume and its characteristics.

— —
[Generic] [Data) [Active] Permanent
- Volume Volume Log Volume
Control
- Temp Index i Archive
Volume Volume

LOD

. =

Temporary
Volume

lemporary
femp Volume

> Backup
Volume

k -

Permanent Volume

Permanent volume is a database volume that exists permanently once it is created. Its types include generic, data, temp,
index, control, active log and archive log.

Generic Volume

For efficient management, the volume type to be added to the database can be specified as one of the followings: data,
temp or index. If data usage is not specified, it is specified as a generic volume.

Data Volume

Data volume is a volume for storing data such as instances, tables and multimedia data.

Temp Volume

Temporary volume is a volume used temporarily for query processing and sorting. However, the temporary volume is
not a volume where the storage is created and destroyed temporarily, but one of the permanent volumes with permanent
spaces where the data is stored and destroyed temporarily. Therefore, the data in the temporary volume space gets
initialized when CUBRID restarts without leaving any log info.

Index Volume

Index volume is a volume that holds the index information for fast query processing or integrity constraint checks.

Control File
The control file contains the volume, backup and log information in the database.

* Volume Information : The information that includes names, locations and internal volume identifiers of all the
volumes in the database. When the database restarts, the CUBRID reads the volume information control file. It
records a new entry to that file when a new database volume is added.

+ Backup Information : Locations of all the backups for data, index, and generic volumes are recorded to a backup
information control file. This control file is maintained where the log files are managed.

Introduction to CUBRID

* Log Information : This information contains names of all active and archive logs. With the log information control
file, you can verify the archive log information. The log information control file is created and managed at the same
location as the log files.

Control files include the information about locations of database volumes, backups and logs. Since these files will be

read when the database restarts, users must not modify them arbitrarily.

Active Log

Active log is a log that contains recent changes to the database. If a problem occurs, you can use active and archive logs
to restore the database completely up to the point of the last commit before the occurrence of the fault.

Archive Log

Archive log is a volume to store logs continuously created after exhausting available active log space that contains
recent changes. The archive log volume will be generated only after exhausting available active log volume space, just
as the temporary temp volume will be generated after exhausting available permanent temp volume space. However,
unlike the temporary temp volume, the archive log volume is not destroyed automatically when the server process
terminates. Therefore, a DBA needs to manually delete necessary archive logs. The archive log volume can be deleted
anytime by DBA.

Temporary Volume

Temporary volume has the opposite meaning to the permanent volume. That is, the temporary volume is a storage
created only when the accumulated data exceeds the space specified by the user as the permanent volume. The
temporary volume is destroyed when the server process terminates. One of such volumes created or destroyed
temporarily is the temporary temp volume.

Temporary Temp Volume

Temporary temp volume is a temporary volume created temporarily by the system after exhausting the space specified
as the permanent temp volume, whereas the temporary volume belongs to the permanent volume with the permanent
space specified. Therefore, the DBA should consider the database operations first to free up the permanent temp volume
with an appropriate size.

The temporary temp volume is created to free up disk space needed for joining/sorting or index creation. Examples of
such large-scale queries of creating temporary volumn are: 1) SQL statements with a GROUP BY or ORDER BY, 2)
SQL statements that contain coordinated subqueries, 3) join queries that perform sort-merge joins, and 4) a CREATE
INDEX statement.

* File name of the temporary temp volume : The file name of the temporary temp volume of CUBRID has the
format of db_name_tnum, where db_name is the database name and num is the volume identifier. The volume
identifier is decremented by 1 from 32766.

* Configuring the temporary temp volume size : The number of temporary temp volumes to be created is
determined by the system depending on the space size needed for processing transactions. However, users can limit
the temporary temp volume size by configuring the temp_file_max_size_in_pages parameter value in the system
parameter configuration file (cubrid.conf). If the temp_file_max_size_in_pages parameter value is configured to
0, the temporary temp volume will not be created even after exhausting the permanent temp volume.

* Configuring save location of the temporary temp volume : By default, the temporary temp volume is created
where the first database volume was created. However, you can specify a different directory to save the temporary
temp volume by configuring the temp_volume_path parameter value.

» Deleting the temporary temp volume : The temporary temp volume exists temporarily only when the database is
running. You must not delete the temporary temp volume while the server is running. The temporary temp volume
is deleted when the client connection with the server is terminated while the database is running in a standalone
mode. On the other hand, the temporary temp volume is deleted when the server process is normally terminated by
the cubrid utility while the database is running in a client/server mode. If the database server is abnormally
terminated, the temporary temp volume will be deleted when the server restarts.

CUBRID 2008 R4.0 Help

Backup Volume

Backup volume is a database snapshot; based on such backup and log volumes, you can restore transactions to a certain
point of time.

You can use the cubrid backupdb utility to copy all the data needed for database restore, or configure the
backup_volume_max_size_bytes parameter value in the database configuration file (cubrid.conf) to adjust the backup
volume partitioning size.

Database Server

Database Server Process

Each database has a server process. The server process is the core component of the CUBRID Database Server, and
handles a user's requests by directly accessing database and log files. The client process connects to the server process
via TCP/IP communication. Each server process creates threads to handle requests by multiple client processes. System
parameters can be configured for each database, that is, for each server process. The server process can connect to as
many client processes as specified by the max_clients parameter value.

Master Process

The master process is a broker process that allows the client process to connect to and communicate with the server
process. One master process runs for each host. (To be exact, one master process exists for each connection port number
specified in the cubrid.conf system parameter file.) While the master process listens on the TCP/IP port specified, the
client process connects to the master process through that port. The master process changes a socket to server port so
that the server process can handle connection.

Execution Mode

All CUBRID utilities except the server process have two execution modes: client/server mode and standalone mode.

» Inclient/server mode, the utilities operate as a client process and connect to the server process.

» In the standalone mode, a process is shared between a client and a server, wherein a master process is not required
and a database can be directly accessed.

For example, a database creation or a restore utility runs in the standalone mode so it can use the database exclusively

by denying the access by multiple users. Another example is that the CSQL Interpreter can either connect to the server

process in client/server mode or execute SQL statements by accessing the database in the standalone mode. Note that

one database cannot be accessed simultaneously by a server process and a standalone program.

Broker

The Broker is a middleware that allows various application clients to connect to the Database Server. As shown below,
the CUBRID system, which includes the Broker, has multi-layered architecture consisting of application clients,
cub_broker, cub_cas and the Database Server.

Introduction to CUBRID

(JDBC, ODBC, PHP, ..)

)

[Cub_Broker }

l

(Shared Memaory

)

r(Cub_CAS_1 J (Cub_CAS_2 J (Cub_CAS_3 J .o
L9

l

-
Database Server]
C csoL
Server Utilities API
L Interpreter

Application Client

The interfaces that can be used in application clients include C-API, ODBC, JDBC, PHP, Tcl/Tk, Python, and Ruby,
OLEDB, and ADO.NET.

[Application Clients }

J Service Pool

cub_cas

cub_cas (CUBRID Common Application Server) acts as a common application server used by all the application clients
that request connections. cub_cas also acts as the Database Server's client and provides the connection to the Database
Server upon the client's request. The number of cub_cas(s) running in the service pool can be specified in the
configuration file, and this number is dynamically adjusted by cub_broker.

cub_cas is a program linked to the CUBRID Database Server's client library and functions as a client module in the
server process. In the client module, tasks such as query parsing, optimization, execution plan creation are performed.

cub_broker

cub_broker relays the connection between the application client and the cub_cas. That is, when an application client
requests access, the cub_broker checks the status of the cub_cas through the shared memory, and then delivers the
request to an accessible cub_cas. It then returns the processing results of the request from the cub_cas to the application
client.

The cub_broker also manages the server load by adjusting the number of cub_cas(s) in the service pool and monitors
and manages the status of the cub_cas. If the cub_broker delivers the request to cub_cas but the connection to cub_cas
1 fails because of an abnormal termination, it sends an error message about the connection failure to the application
client and restarts cub_cas 1. Restarted cub_cas 1 is now in a normal stand-by mode, and will be reconnected by a new
request from a new application client.

Shared Memory

The status information of the cub_cas is saved in the shared memory, and the cub_broker refers to this information to
relay the connection to the application client. With the status information saved in the shared memory, the system
manager can identify which task the cub_cas is currently performing or which application client's request is currently
being processed.

CUBRID 2008 R4.0 Help

Interface Module

10

CUBRID provides various Application Programming Interfaces (APIs). The following APIs are supported by CUBRID.
CUBRID also provides interfaces modules for each interface.

« JDBC : Astandard API used to create database applications in Java. CUBRID provides the JDBC driver as an
interface module.

+ ODBC : Astandard API used to create database applications in Windows. CUBRID provides the ODBC driver as
an interface module.

» OLE DB : An API used to create COM-based database applications in Windows. CUBRID provides the OLE DB
provider as an interface module.

» PHP : CUBIRD provides a PHP interface module to create database applications in the PHP environment. The PHP
module is based on the CCI library.

* CCI:CClisa C language interface provided by CUBRID. The interface module is provided as a C library.

All interface modules access the Database Server through the Broker. The Broker is a middleware that allows various
application clients to connect to the Database Server. When it receives a request from an interface module, it calls a
native C API provided by the Database Server's client library.

Introduction to CUBRID

CUBRID Features

Transaction Support

CUBRID supports the following features to completely ensure the atomicity, consistency, isolation and durability in
transactions.

» Supporting commit, rollback, savepoint per transaction

« Ensuring transaction consistency in the event of system or database failure
» Ensuring transaction consistency between replications

» Supporting multiple granularity locking of databases, tables and records

* Resolving deadlocks automatically

» Supporting distributed transactions (two-phase commit)

Database Backup and Restore

A database backup is the process of copying CUBRID database volumes, control files and log files; a database restore is
the process of restoring the database to a certain point in time using backup files, active logs and archive logs copied by
the backup process. For a restore, there must be the same operating system and the same version of CUBRID installed
as in the backup environment.

The backup methods which CUBRID supports include online, offline and incremental backups; the restore methods
include restore using incremental backups as well as partial and full restore.

Table Partitioning

Partitioning is a method by which a table is divided into multiple independent logical units. Each logical unit is called a
partition, and each partition is divided into a different physical space. This will lead performance improvement by only
allowing access to the partition when retrieving records. CUBRID provides three partitioning methods:

» Range partitioning: Divides a table based on the range of a column value
» Hash partitioning: Divides a table based on the hash value of a column
» List partitioning: Divides a table based on the column value list

HA Functionalities

High Availability (HA) refers to ability to minimize system down time while continuing normal operation of server in
the event of hareware, software, or network failure; that is, the CUBRID HA is functionality that is applied to CUBRID.
The CUBRID HA feature has a shared-nothing architecture. The CUBRID performs realtime monitoring for system and
CUBRID state with the CUBRID Heartbeat. Then in case of system failure, it automatically performs failover. It
follows the two steps below to synchronize data from the master to the slave database servers.

» Atransaction log multiplication step where the transaction log created in the database server is replicated in real
time to another node

» Atransaction log reflection step where data is applied to the slave database server through the analysis of the
transaction log being replicated in real time

Replication

Replication is a technique that duplicates data from one database to other databases to improve performance and
increase server availability by distributing requests from applications that use the same data into multiple databases.
Currently, CUBRID supports replication only on Linux and UNIX. The CUBRID replication system runs based on
transaction logs, and it provides real-time replication and ensures transaction consistency/schema independence of the
slave database. Additionally, it offers a feature for a master database to be minimally affected by replication. The
replication feature consists of the following components:

» Master database: The source database that becomes the target to be replicated. All operations including a read and
write operations are performed in this database. Since the replication is performed asynchronously, there will be no

11

CUBRID 2008 R4.0 Help

12

effect on the master database administration. Replication logs are created in the master server, which are sent to the
slave server via the replication server and the replication agent.

» Slave database: The database replicated from the source database. It allows a client a read operation only in the
salve database. If a write operation occurs in the master database, the transaction is automatically replicated to
multiple-slave databases, so read operations can be distributed on multiple databases.

« Distribution database: Saves the information about the master and the slave databases. It ensures transaction
consistency and effects replication to be distributed.

* Replication server: The replication server runs on the master system and transfers a transaction log in the master
database to the replication agent.

» Replication agent: The replication agent is a process that runs on the slave system and performs the actual
replication tasks by analyzing and applying the transferred replication log to the slave database server.

Java stored procedure

A stored procedure is a method to decrease the complexity of applications and to improve the reusability, security and
performance through the separation of database logic and middleware logic. A stored procedure is written in Java
(generic language), and provides Java stored procedures running on the Java Virtual Machine (JVM). To execute Java
stored procedures in CUBRID, the following steps should be performed:

» Install and configure the Java Virtual Machine

« Create Java source files

» Compile the files and load Java resources

» Publish the loaded Java classes so they can be called from the database
» Call the Java stored procedures

Click Counter

In the Web, it is a common scenario to count and keep the number of clicks to the database in order to record retrieval
history.

The above scenario is generally implemented by using the SELECT and UPDATE statements; SELECT retrieves the
data and UPDATE increases the number of clicks for the retrieved queries.

This approach can cause significant performance degradation due to increased lock contention for UPDATE when a
number of SELECT statements are executed against the same data.

To address this issue, CUBRID introduces the new concept of the click counter that will support optimized features in
the Web in terms of usability and performance, and provides the INCR function and the WITH INCREMENT FOR
statement.

Extending the Relational Data Model

Collection

For the relational data model, it is not allowed that a single column has multiple values. In CUBRID, however, you can
create a column with several values. For this purpose, collection data types are provided in CUBRID. The collection
data type is mainly divided into SET, MULTISET and LIST; the types are distinguished by duplicated availability and
order.

* SET : Acollection type that does not allow the duplication of elements. Elements are stored without duplication
after being sorted regardless of their order of entry.
* MULTISET : A collection type that allows the duplication of elements. The order of entry is not considered.

» LIST : Acollection type that allows the duplication of elements. Unlike with SET and MULTISET, the order of
entry is maintained.

Inheritance

Inheritance is a concept to reuse columns and methods of a parent table in those of child tables. CUBRID supports
reusability through inheritance. By using inheritance provided by CUBRID, you can create a parent table with some

Introduction to CUBRID

common columns and then create child tables inherited from the parent table with some unique columns added. In this
way, you can create a database model which can minimize the number of columns.

Composition

In a relational database, the reference relationship between tables is defined as a foreign key. If the foreign key consists
of multiple columns or the size of the key is significantly large, the performance of join operations between tables will
be degraded. However, CUBRID allows the direct use of the physical address (OID) where the records of the referred
table are located, so you can define the reference relationship between tables without using join operations.

That is, in an object-oriented database, you can create a composition relation where one record has a reference value to
another by using the column displayed in the referred table as a domain (type), instead of referring to the primary key
column from the referred table.

13

Getting Started with CUBRID

CUBRID 2008 R4.0 Help

Getting Started with CUBRID

This chapter contains useful information on starting CUBRID such as how to install and run CUBRID; also it provides
instructions on how to use the CSQL Interpreter. This chapter also includes examples on how to write application
programs using JDBC, PHP, ODBC and CCl, etc.

This chapter covers the following topics :

« Installing and Running CUBRID

» Configuring Environment Variable and Starting CUBRID
» Using the CSQL Interpreter

» Writing Programs using JDBC

» Writing Programs using PHP

» Writing Programs using ODBC and ASP

» Writing Programs using CCl

16

Getting Started with CUBRID

Installing and Running

Installing and Running on Linux

Details to Check when Installing
Check the following before installing CUBRID for Linux.

Category Description
Operating System Only supports glibc 2.3.4 or later.
The glibc version can be checked as follows:
rpm -q glibc
64-bit Since version 2008 R2.0, CUBRID supports both 32-bit and 64-bit Linux.
You can check the version as follows:
% uname -a

Linux host_name 2.6.18-53.1.14.el5xen #1 SMP Wed Mar 5 12:08:17 EST
2008 x86_64 x86_64 x86_64 GNU/Linux

Make sure to install the CUBRID 32-bit version on 32-bit Linux and the
CUBRID 64-bit version on 64-bit Linux. The followings are the libraries that
should be added.

Curses Library (rpm -g ncurses)

gerypt Library (rpm -q libgerypt

stdc++ Library (rpm -q libstdc++)

To use CUBRID Manager or Java-stored functions/procedures in CUBRID, you must have JRE (Java Runtime
Environment) 1.6 or better installed.

Installing CUBRID

The installation program consists shell scripts that contain binary; thus it can be installed automatically. The following
example shows how to install CUBRID with the "CUBRID-8.3.0.0312-linux.x86_64.sh" file on the Linux.

[cub user@cubrid ~]$ sh CUBRID-8.3.1.0168-1linux.x86 64.sh

Do you agree to the above license terms? (yes or no) : yes
Do you want to install this software (CUBRID) to the default (/homel/cub user/CUBRID)
directory? (yes or no) [Default: yes] : yes

Install CUBRID to '/homel/cub user/CUBRID'

In case a different version of the CUBRID product is being used in other machines, please
note that the CUBRID 2008 R3.1 servers are only compatible with the CUBRID 2008 R3.1
clients and vice versa.

Do you want to continue? (yes or no) [Default: yes] : yes

Copying old .cubrid.sh to .cubrid.sh.bak ...

CUBRID has been successfully installed.
demodb has been successfully created.

If you want to use CUBRID, run the following commands
. /homel/cub_user/.cubrid.sh
cubrid service start

As shown in the example above, after installing the downloaded file (CUBRID-8.3.1.0168-linux.x86_64.sh), the
CUBRID related environment variables must be set in order to use the CUBRID database. Such setting has been made
automatically when logging in the concerned terminal. Therefore there is no need to re-set after the first installation.

o°

o°

[cub user@cubrid ~]$. /homel/cub user/.cubrid.sh
After the CUBRID Manager is installed, you can start the CUBRID Manager server and Broker as follows:
[cub user@cubrid ~]$ cubrid service start

After starting the CUBRID service, if you wish to check whether the service was properly started, then check whether
the cub_* processes have been started with grep (as shown below).

17

CUBRID 2008 R4.0 Help

[cub user@cubrid
cub user 15200
cub user 15205
cub_user 15210
cub_user 15211
cub user 15212
cub user 15213
cub user 15214
cub_user 15217
cub user 15222
cub user 15223
cub user 15224
cub_user 15225
cub user 15226
cub user 15229
cub user 15232

~]$ ps -ef | grep cub

0 18:57 2 00:00:00 cub master

0 18:57 pts/17 00:00:00 cub broker

0 18:57 pts/17 00:00:00 query editor cub cas_1
0 18:57 pts/17 00:00:00 query editor cub_cas_2
0 18:57 pts/17 00:00:00 query editor cub cas 3
0 18:57 pts/17 00:00:00 query editor cub cas 4
0 18:57 pts/17 00:00:00 query editor cub cas 5
0 18:57 pts/17 00:00:00 cub_broker

0 18:57 pts/17 00:00:00 brokerl cub cas 1

0 18:57 pts/17 00:00:00 brokerl cub cas 2

0 18:57 pts/17 00:00:00 brokerl cub cas 3

0 18:57 pts/17 00:00:00 brokerl cub_cas_4

0 18:57 pts/17 00:00:00 brokerl cub cas 5

0 18:57 2 00:00:00 cub_auto start

0 18:57 ? 00:00:00 cub_js start

PR RRRRRRRRRRRRR

Installing CUBRID (rpm File)

You can install CUBRID by using rpm file that is created on CentOS5. The way of installing and uninstalling CUBRID
is the same as that of using general rpm utility. While CUBRID is being installed, a new system group (cubrid) and a
user account (cubrid) are created. After installation is complete, you should log in with a cubrid user account to start a
CUBRID service.

$ rpm -Uvh CUBRID-8.3.1.0168-el15.x86 64.rpm

When rmp is executed, CUBRID is installed in the cubrid home directory (/opt/cubrid) and related configuration file
(cubrid.[c]sh) is installed in the /etc/profile.d directory. Note that demodb is not automatically installed. Therefore, you
must executed /opt/cubrid/demo/make_cubrid_demo.sh. When installation is complete, enter the code below to start
CUBRID.

[cubrid@cubrid ~]$ cubrid service start

Note You must check RPM dependency when installing with RPM. If you ignore (--nodeps) dependency, it may not be
executed.

Note Even if you remove RPM, user accounts and databases that are created after installing, you must remove it
manually, if needed.

CUBRID Upgrade

When you specify an installation directory where the previous version of CUBRID is already installed, a message which
asks to overwrite files in the directory will appear. Entering no will stop the installation.

Directory '/homel/cub user/CUBRID' exist!

If a CUBRID service is running on this directory, it may be terminated abnormally.

And if you don't have right access permission on this directory(subdirectories or files),
install operation will be failed.

Overwrite anyway? (yes or no) [Default: no] : yes

Choose whether to overwrite the existing configuration files during the CUBRID installation. Entering yes will
overwrite and back up them as extension .bak files.

The configuration file (.conf or .pass) already exists. Do you want to overwrite it? (yes
or no) : yes

Environment Configuration

To modify the environment such as service ports etc, edit the parameters of a configuration file located in the
$CUBRID/conf directory. See Environment Configuration for more information.

Note You must check the dependency when you attempt to install using RPM. Installation may not succeed if the
dependency is ignored (--nodeps).

18

Getting Started with CUBRID

Installing and Running on Windows

Details to Check when Install

CUBRID 2008 R2.0 supports both 32-bit and 64-bit Windows. You can check the version by selecting [My Computer]
> [System Properties]. Make sure to install the CUBRID 32-bit version on 32-bit Windows and the CUBRID 64-bit
version on 64-bit Windows.

The CUBRID Manager and Java stored procedures require the Java Runtime Environment (JRE) version 1.6 or later.

Setup Type
« Server and Driver Installation : CUBRID Server, CSQL (a command line tool), interface drivers (OLEDB
Provider, ODBC, JDBC, C API) are all installed.

» Driver Installation : The interface drivers (OLEDB Provider, ODBC, JDBC, C API) are only installed. You can
select this type of installation if development or operation is performed by remote connection to the computer in
which the CUBRID database server is installed.

CUBRID Upgrade

To install a new version of CUBRID in an environment in which a previous version has already been installed, select
[CUBRID Service Tray] > [Exit] from the menu to stop currently running services, and then remove the previous
version of CUBRID. Note that when you are prompted with "Do you want to delete all the existing version of databases
and the configuration files?" you must select "No" to protect the existing databases.

For more information on migrating a database from a previous version to a new version, see Migrating Database.

Environment Configuration

To change configuration such as service ports to meet the user environment, the parameter values of the files stated
below should be changed in the %CUBRID%\conf directory.

File Description
cm.conf CUBRID Manager’s configuration file; the port number 8001 is configured by
default.

Two port numbers are required to use CUBRID; a configured number and the
number added by 1 are used. For example, 8001 is configured for connection, the
port number 8001 and 8002 are reserved.

cubrid.conf Server configuration file is used to set the following: database memory, the
number of threads due to the number of concurrent users, connection port between
the Broker and Server, etc.
See cubrid_broker.conf Configuration File and Default Parameters for details.

cubrid_broker.conf Broker configuration file; the port is used by the broker that is operated.
The file is used to set the number of CAS, SQL LOGs, etc. The ports shown in
drivers such as JDBCs are the concerned Broker’s ports.
See Parameter by Broker for details.

19

CUBRID 2008 R4.0 Help

Configuring Environment Variable and Starting
CUBRID

Configuring the Environment Variable

20

The following environment variables need to be set in order to use the CUBRID. The necessary environment variables
are automatically set when the CUBRID system is installed or can be changed, as needed, by the user.

CUBRID Environment Variables

* CUBRID : The default environment variable that designates the location where the CUBRID is installed. This
variable must be set accurately since all programs included in the CUBRID system uses this environment variable
as reference.

+ CUBRID_DATABASES : The environment variable that designates the location of the database location
information file. The CUBRID system saves and manages the absolute path of database volumes that are used in
the $CUBRID_DATABASES/databases.txt file. See databases.txt file.

+ CUBRID_LANG : The environment variable that designates the language that will be used in the CUBRID system.
Currently, CUBRID provides English (en_US) and Korean (ko_KR.euckr and ko_KR.utf8). it is not a mandatory
setting. Therefore, if the variable has not been set, then refer to the LANG environment variable or use en_US,
which is the default value. See Language Setting.

The above mentioned environment variables are set when the CUBRID is installed. However, the following commands
can be used to verify the setting.

For Linux :

oo

printenv CUBRID
printenv CUBRI D_DATABASES
% printenv CUBRID_LANG

oo

In Windows :

C:\> set CUBRID

OS Environment and Java Environment Variables

* PATH : In the Linux environment, the directory $CUBRID/bin, which includes a CUBRID system executable file,
must be included in the PATH environment variable.

* LD_LIBRARY_PATH : In the Linux environment, $CUBRID/lib, which is the CUBRID system’s dynamic library
file (libjvm.so), must be included in the LD_LIBRARY_PATH (or SHLIB_PATH or LIBPATH) environment
variable.

+ Path : In the Windows environment, the $CUBRID/bin, which is a directory that contains CUBRID system’s
execution file, must be included in the Path environment variable.

* JAVA HOME : To use the Java stored procedure in the CUBRID system, the Java Virtual Machine (JVM) version
1.6 or later must be installed, and the JAVA_HOME environment variable must designate the concerned directory.
See the Environment Configuration for Java Stored Functions/Procedures.

Configuring the Environment Variable

For Windows

If the CUBRID system has been installed in the Windows environment, then the installation program automatically sets
the necessary environment variable. Select [Systems Properties] in [My Computer] and select the [Advanced] tab. Click
the [Environment Variable] button and check the setting in the [System Variable]. The settings can be changed by
clicking on the [Edit] button. See the Windows help for more information on how to change the environment variable in
the Windows environment.

Getting Started with CUBRID

System Properties

System Restoe Automatic Updates
Genesal Computes Name Hardware

Yo must be logged on as an Administrator bo m Skt

Performance
Viswal effects, processor scheduing, memony

Usar variables for nhm

‘ariable Yalue

i WProaram Files WES Tsoft WALDp
TEMP CWhocuments and SettingsWnhnfo.
TP i Woocuments and SettingsYnhn %o, .

Uzer Profiles
Deskiop s=ting: related bo wour logan

| mew || et || oeete |

Startup and Racovery Swstem variables

System startup, system falure, and debugang ‘ariable Yalus L
ComSpe: CWWINDOW S Wsystem3ZWomd axe
CUBRID CiWCUBRID

CUBRID DATAE.., ©WCUBRIDWHatabases
CUBRID_LAMG en LS
CUBRID MCODE disnt v

| Environment Vanisbles

[mew || eat || oeete |

| ok || cacsl |

For Linux

If the CUBRID system has been installed in the Linux environment, the installation program automatically creates
the .cubrid.sh or .cubrid.csh file and makes configurations so that the files are automatically called from the
installation account’s shell log-in script. The following is the .cubrid.sh environment variable setting file that was
created in an environment that uses sh, bash, etc.

CUBRID=/homel/cub_user/CUBRID

CUBRID DATABASES=/homel/cub user/CUBRID/databases
CUBRID LANG=en US

1d lib path="printenv LD LIBRARY PATH’

if ["$1d lib path" = """]

then

LD LIBRARY PATH=$CUBRID/lib

else

LD LIBRARY PATH=$CUBRID/lib:$LD LIBRARY PATH
fi

SHLIB PATH=SLD LIBRARY PATH

LIBPATH=$LD LIBRARY PATH
PATH=$CUBRID/bin:$CUBRID/cubridmanager/: $PATH
export CUBRID

export CUBRID DATABASES

export CUBRID LANG

export LD LIBRARY PATH

export SHLIB PATH

export LIBPATH

export PATH

Language Setting

The language that will be used in the CUBRID DBMS can be designated with the CUBRID_LANG environment
variable. The following are values that can currently be set in the CUBRID_LANG environment variable.

21

CUBRID 2008 R4.0 Help

* en_US: English (Default value)

* ko_KR.euckr : Korean EUC-KR encoding

* ko_KR.utf8 : Korean utf-8 encoding

The language setting in the CUBRID system does not represent the character sets of data that is saved. In other words,
even though the CUBRID_LANG is set to ko_KR.utf8, the data may not be changed to the concerned encoding.
CUBRID’s language setting will have an influence on the message printed from the program and will impact the
date/time data type constant displayed throughout the use of the program.

If the CUBRID_LANG is not set, then the value of the LANG environment variable will be used. If the set value does
not support the CUBRID_LANG or LANG value, then the action will be made as if the setting has been made to
en_US, the default value.

Starting the CUBRID Service

22

Configure environment variables and language, and then start the CUBRID service. For more information on
configuring environment variables and language, see Registering Services or Starting and Stopping Services.

Shell Command

The following shell command can be used to start the CUBRID service and the demodb included in the installation
package.

[

% cubrid service start

@ cubrid master start

++ cubrid master start: success

@ cubrid broker start

++ cubrid broker start: success

@ cubrid manager server start

++ cubrid manager server start: success

% cubrid server start demodb
@ cubrid server start: demodb

This may take a long time depending on the amount of recovery works to do.
CUBRID 2008 R4.0
++ cubrid server start: success

@ cubrid server status
Server demodb (rel 8.3, pid 31322)

CUBRIDService or CUBRID Service Tray

On the Windows environment, you can start or stop a service as follows:

» Go to [Control Panel] > [Performance and Maintenance] > [Administrator Tools] > [Services] and select the
CUBRIDService to start or stop the service.

Getting Started with CUBRID

% Services

File Action ‘Wiew Help

% o0 ol E - el IR

IHame Skatus Startup Type Log On As -
Gt BsHelpCs Started Marusal Local Systern
—CLBRIDService Starked Aubomakic Local Syskem
S NewServiceInstalll Automakic Local Syskem
%Ramnvable Skorage Marisal Local Systern
%System Loader Aubomakic Local Syskem
%TCO!strEﬂn Client Service Started Marisal Local Systern
8y TCOIstream Control Service Started Automatic Local System W
£ | >

_E:tendad A Standard /

* In the system tray, right-click the CUBRID Service Tray. To start CUBRID, select [Service Start]; to stop it, select
[Service Stop]. If you click [Exit] while CUBRID is running, all the services and process in the server are stopped.

About

Senvice Start

Service Stop

Exit

Note An administrator level (SYSTEM) authorization is required to start/stop CUBRID processes through the CUBRID
Service tray; a login level user authorization is required to start/stop them with shell commands. If you cannot control
the CUBRID processes on the Windows Vista or later version environment, select [Execute as an administrator (A)] in
the [Start] > [All Programs] > [Accessories] > Command Prompt]) or execute it by using the CUBRID Service Tray.
When all processes of CUBRID Server stops, an icon on the CUBRID Service tray turns out red.

23

CUBRID 2008 R4.0 Help

CSQL Interpreter

Starting the CSQL Interpreter

The CSQL Interpreter is a program used in CUBRID. The entered SQL statements and results can be saved in the file
for later use. For more information Introduction to the CSQL Interpreter and CSQL Execution Mode.

CUBRID offers the "CUBRID Manager" program, a convenient GUI program. All SQL can be executed and the results
can be viewed from the CUBRID Manager’s query editor. For more information, see CUBRID Manager manual or
online manual.

In this section, we will provide information on using the CSQL Interpreter in the Linux environment.

Starting the CSQL Interpreter

The CSQL program can be started in the shell as shown below.

[

% csgl demodb
CUBRID SQL Interpreter
Type ';help' for help messages.
csgl> ;help
=== <Help: Session Command Summary> ===
All session commands should be prefixed by ';' and only blanks/tabs
can precede the prefix. Capitalized characters represent the minimum
abbreviation that should be entered to execute the specified command.

; REAd [<file-name>] - read a file into command buffer.
;Write [<file-name>] - (over)write command buffer into a file.
;APpend [<file-name>] - append command buffer into a file.
; PRINT - print command buffer.
; SHELL - invoke shell.
;CD - change current working directory.
;EXit - exit program.
;CLear - clear command buffer.
;EDIT - invoke system editor with command buffer.
;List - display the content of command buffer.
;RUn - execute sgl in command buffer.
; Xrun - execute sgl in command buffer,
and clears the command buffer.
; COmmit - commit the current transaction.
;ROllback - roll back the current transaction.
;AUtocommit [ON|OFF] - enable/disable auto commit mode.
;REStart - restart database.
;SHELL Cmd [shell-cmd] - set default shell, editor, print and pager
;EDITOR Cmd [editor-cmd] command to new one, or display the current
;PRINT Cmd [print-cmd] one, respectively.
; DATE - display the local time, date.
; DATAbase - display the name of database being accessed.
; SChema class-name - display schema information of a class.
;SYntax [sgl-cmd-name] - display syntax of a command.
;TRigger ["*'|trigger-name] - display trigger definition.
;Get system parameter - get the value of a system parameter.
;SEt system parameter=value - set the value of a system parameter.
;PLan [simple|detail|off] - show query execution plan.
;Info <command> - display internal information.
;TIme [ON/OFF] - enable/disable to display the query
execution time.
;HISTORYList - display list of the executed queries.
;HISTORYRead <history num> - read entry on the history number into command buffer.
;HE1lp - display this help message.
csql>

24

Getting Started with CUBRID

Executing the SQL with CSQL

After the CSQL has been executed, you can enter the SQL into the CSQL prompt. Each SQL statement must end with a
semicolon (;). Multiple SQL statements can be entered in a single line. To execute the SQL statements entered, use

the ;x session command. You can find the simple usage of the session commands with the ;help command. For more
information, see Session Commands.

% csqgl demodb

CUBRID SQL Interpreter

Type " ;help' for help messages.

csgl> select * from olympic;

csgl> ;x

=== <Result of SELECT Command in Line 1> ===

host year host nation host city opening date closing
_date mascot slogan introduction

2004 'Greece' 'Athens' 08/13/2004 08/29/2

004 'Athena Phevos' 'Welcome Home' 'In 2004 the Olympic Games re

turned to Greece, the home of both the ancient Olympics and the first modern Olympics.

<omitted>
25 rows selected.

Current transaction has been committed.

1 command(s) successfully processed.

csql> SELECT SUM(n) FROM (SELECT gold FROM participant WHERE nation code='KOR'
csgl> UNION ALL SELECT silver FROM participant WHERE nation code='JPN') AS t(n);

csgl> ;x

=== <Result of SELECT Command in Line 1> ===

1 rows selected.
Current transaction has been committed.

1 command(s) successfully processed.
csgl> ;exit

25

CUBRID 2008 R4.0 Help

Programming with JDBC

Setting up the JDBC Environment

26

System Requirements

+ JDK 1.6 or later

+ CUBRID 2008 R1.0 or later

+ CUBRID JDBC Driver 2008 R1.0 or later

Installing and Configuring Java Environment

You must already have Java installed and the JAVA_HOME environment variable set on your system. To install Java,
download it from the Java homepage (http://java.sun.com). For more information, see Environment Settings for Java
Stored Functions/Procedures.

Configuring Envrionment Variables for Windows

After installing JAVA, double click [My Computer] and click [System Properties]. In the [Advanced] tab, click
[Envrionment Variables]. The [Environment Variables] dialog will appear.

In the [System Variables], click [New]. Enter JAVA_HOME and Java installation path such as C:\Program
Files\Java\jdk1.6.0_16 and then press [Enter].

New System Variable

Varizble name: | JAVA_HOME |

Variable value: | C:WProgram files/jdk1.6.0_13 |

I Ok,][Cancel]

Select "Path" and then click [Edit]. Add %6JAVA_HOME%o\bin to the variable and then click [OK].

Edit System Variable

Variable name: |F'aﬂ'| |

Variable value:

%%JAVA_HOME % bin |

[Ok, H Cancel]

You can configure JAVA_HOME and PATH in the shell.

set JAVA HOME= C:\Program Files\Java\jdkl.6.0 16
set PATH=%PATHS%; $JAVA HOME%\bin

Configuring the Environment Variables for Linux

Specify the directory path where Java is installed (example : /usr/java/jdk1.6.0_16) in the JAVA_HOME environment
variable, and add $JAVA_HOME/bin to the PATH environment variable.

export JAVA HOME=/usr/java/jdkl.6.0 16 //bash
export PATH=$JAVA HOME/bin:S$PATH //bash
setenv JAVA HOME /usr/java/jdkl.6.0 16 //csh

http://java.sun.com/

Getting Started with CUBRID

set path = ($JAVA HOME/bin $path) //csh

JDBC Driver Setting
To use the JIDBC, set your CLASSPATH environment variable to the path where the CUBRID JDBC driver is located.

The CUBRID JDBC driver (cubrid_jdbc.jar) is located in jdbc directory which is subdirectory where CUBRID is
installed.

File Edit ‘iew Favorites Tools Help
GB.::R - > '!T' ;.) Search ||(~ Folders | |11%]=
Bddress | £y CACUBRIDjdbe v. .Gg
Folders x Mame Size Type

) doc A _-:Icul:uri:l_}'dl:u:.iar 160 KB Executable Jar File

|2 include

I java

oEs

£ b

+ T Il b

S > & >
1 objects 159 KB '§ My Computer

Configuring the CLASSPATH Environment Variables for Windows

set CLASSPATH=%CUBRID%\jdbc\cubrid jdbc.jar:.

Configuring the CLASSPATH Environment Variables for Linux

export CLASSPATH=S$SHOME/CUBRID/jdbc/cubrid jdbc.jar:.

Note If a CUBRID JDBC driver has been installed in the same library directory ($JAVA_HOME/jre/lib/ext) where
the JRE is located, it may be loaded ahead of the server-side JDBC driver used by the Java stored procedure, causing it
to malfunction. In a Java stored procedure environment, make sure not to install the generic CUBRID JDBC driver in
the directory where the JRE is installed ($JAVA_HOME/jre/lib/ext).

JDBC Sample

The following is a simple example that connects to CUBRID by using the JDBC driver and retrieves and inserts data.
To run the sample program, make sure that the database you are trying to connect to and the CUBRID Broker are
running. In the sample, you will use the demodb database that is created automatically during the installation.

JDBC Driver Load

To connect to CUBRID, load the JDBC driver using the for Name() method provided in the class. For more information,
see the CUBRID JDBC Driver.

Class.forName ("cubrid.jdbc.driver.CUBRIDDriver") ;

How to Make the Connection to Database

When the JDBC driver is loaded, use the getConnection() method provided in the DriverManager to connect to the
database. To create a Connection object, you must specify the url for describing the location of the database, database
user name, password, etc. For more information, see the Connection Configuration.

String url = "jdbc:cubrid:localhost:30000:demodb:::";
String userid = "dba";
String password = "";

27

CUBRID 2008 R4.0 Help

Connection conn = DriverManager.getConnection (url,userid, password);

Manipulating database (executing queries and processing the ResultSet)

To send a query statement to the connected database and execute it, create the Statement, PrepardStatement, and
CallableStatement objects. When a statement object has been created, execute the query using the executeQuery()
method or the executeUpdate() method for the statement object. The next() method can process the following row from
the ResultSet that is returned from the executeQuery() method. For more information, see the BRID JDBC Driver.

Note If you execute commit after query execution, ResultSet is automatically closed. Therefore, you must not use
ResultSet after commit. CUBRID is, in general, executed in auto-commit mode. If you does not want auto-commit
mode, you must state conn.setAutocommit(false); in the code.

Disconnecting from the database

Each method can be disconnected from the database by executing the close() method.

JDBC Sample 1

The sample code shown below creates a table, executes a query with a prepared statement, and then rolls back the query.
Modify the parameter value of the getConnection() method for practice.

import java.util.*;
import java.sqgl.*;

public class Basic {

public static Connection connect () {

Connection conn = null;

try {
Class.forName ("cubrid.jdbc.driver.CUBRIDDriver") ;
conn = DriverManager.getConnection ("jdbc:cubrid:localhost:30000:::","dba","");
conn.setAutoCommit (false) ;

} catch (Exception e) {
System.err.println ("SQLException : " + e.getMessage());

}

return conn;

}

public static void printdata (ResultSet rs) {
try {
ResultSetMetaData rsmd = null;

rsmd = rs.getMetaData() ;
int numberofColumn = rsmd.getColumnCount () ;

while (rs.next ()) {
for (int j=1; j<=numberofColumn; Jj++)
System.out.print (rs.getString(j) + " ");
System.out.println("");
}
} catch (Exception e) {
System.err.println ("SQLException : " + e.getMessage()):;
}
}

public static void main(String[] args) throws Exception {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
PreparedStatement preStmt = null;

try {
conn = connect();

stmt = conn.createStatement () ;
stmt.executeUpdate ("create class xoo (a int, b int, c char(10))");

preStmt = conn.prepareStatement ("insert into xoo values(?,?2,''''100'''")");

28

Getting Started with CUBRID

preStmt.setInt (1, 1) ;
preStmt.setInt (2, 1*10) ;
int rst = preStmt.executeUpdate () ;

rs = stmt.executeQuery("select a,b,c from xoo");
printdata(rs);

conn.rollback () ;

stmt.close () ;

conn.close () ;
} catch (Exception e) {

conn.rollback () ;

System.err.println ("SQLException : " + e.getMessage());
} finally {

if (conn != null) conn.close();

}

JDBC Sample 2

The following is an example of executing SELECT statement by connecting to demodb that is provided by CUBRID
during installation.

import java.sqgl.*;
public class SelectData {
public static void main(String[] args) throws Exception {

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
try {
// Connect to CUBRID
Class.forName ("cubrid.jdbc.driver.CUBRIDDriver") ;

conn =
DriverManager.getConnection ("jdbc:CUBRID:1localhost:30000:demodb:::", "dba","");
String sgl = "select name, players from event";
stmt = conn.createStatement () ;
rs = stmt.executeQuery (sqgl);
while (rs.next ()) {
String name = rs.getString("name");

String players = rs.getString("players");

System.out.println("name ==> " + name);

System.out.println ("Number of players==> " + players);
System.out.println ("\n \n") ;

}

rs.close () ;

stmt.close () ;

conn.close();

} catch (SQLException e) {
System.err.println(e.getMessage());

} catch (Exception e) {
System.err.println(e.getMessage());
} finally {
if (conn != null) conn.close();
}
}
}
JDBC Example 3

The following is an example of executing INSERT statement by connecting to demodb that is provided by CUBRID
during installation. You can delete or modify data the same way as you insert data. This means that you can reuse the
code below by simply changing the query statements.

import java.sqgl.*;
public class insertData {
public static void main (String[] args) throws Exception {
Connection conn = null;
Statement stmt = null;
try {
// CUBRID Connect

29

CUBRID 2008 R4.0 Help

30

Getting Started with CUBRID

Programming with PHP

Installing the PHP Module

Go to the CUBRID website and the see how to install the PHP module.

Installing PHP for Windows

After compiling and building cubrid_php_[version].dll from php_cubrid.sIn in the win directory, create a directory
named CUBRID in the directory where PHP is installed, and then copy the the cubrid_php_[version].dll file. For more
information, refer to the INSTALL file

Add required settings as shown in the example below by editing the php.ini file.

extension dir=C:\PHP\CUBRID

extension=cubrid php5.1.4.d11

Once the configuration is complete, restart the web server. If you create test.php using using the phpinfo() function of
PHP and enter a url as http://localhost/test.php on your Web browser, you will see the CUBRID information if the
installation was successful.

Installing PHP for Linux

After compiling and building cubrid.so file by running phpize in the src directory, create a directory named
php/extensions in the directory where PHP is installed, and then copy the the cubrid.so file from the module directory.
For more information, refer to the INSTALL file

Add required settings as shown in the example below by editing the php.ini file.

extension dir=/usr/lib/php5/lib/php/extentions
extension=cubrid.so

After restarting Web server, check the configuration using phpinfo() function.

As with the Windows version of PHP, if you can see the CUBRID information on the web browser, it means that the
installation was successful.

PHP Sample

The following is a simple example that establishes a connection between PHP and CUBRID. This section will cover the
most basic and notable features. Before running the sample program, a database and the Broker you are trying to
connect must be running. This example uses the demodb database created during the installation.

Example of Data Retrieval

<html>

<head>

<meta http-equiv='content-type' content='text/html; charset=euc-kr'
</head>

<body>

<center>

<table border=2>

<?

// Set server information for CUBRID connection. host ip is the IP address where the
CUBRID Broker is installed (localhost in this example), and host port is the port number
of the CUBRID Broker. The port number is the default given during the installation. For
details, see "Administrator's Guide."

Shost_ip = "localhost";

Shost port = 30000;

$db_name = "demodb";

// Connect to CUBRID Server. Do not make the actual connection, but only retain the
connection information. The reason for not making the actual connection is to handle
transaction more efficiently in the 3-tier architecture.

Scubrid con = @cubrid connect ($host ip, S$host port, $db name) ;

if (!Scubrid con) {

31

http://wiki.cubrid.org/index.php/How_to_Build_PHP_Library_for_CUBRID

CUBRID 2008 R4.0 Help

32

echo "Database Connection Error";
exit;

?>
<?
$sgl = "select sports, count(players) as players from event group by sports";
// Request the CUBRID Server for the results of the SQL statement. Now make the actual
connection to the CUBRID Server.
Sresult = cubrid execute ($cubrid con, $sql);
if (Sresult) {
// Get the column names from the result set created by the SQL query.
Scolumns = cubrid column names ($result);
// Get the number of columns in the result set created by the SQL query.
$num fields = cubrid num cols($result);
// List the column names of the result set on the screen.
echo ("<tr>") ;
while (list(Skey, S$colname) = each($columns)) {
echo ("<td align=center>$colname</td>") ;
}
echo ("</tr>");
// Get the results from the result set.
while (Srow = cubrid fetch (Sresult)) {
echo ("<tr>");
for ($i = 0; $i < $num fields; $it++) {
echo ("<td align=center>");
echo ($row[$i]) ;
echo ("</td>") ;
}
echo ("</tr>");
}

}
// The PHP module in the CUBRID runs in a 3-tier architecture. Even when calling SELECT

for transaction processing, it is processed as a part of the transaction. Therefore, the
transaction needs to be rolled back by calling commit or rollback even though SELECT was
called for smooth performance.

cubrid commit (Scubrid con);

cubrid disconnect (Scubrid con) ;
?>
</body></html>

Example of Data Insertion

<html>

<head>

<meta http-equiv='content-type' content='text/html; charset=euc- kr'>
</head>

<body>
<center>
<table border=2>
<?
Shost ip = "localhost";

Shost_port = 30000;
$db_name = "demodb";
$cubrid_con = @cubrid_connect ($host_ip, S$host_port, $db_name);
if (!Scubrid con) {
echo "Database Connection Error";
exit;

>
<?
$sql = "insert into olympic (host year,host nation,host city,opening date,closing date)
values (2008, 'China', 'Beijing', to date('08-08-2008', 'mm-dd- yyyy'),to date('08-24-
2008"', 'mm-dd-yyyy')) "
Sresult = cubrid execute ($cubrid con, $sql);
if (Sresult) {
// Handled successfully, so commit.
cubrid commit (Scubrid con);
echo ("Inserted successfully ");
} else {
// Error occurred, so the error message is output and rollback is called.
echo (cubrid error msg());
cubrid commit ($cubrid con) ;

Getting Started with CUBRID

33

CUBRID 2008 R4.0 Help

Programming with ODBC and ASP

Configuring the Environment of ODBC and ASP

34

CUBRID ODBC is compatible for version 3.52 ODBC and LEVEL2. Note that backward compatibility is not
guaranteed for applications that are written with ODBC Spec 2.x. The CUBRID ODBC driver is automatically installed
while CUBRID is installed. You can verify it from [Control Panel] > [Administrative Tools] > [Data Source (ODBC)] >
[Drivers] tab.

7 DDBC Data Source Administrator

User DSN | System DSN | Fie DN Diivers | Tracing | Connection Pocling | About |

DDBC Drivers that are instaled on yous systenm:

M ame | Yersion | Company ~
CLIEBRID Diwver 2m.0n1119 Seanch 5¢
Driver da Miciozolt pata arguivos texto ("0t " cev] 4.00.6304.00 Microsoft
Driver do Microsoft Access [mdb) 4.00,6204.00 Iicrozoft
Driver da Micrazolt dBase [dbf) 4 .00 B304.00 Microsoft
Diriver do Microsoft Excel” =ik 4.00,6304.00 Microzoft
Drver do Miciosolt Paradox [F.db] 4.00 6204 00 Microsoft
Driver pata o Microzol Visual FosFro 1.00.0200 Microsoft
Microsoft Access Dmver [* mdb] 4.00,6204.00 Microsoft
Microsoft AccessT reiber [~ mdb) 4.00 6204.00 Microsoft
Microsoft db ase Drives |7 dbl) 4 00 B4 00 Microzoft
£ ¥

ODEC data sowces. To install vew drivers, use the diver's setup

@ A ODBC diver dlows 0DEC-enabled programs bo get information from
prograr.

| (1] 4 I Carwel Help

If the CUBRID ODBC driver is detected, set a DSN as a database where the application is trying to connect. To set up a
DSN, click the [Add] button in the ODBC Data Source Administrator dialog box. Then, the following dialog box
appears. Select "CUBRID Driver," and then click the [Finish] button.

Getting Started with CUBRID

Create New Data Source E|

Select a diver for which you want to 22l up a data sounce.

M arme I Yerzion | Compai #
BO1.OD111S Search

Drver da Microzodt par,.. 4006304 00 Micros:
Drrver do Miciosodt Acc.. 4 006304.00 Micros
Divver do Microsoft dBa.. 4 00830400 Microsc
Diriver do Mictosolt Exc.. 4.00.6304.00 Microse
Dirreer do Microsolt Par.. 4.006304.00 Micros
Driver para o Microzoft . 1000200 Micros:
Microzoft Access Dive.. 4.006304.00 Micros:
Microsoft Access-Tredb,. & (006304,00 Microsc

bdimemmm Et AD ssm Dhess s A (W S N L

Finish Cancal |

When the following [Config CUBRID Data Sources] dialog box appears, enter the database name that you try to
connect to in the [DB Name] field, the port number of the CUBRID Broker in the [Server Port] field, and then click
[OK] button. You can verify the number in the cubrid.broker.conf file.

FETCH_SIZE refers to the number of records fetched from server whenever cci_fetch() function of CCI library is
called; the CCl library is internally used by ODBC driver.

Config CUBRID Data Sources EI

DSN \CUBRID

Description |cuhrid_test

DB Name |demudh

DB User |puhlic

Password [

Server Address |Iucalhugl

Server Port |33uuu

FETCH_SIZE [100

0K Cancel

For more information on CUBRID ODBC driver, see "ODBC API Reference."
« CUBRID ODBC Driver

35

CUBRID 2008 R4.0 Help

« Using OIDs and Collections
« Supported Functions and Backward Compatibility

ASP Sample

36

In the virtual directory where the ASP sample program runs, right-click "Default Web Site" and click [Properties].

Diectory SecLuity HTTF Headers Custom Errors ASPMNET
Wweb Site ISAF] Filters Home Directony Documerits

Web Site ldenbfication

Dezcnphion; Jefauk Web Ske
|P Address: (&0 Unaszigned) i
TCP Post: (80
Correchores
Copnection Timeout: 300 zeconds
HTTP Keep-#hlives Enabled
[#] Enable Loggng
Active log format:

\WIC Extended Log File Format v

| ok || Cancel Help

The dialog box shown above will appear. Under the Web Site Identification, in the IP Address drop-down box, select
"(All Unassigned).” This sets the IP address to localhost. If you want to run the sample program using a specific IP
address, configure the directory with the IP address as a virtual directory and register the IP address in Properties.

The following is an example in which the IP address is set to localhost.

Example

Save the following sample code as cubrid.asp in the virtual directory.

<HTML>
<HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=EUC-KR">
<title>CUBRID Query Test Page</title>
</HEAD>
<BODY topmargin="0" leftmargin="0">

<table border="0" width="748" cellspacing="0" cellpadding="0">
<tr>
<td width="200"></td>
<td width="287">
<p align="center">CUBRIDQuery Test</td>
<td width="200"></td>
</tr>
</table>
<form action="cubrid.asp" method="post" >
<table border="1" width="700" cellspacing="0" cellpadding="0" height="45">

Getting Started with CUBRID

<tr>
<td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"
bordercolorlight="#FFFFCC">SERVER IP</td>
<td width="78" wvalign="bottom" height="16" bgcolor="#DBD7BD"
bordercolorlight="#FFFFCC">Broker PORT</td>
<td width="148" valign="bottom" height="16" bgcolor="#DBD7BD"
bordercolorlight="#FFFFCC">DB NAME</td>
<td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"
bordercolorlight="#FFFFCC">DB USER</td>
<td width="113" valign="bottom" height="16" bgcolor="#DBD7BD"
bordercolorlight="#FFFFCC">DB PASS</td>
<td width="80" height="37" rowspan="4" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED">
<p><input type="submit" value="Execute" name="Bl" tabindex="7"></p></td>
</tr>
<tr>
<td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><input type="text" name="server ip" size="20" tabindex="1" maxlength="15"
value="<%=Request ("server ip")%>"></td>
<td width="78" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><input type="text" name="cas port" size="15" tabindex="2" maxlength="6"
value="<%=Request ("cas_port") $>"></td>
<td width="148" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><input type="text" name="db name" size="20" tabindex="3" maxlength="20"
value="<%=Request ("db name") $>"></td>
<td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><input type="text" name="db user" size="15" tabindex="4"
value="<%=Request ("db_user") $>"></td>
<td width="113" height="1" bordercolorlight="#FFFFCC" bgcolor="#F5F5ED"><input type="password" name="db pass" size="15" tabindex="5"
value="<%=Request ("db_pass") $>"></td>
</tr>
<tr>
<td width="573" colspan="5" valign="bottom" height="18" bordercolorlight="#FFFFCC"
bgcolor="#DBD7BD">QUERY</td>
</tr>
<tr>
<td width="573" colspan="5" height="25" bordercolorlight="#FFFFCC"
bgcolor="#F5F5ED"><textarea rows="3" name="query" cols="92"
tabindex="6"><%=Request ("query") $></textarea></td>
</tr>
</table>
</form>
<hr>
</BODY>
</HTML>
<%
' Fetch the DSN and SQL statement.
StrIP = Request("server ip")
strPort = Request("cas port")
strUser = Request("db user")
strPass = Request("db pass")
strName = Request("db name")
strQuery = Request("query")

if strIP = "" then
Response.Write "Please enter the SERVER IP"
Response.End 'If no IP entered, end the page
end if
if strPort = "" then
Response.Write "Please enter the port number"
Response.End ' If no port entered, end the page
end if
if strUser = "" then
Response.Write "Please enter the DB_USER"
Response.End ' If no DB User entered, end the page
end if
if strName = "" then
Response.Write "Please enter the DB _NAME "
Response.End ' If no DB NAME entered, end the page
end if
if strQuery = "" then
Response.Write "Please enter the query you want to check”
Response.End ' If no Query entered, end the page

37

CUBRID 2008 R4.0 Help

38

end 1if

' Create the connection object

strDsn = "driver={CUBRID Driver};server=" & strIP & ";port="

strUser & ";pwd=" & strPass & ";db name=" & strName & ";"
' Connect to DB

Set

3>

DBConn = Server.CreateObject ("ADODB.Connection")
DBConn.Open strDsn

' Execute SQL

Set rs = DBConn.Execute(strQuery)

' Show message depending on the SQL statement

if InStr (Ucase (strQuery), "INSERT")>0 then
Response.Write "The record has been added."
Response.End

end 1if

if InStr (Ucase (strQuery), "DELETE")>0 then
Response.Write "The record has been deleted."
Response.End

end 1if

if InStr (Ucase (strQuery), "UPDATE")>0 then
Response.Write "The record has been modified."
Response.End

end 1if

<table>

<%

A e
o° VvV

%>

' Show the field name
Response.Write "<tr bgColor=#f3f3£3>"
For index =0 to (rs.fields.count-1)
Response.Write "<td>" & rs.fields (index) .name & "</td>"
Next
Response.Write "</tr>"
' Show the field value
Do While Not rs.EOF
Response.Write "<tr bgColor=#f3f3£3>"
For index =0 to (rs.fields.count-1)
Response.Write "<td>" & rs(index) & "</td>"
Next
Response.Write "</tr>"

rs.MoveNext
Loop

set rs = nothing

</table>
You can check the result of the sample program at http://localhost/aSP/cubrid.asp. When you execute the sample code
above, you will get the following output. Enter appropriate values in each field, and then enter the query statement in
the Query field. When you click [Run], the query result will be displayed at the lower portion of the page.

& strPort &

";uid=" &

f CUBRID Query Test Page - Windows

G-h = | @ hipyfocalhost/cubrid asp
i | @ CUBRID Qusry Tost Page

Internet Explorar

W ey | B

fit = B - o - [Page - 3 Tgoks - ”

Getting Started with CUBRID

CUBRIDQuery Test

Brokar
SERVER IP PORT DE NAME DB USER CH PASS
QLERY
leaze enter the SERVER_IP
o Local intranst & e -

39

CUBRID 2008 R4.0 Help

Programming with CCI

CCI Library

The CCI Library is a C language interface provided by CUBRID. CCl is connected to the application through the
Broker, so you can manage it the same way as other interfaces such as JDBC, PHP and ODBC. In fact, CCI provides a
foundation to implement PHP, ODBC, Python and, Ruby interfaces.

CCI Installation and Configuration

The CCI library is contained in the CUBRID installation package. The following figure shows where the files are
located.

|
File Edit View Favortes Tools Help o

e Back ~ \J l,; /W Search } ,'3_4:_- Folders '
Address | C;\CUBRIDYib > ’ =
Folders X Name = Size Type
i & doc A 2@ casccilib 17KB Object File Library
£ indlude % cascei_x64.1b 17KB Object File Library
) java %4 cubrides.lib 160KB Object File Library
3 jdbe ';)cubndsa.ﬂb 1S0KB Object File Library
) Y tbesql.lb 8KB Object File Library
+ N Inn .
< > < >
S objects (Disk free space: 70.9 GB) 348 KB i My Computer
Operating System Windows UNIX/Linux
C header file include/cas_cci.h include/cas_cci.h
Static library lib/cascci.lib lib/libcascci.a
Dynamic library lib/cascci.lib lib/libcascci.so
bin/cascci.dll

40

Getting Started with CUBRID

Using CCI

Basic Flow Diagram of the Application Using CCI

To use CUBRID, the following procedures are required for applications using the CCl libraries to execute quer